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From SVC to CVC4 SVC

SVC

Motivation for a Validity Checker

Processor Verification via Symbolic Simulation

Prove that Abstract Specification Machine matches Implementation

Burch-Dill Commuting Diagram

Check equality of two big formulas
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From SVC to CVC4 SVC

SVC

SVC

Stanford Validity Checker [Barrett, Dill, & Levitt ’96]

Authors: Clark Barrett, Jeremy Levitt, Aaron Stump, Robert Jones,
David Dill

First source release: 1998

Innovations

Theory reasoning based loosely on Shostak’s method [Shostak ’84,
Levitt ’98]

Powerful rewriter/simplifier

Helpful built-in support for backtracking data structures

Novel decision procedures (e.g. bit-vectors, arrays, records)

Modular theory solver design
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From SVC to CVC4 SVC

SVC

Applications

Processor Verification [Levitt & Olukotun ’97]

Specification Checking [Park et al. ’98]

Theorem prover assistance [Heilmann ’99]

Headaches

Shostak’s method - too complicated and restrictive

Equational solvers required to respect restrictive total order

Boolean reasoning too primitive

Software architecture - too entangled
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From SVC to CVC4 CVC

CVC

CVC

Cooperating Validity Checker [Stump, Barrett, & Dill ’02]

Authors: Aaron Stump, Clark Barrett, David Dill, Sergey Berezin,
Vijay Ganesh

First release: 2002

Innovations

Use of SAT solver (Chaff) for Boolean reasoning [Barrett, Dill, &
Stump ’02]

Theory combination framework based on Nelson-Oppen with features
of Shostak [Barrett ’03]

Proof production [Stump, Barrett, & Dill ’02]
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From SVC to CVC4 CVC

CVC

Applications

Predicate Abstraction [Das & Dill ’02]

Software Verification (BLAST tool) [Henzinger et al. ’03]

Compiler Validation [Barrett, Goldberg, & Zuck ’03]

Headaches

Software architecture - too entangled
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From SVC to CVC4 CVC Lite

CVC Lite

CVC Lite

CVC Lite [Barrett & Berezin ’04]

Authors: Clark Barrett, Sergey Berezin, David Dill, Vijay Ganesh

Additional Contributors: Cristian Cadar, Jake Donham, Yeting Ge,
Deepak Goyal, Ying Hu, Sean McLaughlin, Mehul Trivedi, Michael
Veksler, Daniel Wichs, Mark Zavislak, Jim Zhuang

First release: 2004

Innovations

Theorem-based computation

Handling of partial functions via TCC’s [Berezin et al. ’04]

Mixed integer-real arithmetic (plus some non-linear reasoning)

Quantifiers

Predicate sub-typing
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From SVC to CVC4 CVC Lite

CVC Lite

Applications

Translation validation for compilers [Goldberg, Zuck, & Barrett ’04]

Trusted theorem prover assistance [McLaughlin, Barrett, & Ge ’05]

Hardware equivalence checking at Calypto Systems

Headaches

Performance

Software architecture - too entangled
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From SVC to CVC4 CVC3

CVC3

CVC3

CVC3 [Barrett & Tinelli ’07]

Authors: Clark Barrett, Cesare Tinelli, Chris Conway, Morgan Deters,
Alexander Fuchs, Yeting Ge, George Hagen, Mina Jeong, Dejan
Jovanović, Tim King

First release: 2007

Innovations

Enhanced MiniSat Boolean core with proof capability

New decision procedures (bit-vectors, data types, quantifiers)

Improved support for non-linear arithmetic

Extensive support for SMT-LIB and format translation
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From SVC to CVC4 CVC3

CVC3

Applications

Deductive program verification with Why [Filliâtre & Marché ’07]

Symbolic analysis of software at IBM [Chandra, Fink, & Sridharan ’09]

Static analysis of C programs [Conway & Barrett ’10]

Many more...

Headaches

Performance

Incompleteness due to non-stably-infinite theories

Software architecture - too entangled
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From SVC to CVC4 CVC4

CVC4

CVC4

CVC4 [Barrett et al. ’11]

Designers and Authors: Kshitij Bansal, Clark Barrett, Christopher
Conway, Morgan Deters, Liana Hadarean, Tim King, Dejan
Jovanović, Andrew Reynolds, Cesare Tinelli

First release: 2011

Innovations

New efficient expression package

Decentralized and more powerful theory combination techniques
(polite theories, care functions) [Jovanović & Barrett ’10]

New state-of-the-art theory implementations (uninterpreted functions,
real arithmetic, arrays, bit-vectors)

Performance-neutral proof production

Designed to be easily parallelizable
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From SVC to CVC4 CVC4

CVC4

Applications

BMC of Hybrid Systems [King & Barrett ’11]

More to come...

Headaches

Trying to keep the software architecture from becoming too entangled
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From SVC to CVC4 CVC4

CVC4

Applications

BMC of Hybrid Systems [King & Barrett ’11]

More to come...

Headaches

Trying to keep the software architecture from becoming too entangled

A Sneak Peek at CVC4

CVC4 vs CVC3 (time and memory)

CVC4 vs other solvers (time and memory)
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From SVC to CVC4 CVC4

CVC4 vs CVC3 (time)
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From SVC to CVC4 CVC4

CVC4 vs CVC3 (memory)
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From SVC to CVC4 CVC4

Cumulative Time Cactus Plot
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From SVC to CVC4 CVC4

Cumulative Memory Cactus Plot
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Verification of Low-Level Code

Outline

1 From SVC to CVC4
SVC
CVC
CVC Lite
CVC3
CVC4

2 Verification of Low-Level Code
Satisfiability Modulo Theories
Processing Packets
Memory Models
Example
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Verification of Low-Level Code Satisfiability Modulo Theories

Satisfiability Modulo Theories

For a theory T , the T -satisfiability problem consists of deciding whether
there exists a model A and variable assignment α such that
(A, α) |= T ∪ ϕ for a given formula ϕ.
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Verification of Low-Level Code Satisfiability Modulo Theories

Theories of Inductive Data Types

An inductive data type (IDT) defines one or more constructors, and
possibly also selectors and testers.

Example: list of int

Constructors: cons : (int, list) → list, null : list

Selectors: car : list → int, cdr : list → list

Testers: is cons, is null

The first order theory of a inductive data type associates a function
symbol with each constructor and selector and a predicate symbol with
each tester.

Example: ∀ x : list. (x = null ∨ ∃ y : int, z : list. x = cons(y , z))
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Verification of Low-Level Code Satisfiability Modulo Theories

Theories of Inductive Data Types

An inductive data type (IDT) defines one or more constructors, and
possibly also selectors and testers.

Example: list of int

Constructors: cons : (int, list) → list, null : list

Selectors: car : list → int, cdr : list → list

Testers: is cons, is null

The first order theory of a inductive data type associates a function
symbol with each constructor and selector and a predicate symbol with
each tester.

Example: ∀ x : list. (x = null ∨ ∃ y : int, z : list. x = cons(y , z))

For IDTs with a single constructor, a conjunction of literals is decidable in
polynomial time [Oppen ’80].
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Verification of Low-Level Code Satisfiability Modulo Theories

Theories of Inductive Data Types

An inductive data type (IDT) defines one or more constructors, and
possibly also selectors and testers.

Example: list of int

Constructors: cons : (int, list) → list, null : list

Selectors: car : list → int, cdr : list → list

Testers: is cons, is null

The first order theory of a inductive data type associates a function
symbol with each constructor and selector and a predicate symbol with
each tester.

Example: ∀ x : list. (x = null ∨ ∃ y : int, z : list. x = cons(y , z))

For more general IDTs, the problem is NP complete, but reasonbly
efficient algorithms exist in practice [Barrett et al. ’07].
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Verification of Low-Level Code Processing Packets

Processing Packets

1 0000010 00000001 00000010 1 0000001 00000011 00000000

cons

cons

tag,count data cdr

tag,count data cdr

nil

Network packets are highly structured

but usually processed with low-level bit-twiddling code

wh i l e ( (n = *p++) & 0x80 ) {

p += n & 0x7f;

}
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Verification of Low-Level Code Processing Packets

Processing Packets

1 0000010 00000001 00000010 1 0000001 00000011 00000000

cons

cons

tag,count data cdr

tag,count data cdr

nil

Network packets are highly structured
but usually processed with low-level bit-twiddling code
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p += n & 0x7f;
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Verification of Low-Level Code Processing Packets

Processing Packets

One solution: packet-processing DSLs
(e.g., binpac, Melange, Morpheus, Prolac)

type List =

cons {

tag:1 = 0b1,

count: 7,

data: u_char[count],

cdr: List

}

| nil {

tag:8 = 0x00

}

High level

Type safe

Slower than C

Need to rewrite existing code
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Verification of Low-Level Code Processing Packets

Packet Types as Specification

Instead of synthesizing a performant implementation,
let’s use packet types as the basis of a specification

wh i l e ( (n = *p++) & 0x80 ) {

assert( isCons(prev(p)) );

p += n & 0x7f;

assert( p == cdr(prev(p)) );

}

We can use bit-precise reasoning to prove that the code satisfies the
assertions using Cascade.
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Verification of Low-Level Code Processing Packets

Cascade Verification Framework

Source code

Language Front-end

C

SPL

...

Control-flow
Graph

Analysis input

Analysis Algorithm

Deductive 
proof rules

Path-based 
assertion 
checking

...

Expression Encoding

First-order
encoding

Array-based
memory
encoding

...

Prover Back-end

CVC3

JavaBDD

...
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Verification of Low-Level Code Processing Packets

Cascade/C

High-precision verification of program paths

Intended for use in a multi-stage analysis

Path is defined and assertions are injected using an XML control file
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Verification of Low-Level Code Processing Packets

Cascade/C

swap.c:

void swap(int*x, int*y) {

*x = *x + *y;

*y = *x - *y;

*x = *x - *y;

}

swap.ctrl:

<controlFile>

<sourceFile name="swap.c" id="1" />

<run>

<startPosition fileId="1" line="1" />

<endPosition fileId="1" line="5">

<assert><![CDATA[

orig(*x)==*y && orig(*y)==*x

]]></assert>

</endPosition>

</run>

</controlFile>

*x = *x + *y;

*y = *x - *y;

*x = *x - *y;

assert( orig(*x)==*y && orig(*y)==*x );

@
@
@
@
@
@
@R

�
�
�

��	
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Verification of Low-Level Code Processing Packets

Cvc3 Encoding

Encode verification conditions as SMT instances

Use Cvc3 SMT solver to decide validity

Cvc3 includes theories for:

Arrays
Uninterpreted functions
Bit vectors
Inductive datatypes

Connect the high-level assertions and the low-level code by
generating:

An inductive datatype
Functions mapping datatype values to arrays of bytes
Encode program semantics using bit vectors
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Verification of Low-Level Code Processing Packets

CVC3 Encoding

type List =

cons {

tag:1 = 0b1 ,

count: 7,

data: u_char[count],

cdr: List

}

| nil {

tag:8 = 0x00

}
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CVC3 Encoding

ptrType : BITVECTOR(N);
byteType : BITVECTOR(8);
memType : ARRAY ptrType OF byteType;

DATATYPE
List =

cons( tag: BITVECTOR(1),
len: BITVECTOR(7),
data: memType ,

cdr: List )

| nil( tag: BITVECTOR(8) )

| undefined;

END;

toList : (memType , ptrType) -> List;

∀ m:memType , i:ptrType.

isNil(toList(m,i)) ⇐⇒ m[i] = 0;

∀ m: memType , i: ptrType.

isCons(toList(m,i)) ⇐⇒ m[i][7] = 1;

∀ m: memType , i: ptrType.

isCons(toList(m, i)) =⇒
cdr(toList(m,i)) = toList(m,i+len(toList(m,i))+1);

etc ...



Verification of Low-Level Code Processing Packets

Verification Condition Generation

n = *p++;

assume( (n & 0x80) != 0 );

assert( isCons(prev(p)) );

becomes

m1 = m0[&n 7→ m0[m0[&p]]]

m2 = m1[&p 7→ m1[&p] + 1]

m2[&n] & 0x80 6= 0x00

isCons(toList(m2,m0[&p]))
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Verification of Low-Level Code Memory Models

Memory Models

“Flat” memory model

Memory is one big array:

m1 = m0[&n 7→ m0[m0[&p]]]

m2 = m1[&p 7→ m1[&p] + 1]

No “frame rule” is implied.

E.g., the following isn’t necessarily valid:

{ toList(q)==cdr(p) }

i++

{ toList(q)==cdr(p) }

We can’t rule out &i being reachable if toList is unrolled enough
times.

Detailed non-aliasing assumptions have to be added by hand

And they don’t help much
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Verification of Low-Level Code Memory Models

Memory Models

Burstall model [Burstall ’72, Bornat ’00]

A separate memory array for each static type:

m′char = mchar [&n 7→ mchar [mchar∗[&p]]]

m′char∗ = mchar∗[&p 7→ mchar∗[&p] + 1]

Can’t handle safe dynamic casts
Can’t handle promiscuous pointer manipulation

Which is exactly what packet processing is
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Verification of Low-Level Code Memory Models

Partitioning the Heap

An “in between” model, based on separation analysis
[Hubert & Marché ’07, Rakamaric & Hu ’09]

Memory is partitioned into disjoint regions.

Every pointer expression is associated with a region

p

n
*p

Each region can be represented by a separate “memory”
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Verification of Low-Level Code Memory Models

Partitioning the Heap

Flat:

m1 = m0[&n 7→ m0[m0[&p]]]

m2 = m1[&p 7→ m1[&p] + 1]

m2[&n] & 0x80 6= 0x00

isCons(toList(m2,m0(&p)))

Separation creates a “frame” around datatype values

Makes hard problems easy and easy problems trivial

The verification condition is sound if the partition is sound
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Verification of Low-Level Code Memory Models

Partitioning the Heap

Partitioned:

m′
n = mn[&n 7→ m*p[mp[&p]]]

m′
p = mp[&p 7→ mp[&p] + 1]

m′
n[&n] & 0x80 6= 0x00

isCons(toList(m*p,mp[&p]))

Separation creates a “frame” around datatype values

Makes hard problems easy and easy problems trivial

The verification condition is sound if the partition is sound
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Verification of Low-Level Code Example

“Real World” Example: Encoded Domain Name

type Dn =

label {

tag:2 = 0b00 ,

len:6 != 0b000000 ,

name:u_char[len],

rest:Dn

}

| indirect {

tag:2 = 0b11 ,

offset :14

}

| nullt {

tag:8 = 0x00

}
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#de f i n e NS_CMPRSFLAGS (0xc0)

i n t ns_name_skip( const u_char **ptrptr , const u_char *eom) {

{ allocated (*ptrptr , eom) }

const u_char *cp; u_int n;

cp = *ptrptr;

{ @invariant: cp <= eom =>

cp + sizeOfDn(cp) = init(cp) + sizeOfDn(init(cp)) }

wh i l e (cp < eom && (n = *cp++) != 0) {

sw i tch (n & NS_CMPRSFLGS) {

case 0: /* normal case , n == len */

{ isLabel(prev(cp)) }

cp += n;

{ rest(prev(cp)) = toDn(cp) }

cont inue ;
case NS_CMPRSFLGS: /* indirection */

{ isIndirect(prev(cp)) }

cp++; break ;
d e f a u l t : /* illegal type */

__set_errno (EMSGSIZE ); r e t u r n (-1);

}

break ;
}

i f (cp > eom) { __set_errno (EMSGSIZE ); r e t u r n (-1); }

{ cp = eom _ cp = init(cp) + sizeOfDn(init(cp)) }

*ptrptr = cp;

r e t u r n (0);

}



Verification of Low-Level Code Example

Experimental results

Verification times for ns name skip.

30 LOC, 4 assertions + a loop invariant

Time (seconds)
Name Lines Flat Part.

Init 5–12 0.34 0.03
Case 0 (1) 12-16 13.94 0.05
Case 0 (2) 12-28 33.42 0.06
Case 0 (3) 12-19 * 0.12

Case 0xc0 (1) 12–14, 20–21 6.14 0.04
Case 0xc0 (2) 12–14, 20–23, 30, 34 * 0.07

Term (1) 12, 30, 34 0.63 0.06
Term (2) 12, 30, 34 * 0.05
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Verification of Low-Level Code Example

Final Thoughts

15 years of checking formulas

SMT has come a long way in last 15 years

Dramatic advances in theory and practice

Explosion of application areas

Lessons

Balancing high-performance and software flexibility is a challenge

Modularity and solid theoretical foundations can help

But in a rapidly advancing area, may have to reimplement every few
years anyway

CVC4 is coming

Goals: open source, high-performance, full-featured SMT solver

Contributions and collaborations welcome after first release
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Verification of Low-Level Code Example
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[RH09] Zvonimir Rakamarić and Alan Hu. A scalable memory model for low-level
code. In Neil Jones and Markus Mller-Olm, editors, Verification, Model
Checking, and Abstract Interpretation, volume 5403 of Lecture Notes in
Computer Science, pages 290–304. Springer Berlin / Heidelberg, 2009

[Sho84] R. Shostak. Deciding combinations of theories. Journal of the Association for
Computing Machinery, 31(1):1–12, 1984

[SBD02a] Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A cooperating
validity checker. In Ed Brinksma and Kim Guldstrand Larsen, editors,
Proceedings of the 14th International Conference on Computer Aided
Verification (CAV ’02), volume 2404 of Lecture Notes in Computer Science,
pages 500–504. Springer-Verlag, July 2002. Copenhagen, Denmark

[SBD02b] Aaron Stump, Clark W. Barrett, and David L. Dill. Producing proofs from an
arithmetic decision procedure in elliptical LF. In Frank Pfenning, editor,
Proceedings of the 3rd International Workshop on Logical Frameworks and
Meta-Languages (LFM ’02), volume 70(2) of Electronic Notes in Theoretical
Computer Science, pages 29–41. Elsevier, July 2002. Copenhagen, Denmark

Clark Barrett ( New York University ) From SVC to CVC4 13 Jun 2011 45 / 45


	From SVC to CVC4
	SVC
	CVC
	CVC Lite
	CVC3
	CVC4

	Verification of Low-Level Code
	Satisfiability Modulo Theories
	Processing Packets
	Memory Models
	Example


