
Bounded Model Checking with SAT/SMT

06-12-2011

SAT/SMT Summer School, MIT

Edmund M. Clarke, Jr.

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

(Joint work with Sean Gao)

1/40

Outline – Something Old, Something New

I Bounded Model Checking Using SAT

I Bounded Model Checking for Hybrid Systems

I How to use numerical methods safely.

2/40

Symbolic Model Checking with BDDs

Method used by most “industrial strength” model checkers:

I uses Boolean encoding for state machine and sets of states.

I can handle much larger designs – hundreds of state variables.

I BDDs traditionally used to represent Boolean functions.

3/40

Problems with BDDs

I BDDs are a canonical representation. Often become too large.

I Variable ordering must be uniform along paths.

I Selecting right variable ordering very important for obtaining small BDDs.

I Often time consuming or needs manual intervention.

I Sometimes, no space efficient variable ordering exists.

BMC is an alternative approach to symbolic model checking that uses
SAT procedures.

4/40

Advantages of SAT Procedures

I SAT procedures also operate on Boolean expressions but do not use
canonical forms.

I Do not suffer from the potential space explosion of BDDs.

I Different split orderings possible on different branches.

I Very efficient implementations available.

5/40

Bounded Model Checking
(Clarke, Biere, Cimatti, Zhu)

I Bounded model checking uses a SAT procedure instead of BDDs.

I We construct Boolean formula that is satisfiable iff there is a
counterexample of length k.

I We look for longer and longer counterexamples by incrementing the bound
k.

I After some number of iterations, we may conclude no counterexample
exists and specification holds.

I For example, to verify safety properties, number of iterations is bounded
by diameter of finite state machine.

6/40

Main Advantages of Our Approach

I Bounded model checking finds counterexamples fast. This is due to depth
first nature of SAT search procedures.

I It finds counterexamples of minimal length. This feature helps user
understand counterexample more easily.

I It uses much less space than BDD based approaches.

I Does not need manually selected variable order or costly reordering.
Default splitting heuristics usually sufficient.

I Bounded model checking of LTL formulas does not require a tableau or
automaton construction.

7/40

Implementation

I Implemented a tool BMC in 1999.

I It accepts a subset of the SMV language.

I Given k, BMC outputs a formula that is satisfiable iff counterexample
exists of length k.

I If counterexample exists, a standard SAT solver generates a truth
assignment for the formula.

8/40

Performance

I There are many examples where BMC significantly outperforms BDD
based model checking.

I In some cases BMC detects errors instantly, while SMV fails to construct
BDD for initial state.

Armin’s example: Circuit with 9510 latches, 9499 inputs.
BMC formula has 4× 106 variables, 1.2× 107 clauses.
Shortest bug of length 37 found in 69 seconds.

9/40

Basic Definitions and Notation

I We use linear temporal logic (LTL) for specifications.

I Basic LTL operators:
next time ‘X’ eventuality ‘F’
globally ‘G’ until ‘U’
release ‘R’

I Only consider existential LTL formulas Ef , where

I E is the existential path quantifier, and

I f is a temporal formula with no path quantifiers.

I Recall that E is the dual of the universal path quantifier A.

I Finding a witness for Ef is equivalent to finding a counterexample for
A¬f .

10/40

Definitions and Notation (Cont.)

I System described as a Kripke structure M = (S, I, T, `), where

I S is a finite set of states and I a set of initial states,

I T ⊆ S × S is the transition relation,
(We assume every state has a successor state.)

I ` : S → P(A) is the state labeling.

I The Microwave Oven Example:

AG(start→ (¬heat U close))

~ Start

~ Close

~ Heat

~ Error

Start

~ Close

~ Heat

Error

~ Start

Close

~ Heat

~ Error

~ Start

Close

Heat

~ Error

Start

Close

Heat

~ Error

Start

Close

~ Heat

~ Error

Start

Close

~ Heat

Error

11/40

Definitions and Notation (Cont.)

I In symbolic model checking, a state is represented by a vector of state
variables s = (s(1), . . . , s(n)).

I We define propositional formulas fI(s), fT (s, t) and fp(s) as follows:

I fI(s) iff s ∈ I,

I fT (s, t) iff (s, t) ∈ T , and

I fp(s) iff p ∈ `(s).

I We write T (s, t) instead of fT (s, t), etc.

12/40

Definitions and Notation (Cont.)

I If π = (s0, s1, . . .), then π(i) = si and πi = (si, si+1, . . .).

I π is a path if π(i)→ π(i+ 1) for all i.

I Ef is true in M (M |= Ef) iff there is a path π in M with π |= f and
π(0) ∈ I.

I Model checking is the problem of determining the truth of an LTL formula
in a Kripke structure. Equivalently,

Does a witness exist for the LTL formula?

13/40

Example To Illustrate New Technique

Two-bit counter with an erroneous transition:

I Each state s is represented by two state variables s[1] and s[0].

I In initial state, value of the counter is 0. Thus, I(s) = ¬s[1] ∧ ¬s[0].

I Let inc(s, s′) = (s′[0]↔ ¬s[0]) ∧ (s′[1]↔ (s[0]⊕ s[1]))

I Define T (s, s′) = inc(s, s′) ∨ (s[1] ∧ ¬s[0] ∧ s′[1] ∧ ¬s′[0])

I Have deliberately added erroneous transition!!

14/40

Example (Cont.)

I Suppose we want to know if counter will eventually reach state (11).

I Can specify the property by AFq, where q(s) = s[1] ∧ s[0].

On all execution paths, there is a state where q(s) holds.

I Equivalently, we can check if there is a path on which counter never
reaches state (11).

I This is expressed by EGp, where p(s) = ¬s[1] ∨ ¬s[0].

There exists a path such that p(s) holds globally along it.

15/40

Example (Cont.)

I In bounded model checking, we consider paths of length k.

I We start with k = 0 and increment k until a witness is found.

I Assume k equals 2. Call the states s0, s1, s2.

I We formulate constraints on s0, s1, and s2 in propositional logic.

I Constraints guarantee that (s0, s1, s2) is a witness for EGp and, hence, a
counterexample for AFq.

16/40

Example (Cont.)

I First, we constrain (s0, s1, s2) to be a valid path starting from the initial
state.

I Obtain a propositional formula

[[M]] = I(s0) ∧ T (s0, s1) ∧ T (s1, s2).

17/40

Example (Cont.)

I Second, we constrain the shape of the path.

I The sequence of states s0, s1, s2 can be a loop or lasso.

I If so, there is a transition from s2 to the initial state s0, s1 or itself.

I We write Ll = T (s2, sl) to denote the transition from s2 to a state sl
where l ∈ [0, 2].

I We define L as
∨2

l=0 Ll. Thus ¬L denotes the case where no loop exists.

18/40

Example (Cont.)

I The temporal property Gp must hold on (s0, s1, s2).

I If no loop exists, Gp does not hold and [[Gp]] is false.

I To be a witness for Gp, the path must contain a loop (condition L, given
previously).

I Finally, p must hold at every state on the path

[[Gp]] = p(s0) ∧ p(s1) ∧ p(s2).

I We combine all the constraints to obtain the propositional formula

[[M]] ∧ ((¬L ∧ false) ∨
2∨

l=0

(Ll ∧ [[Gp]])).

19/40

Example (Cont.)

I In this example, the formula is satisfiable.

I Truth assignment corresponds to counterexample path (00), (01), (10)
followed by self-loop at (10).

I If self-loop at (10) is removed, then formula is unsatisfiable.

20/40

Diameter

I Diameter d: Least number of steps to reach all reachable states. If the
property holds for k ≥ d, the property holds for all reachable states.

I Finding d is computationally hard:

I State s is reachable in j steps:

Rj(s) := ∃s0, . . . , sj : s = sj ∧ I(s0) ∧
j−1∧
i=0

T (si, si+1)

I Thus, k is greater or equal than the diameter d if

∀s : Rk+1(s) =⇒ ∃j ≤ k : Rj(s)

This requires an efficient QBF checker!

21/40

Work in Progress: Bounded Model Checking Hybrid Systems
(with S. Gao and J. Avigad)

Hybrid systems combine finite automata with continuous dynamical systems.

I They are widely used to model cyber-physical systems.
(e.g., aerospace, automotive, and biological systems)

I They pose a grand challenge to formal verification.

I Reachability for simple systems is undecidable.

I Existing tools do not scale on realistic systems.

I Less than ten variables and mostly constant dynamics.

22/40

Hybrid Systems

H = 〈X,Q, Init,Flow, Jump〉

I A state space X ⊆ Rk and a finite set of modes Q.

I Init ⊆ Q×X: initial configurations

I Flow: continuous flows

I Each mode q is equipped with differential equations
d~x

dt
= ~fq(~x, t).

I Jump: discrete jumps

I The system can be switched from (q, ~x) to (q′, ~x′), resetting modes
and variables.

Continuous flows are interleaved with discrete jumps.

23/40

Hybrid System Example

Controller of an automated guided vehicle [Lee and Seshia, 2011]

24/40

Encoding Continuous Dynamics

Logical encoding is not limited to discrete systems.

I Continuous Dynamics:
d~x(t)

dt
= ~f(~x(t), t)

I The solution curve:

α : R→ X, α(t) = α(0) +

∫ t

0

~f(α(s), s)ds.

I Define the predicate

JFlowf (~x0, t, ~x)KM = {(~x0, t, ~x) : α(0) = ~x0, α(t) = ~x}

Reachability:

∃~x0, ~x, t. (Init(~x0) ∧ Flowf (~x0, t, ~x) ∧ Unsafe(~x)) ?

25/40

Encoding Bounded Reachability for Hybrid Systems

Combining continuous and discrete behaviors, we can encode bounded
reachability for hybrid systems:

I “~x is reachable after after 0 discrete jumps” is definable as:

Reach0(~x) := ∃~x0, t. [Init(~x0) ∧ Flow(~x0, t, ~x)]

I Inductively, “~x is reachable after k + 1 discrete jumps” is definable as:

Reachk+1(~x) := ∃~xk, ~x′k, t. [Reachk(~xk) ∧ Jump(~xk, ~x
′
k) ∧ Flow(~x′k, t, ~x)]

Reachability within n discrete jumps:

∃~x. (
n∨

i=0

Reachi(~x) ∧ Unsafe(~x)) ?

26/40

Decision Procedures over Reals

The formulas that we have shown are first-order formulas over reals. Because
of the dynamical systems involved, they usually contain a rich set of nonlinear
functions:

I polynomials

I exponentiation and trigonometric functions

I solutions of ODEs, mostly no analytic forms

27/40

Difficulty with Symbolic Decision Procedures

Symbolic decision procedures are unlikely to scale on realistic problems.

I The arithmetic theory (×/+) is decidable but already highly complex.

I Double-exponential (PSPACE for SMT, theoretically).

I Very active research in the past twenty years. (Cylindrical
Decomposition, Gröbner Bases, Postivstellensatz,...)

I Available solvers: Hard to scale to more than ten variables.

I The general first-order theory over exp, sin, ODEs, ...

I Wildly undecidable.

28/40

Scaling up: Use Numerical Methods?

However, large systems of real equalities/inequalities/ODEs are routinely solved
numerically.

I They are perfect for simulation, but usually regarded inappropriate for
verification because of their inevitable numerical errors.

I (Platzer and Clarke, HSCC 2008)

I Is there a way of using them still?

I We need to start with a good formalization of “numerical algorithms”.

29/40

Formalizing Numerical Algorithms

What does it mean to say a function f over reals is “numerically computable”?

I There exists an algorithm Mf , such that given a good approximation of x,
Mf can find a good approximation of f(x).

I “A real function is computable if we can draw it faithfully on a
computer!”

I This leads to the well-developed framework of Computable Analysis (a.k.a.
Type-II Computability) over real numbers. [A. Turing, A. Grzegorczyk, K.
Weihrauch, S. Cook]

30/40

Type-II Turing Machines

I Any real number a is encoded by a name γa : N→ Q satisfying

∀i, |a− γa(i)| < 2−i

I A Type-II Turing machine extends the ordinary by allowing input and
output tapes to be both infinite. The working tape remains finite.

I Note that each symbol on the output tape of a Type-II machine needs to
be written down after finitely many operations in the machine.

31/40

Type-II Computable Functions

I A function f is Type-II computable, if there exists a Type-II Turing
machine Mf , such that given any name of γ~x of ~x ∈ dom(f),

Mf outputs a name of γf(~x) of f(~x).

32/40

First-order Formulas with Computable Functions

I Let F be the set of all Type-II computable functions.

I This is a very general framework: F contains polynomials, exp, sin,
and solutions of Lipschitz-continuous ODEs.

I Consider the first-order the structure RF = 〈R, 0, 1,F , <〉 and the
corresponding language LF .

I Can we solve SMT problems in LF over RF?

I This would allow us to solve formulas that arise in bounded model
checking of hybrid systems.

33/40

Robust Formulas

Suppose we want to decide a formula in LF :

∃x ∈ I.(f(x)= 0 ∧ g(x)= 0).

(I ⊆ R is a bounded interval where f and g are defined).

I Numerical algorithms can never compute f(x) and g(x) precisely for all x.

I But how about fixing some error bound δ, and relaxing the formula to:

∃x ∈ I.(|f(x)|< δ ∧ |g(x)|< δ)?

34/40

δ-Robustness

We can consider formulas whose satisfiability is invariant under numerical
perturbations. Formally:

I Consider any formula ϕ :=
∧

i(
∨

j fij(~x) = 0).

I Inequalities are turned into interval bounds on slack variables.

I A δ-perturbation on ϕ is a constant vector ~c satisfying ||~c|| < δ
(|| · || denotes the maximum norm)

ϕ~c :=
∧
i

(
∨
j

fij(~x) = cij)

I We say ϕ is δ-robust, if its satisfiability is invariant under δ-perturbations:

For any δ-perturbation ~c, ∃~x.ϕ↔ ∃~x.ϕ~c.

35/40

Computational Benefits

As it turns out, robust formulas in LF have nice computational properties.

I Theorem:
Satisfiability of robust bounded SMT problems over RF is decidable.

I This is significant given the richness of F : exp, sin, ODEs...

I Decidability can be extended to quantified formulas.

I (Reasonably low) complexity results are in progress.

36/40

Correctness on General Formulas

For general formulas, we can produce decision procedures using numerical
oracles (with an error bound δ) that guarantee:

I If ϕ is decided as “unsatisfiable”, then it is indeed unsatisfiable.

I If ϕ is decided as “satisfiable”, then:

Under some δ-perturbation ~c, ϕ~c is satisfiable.

If a decision procedure satisfies this property, we say it is “δ-complete”.

37/40

Delta-Complete Bounded Model Checking

Recall that when bounded model checking a hybrid system H, we ask if

ϕ : Reach≤n
H (~x) ∧ Unsafe(~x)

is satisfiable.

I If ϕ is unsatisfiable, then H is safe up to depth n.

I If ϕ is satisfiable, then H is unsafe.

38/40

Delta-Complete BMC

Consequently, using a δ-complete decision procedure we can guarantee:

I If ϕ is “unsatisfiable”, then H is safe up to depth n.

I If ϕ is “satisfiable”, then

H is unsafe under some δ-perturbation!

Consequently, if a system can become unsafe under some δ-perturbation, we
will be able to detect such unsafety.

I This can not be achieved using precise symbolic algorithms.

39/40

Not Just in Theory

We are developing the practical SMT solver dReal.

I DPLL(T) + Interval Constraint Propagation (ICP).

I ICP = Interval Arithmetic + Constraint Propagation

I Floating-point arithmetic (no need for precise arithmetic)

I ICP can handle highly complex nonlinear constraint systems with
thousands of variables.

I The DPLL(T) framework: SAT solver + ICP solver.

I Currently solvable signature: +/× exp, sin. [Gao et al. FMCAD 2010]

I In progress: Numerically stable ODEs.

40/40

