Bounded Model Checking with SAT/SMT

06-12-2011

SAT/SMT Summer School, MIT

Edmund M. Clarke, Jr.

School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213

(Joint work with Sean Gao)

Image: A mathematical states of the state

- Bounded Model Checking Using SAT
- Bounded Model Checking for Hybrid Systems
 - How to use numerical methods safely.

Method used by most "industrial strength" model checkers:

- uses Boolean encoding for state machine and sets of states.
- can handle much larger designs hundreds of state variables.
- BDDs traditionally used to represent Boolean functions.

- BDDs are a canonical representation. Often become too large.
- Variable ordering must be uniform along paths.
- Selecting right variable ordering very important for obtaining small BDDs.
 - ► Often time consuming or needs manual intervention.
 - ► Sometimes, no space efficient variable ordering exists.

BMC is an alternative approach to symbolic model checking that uses SAT procedures.

- SAT procedures also operate on Boolean expressions but do not use canonical forms.
- ▶ Do not suffer from the potential space explosion of BDDs.
- Different split orderings possible on different branches.
- Very efficient implementations available.

- Bounded model checking uses a SAT procedure instead of BDDs.
- ▶ We construct Boolean formula that is satisfiable iff there is a counterexample of length *k*.
- ► We look for longer and longer counterexamples by incrementing the bound k.
- After some number of iterations, we may conclude no counterexample exists and specification holds.
- ► For example, to verify safety properties, number of iterations is bounded by diameter of finite state machine.

- Bounded model checking finds counterexamples fast. This is due to depth first nature of SAT search procedures.
- It finds counterexamples of minimal length. This feature helps user understand counterexample more easily.
- It uses much less space than BDD based approaches.
- Does not need manually selected variable order or costly reordering. Default splitting heuristics usually sufficient.
- Bounded model checking of LTL formulas does not require a tableau or automaton construction.

- ▶ Implemented a tool BMC in 1999.
- It accepts a subset of the SMV language.
- ► Given k, BMC outputs a formula that is satisfiable iff counterexample exists of length k.
- ► If counterexample exists, a standard SAT solver generates a truth assignment for the formula.

- There are many examples where BMC significantly outperforms BDD based model checking.
- In some cases BMC detects errors instantly, while SMV fails to construct BDD for initial state.

Armin's example: Circuit with 9510 latches, 9499 inputs. BMC formula has 4×10^6 variables, 1.2×10^7 clauses. Shortest bug of length 37 found in 69 seconds.

We use linear temporal logic (LTL) for specifications.

►	Basic LTL operators:			
	next time	'X'	eventuality	$\mathbf{F'}$
	globally	'G '	until	\mathbf{U}
	release	'R '		

- Only consider existential LTL formulas Ef, where
 - $\blacktriangleright~{\bf E}$ is the existential path quantifier, and
 - \blacktriangleright f is a temporal formula with no path quantifiers.
- \blacktriangleright Recall that ${\bf E}$ is the dual of the universal path quantifier ${\bf A}.$
- ► Finding a witness for Ef is equivalent to finding a counterexample for A¬f.

Definitions and Notation (Cont.)

- System described as a Kripke structure $M = (S, I, T, \ell)$, where
 - \blacktriangleright S is a finite set of states and I a set of initial states,
 - T ⊆ S × S is the transition relation, (We assume every state has a successor state.)

- ► In symbolic model checking, a state is represented by a vector of state variables s = (s(1),...,s(n)).
- We define propositional formulas $f_I(s)$, $f_T(s,t)$ and $f_p(s)$ as follows:
 - $f_I(s)$ iff $s \in I$,
 - $f_T(s,t)$ iff $(s,t) \in T$, and
 - $f_p(s)$ iff $p \in \ell(s)$.
- We write T(s,t) instead of $f_T(s,t)$, etc.

æ

《曰》《聞》《臣》《臣》

- If $\pi = (s_0, s_1, \ldots)$, then $\pi(i) = s_i$ and $\pi^i = (s_i, s_{i+1}, \ldots)$.
- π is a path if $\pi(i) \to \pi(i+1)$ for all i.
- ▶ Ef is true in M ($M \models Ef$) iff there is a path π in M with $\pi \models f$ and $\pi(0) \in I$.
- Model checking is the problem of determining the truth of an LTL formula in a Kripke structure. Equivalently,

Does a witness exist for the LTL formula?

《曰》《聞》《臣》《臣》

Two-bit counter with an erroneous transition:

- Each state s is represented by two state variables s[1] and s[0].
- ▶ In initial state, value of the counter is 0. Thus, $I(s) = \neg s[1] \land \neg s[0]$.
- Let $inc(s,s') = (s'[0] \leftrightarrow \neg s[0]) \land (s'[1] \leftrightarrow (s[0] \oplus s[1]))$
- Define $T(s, s') = inc(s, s') \lor (s[1] \land \neg s[0] \land s'[1] \land \neg s'[0])$
- Have deliberately added erroneous transition!!

<ロト <部ト < 注ト < 注ト

- ▶ Suppose we want to know if counter will eventually reach state (11).
- Can specify the property by $\mathbf{AF}q$, where $q(s) = s[1] \wedge s[0]$.

On all execution paths, there is a state where q(s) holds.

- ► Equivalently, we can check if there is a path on which counter never reaches state (11).
- This is expressed by $\mathbf{EG}p$, where $p(s) = \neg s[1] \lor \neg s[0]$.

There exists a path such that p(s) holds globally along it.

- In bounded model checking, we consider paths of length k.
- We start with k = 0 and increment k until a witness is found.
- Assume k equals 2. Call the states s_0 , s_1 , s_2 .
- We formulate constraints on s_0 , s_1 , and s_2 in propositional logic.
- ► Constraints guarantee that (s₀, s₁, s₂) is a witness for EGp and, hence, a counterexample for AFq.

- First, we constrain (s_0, s_1, s_2) to be a valid path starting from the initial state.
- Obtain a propositional formula

 $\llbracket M \rrbracket = I(s_0) \land T(s_0, s_1) \land T(s_1, s_2).$

æ

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

- Second, we constrain the shape of the path.
- The sequence of states s_0, s_1, s_2 can be a loop or lasso.
- If so, there is a transition from s_2 to the initial state s_0 , s_1 or itself.
- We write L_l = T(s₂, s_l) to denote the transition from s₂ to a state s_l where l ∈ [0, 2].
- We define L as $\bigvee_{l=0}^{2} L_{l}$. Thus $\neg L$ denotes the case where no loop exists.

- The temporal property $\mathbf{G}p$ must hold on (s_0, s_1, s_2) .
- If no loop exists, $\mathbf{G}p$ does not hold and $[\mathbf{G}p]$ is *false*.
- ► To be a witness for Gp, the path must contain a loop (condition L, given previously).
- \blacktriangleright Finally, p must hold at every state on the path

$$\llbracket \mathbf{G}p \rrbracket = p(s_0) \land p(s_1) \land p(s_2).$$

▶ We combine all the constraints to obtain the propositional formula

$$\llbracket M \rrbracket \land ((\neg L \land false) \lor \bigvee_{l=0}^{2} (L_{l} \land \llbracket \mathbf{G}p \rrbracket)).$$

<ロト <部ト < 注ト < 注ト

- ► In this example, the formula is satisfiable.
- ▶ Truth assignment corresponds to counterexample path (00), (01), (10) followed by self-loop at (10).
- If self-loop at (10) is removed, then formula is unsatisfiable.

э

< 17 ▶

-

- ► Diameter d: Least number of steps to reach all reachable states. If the property holds for k ≥ d, the property holds for all reachable states.
- Finding *d* is computationally hard:
 - ► State *s* is reachable in *j* steps:

$$R_j(s) := \exists s_0, \dots, s_j : s = s_j \land I(s_0) \land \bigwedge_{i=0}^{j-1} T(s_i, s_{i+1})$$

• Thus, k is greater or equal than the diameter d if

$$\forall s : R_{k+1}(s) \Longrightarrow \exists j \le k : R_j(s)$$

This requires an efficient QBF checker!

Hybrid systems combine finite automata with continuous dynamical systems.

- They are widely used to model cyber-physical systems. (e.g., aerospace, automotive, and biological systems)
- They pose a grand challenge to formal verification.
 - Reachability for simple systems is undecidable.
 - Existing tools do not scale on realistic systems.
 - Less than ten variables and mostly constant dynamics.

 $\mathcal{H} = \langle X, Q, \mathsf{Init}, \mathsf{Flow}, \mathsf{Jump} \rangle$

- A state space $X \subseteq \mathbb{R}^k$ and a finite set of modes Q.
- Init $\subseteq Q \times X$: initial configurations
- Flow: continuous flows

• Each mode q is equipped with differential equations $\frac{d\vec{x}}{dt} = \vec{f}_q(\vec{x}, t)$.

- ► Jump: discrete jumps
 - ▶ The system can be switched from (q, \vec{x}) to (q', \vec{x}') , resetting modes and variables.

Continuous flows are interleaved with discrete jumps.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Controller of an automated guided vehicle [Lee and Seshia, 2011]

▲口 ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 → 釣ん(で)

Logical encoding is not limited to discrete systems.

- ► Continuous Dynamics: $\frac{d\vec{x}(t)}{dt} = \vec{f}(\vec{x}(t), t)$
 - The solution curve:

$$\alpha : \mathbb{R} \to X, \ \alpha(t) = \alpha(0) + \int_0^t \vec{f}(\alpha(s), s) ds.$$

► Define the predicate $\llbracket \mathsf{Flow}_f(\vec{x}_0, t, \vec{x}) \rrbracket^{\mathcal{M}} = \{ (\vec{x}_0, t, \vec{x}) : \alpha(0) = \vec{x}_0, \alpha(t) = \vec{x} \}$

Reachability:

 $\exists \vec{x}_0, \vec{x}, t. \; (\mathsf{Init}(\vec{x}_0) \land \mathsf{Flow}_f(\vec{x}_0, t, \vec{x}) \land \mathsf{Unsafe}(\vec{x})) ?$

Combining continuous and discrete behaviors, we can encode bounded reachability for hybrid systems:

• " \vec{x} is reachable after after 0 discrete jumps" is definable as:

 $\mathsf{Reach}^0(\vec{x}) := \exists \vec{x}_0, t. [\mathsf{Init}(\vec{x}_0) \land \mathsf{Flow}(\vec{x}_0, t, \vec{x})]$

▶ Inductively, " \vec{x} is reachable after k + 1 discrete jumps" is definable as: Reach^{k+1}(\vec{x}) := $\exists \vec{x}_k, \vec{x}'_k, t$. [Reach^k(\vec{x}_k) \land Jump(\vec{x}_k, \vec{x}'_k) \land Flow(\vec{x}'_k, t, \vec{x})]

Reachability within n discrete jumps:

$$\exists \vec{x}. \ (\bigvee_{i=0}^{n} \mathsf{Reach}^{i}(\vec{x}) \land \mathsf{Unsafe}(\vec{x})) \ ?$$

<ロ> <四> <四> <三> <三> <三> <三</td>

The formulas that we have shown are first-order formulas over reals. Because of the dynamical systems involved, they usually contain a rich set of nonlinear functions:

- polynomials
- exponentiation and trigonometric functions
- solutions of ODEs, mostly no analytic forms

Symbolic decision procedures are unlikely to scale on realistic problems.

- The arithmetic theory $(\times/+)$ is decidable but already highly complex.
 - ► Double-exponential (PSPACE for SMT, theoretically).
 - Very active research in the past twenty years. (Cylindrical Decomposition, Gröbner Bases, Postivstellensatz,...)
 - Available solvers: Hard to scale to more than ten variables.
- ► The general first-order theory over exp, sin, ODEs, ...
 - Wildly undecidable.

However, large systems of real equalities/inequalities/ODEs are routinely solved numerically.

- They are perfect for simulation, but usually regarded inappropriate for verification because of their inevitable numerical errors.
 - (Platzer and Clarke, HSCC 2008)
- Is there a way of using them still?
- ▶ We need to start with a good formalization of "numerical algorithms".

What does it mean to say a function f over reals is "numerically computable"?

- There exists an algorithm M_f , such that given a good approximation of x, M_f can find a good approximation of f(x).
 - "A real function is computable if we can draw it faithfully on a computer!"
- This leads to the well-developed framework of Computable Analysis (a.k.a. Type-II Computability) over real numbers. [A. Turing, A. Grzegorczyk, K. Weihrauch, S. Cook]

• Any real number a is encoded by a name $\gamma_a:\mathbb{N}\to\mathbb{Q}$ satisfying

 $\forall i, \ |a - \gamma_a(i)| < 2^{-i}$

- A Type-II Turing machine extends the ordinary by allowing input and output tapes to be both infinite. The working tape remains finite.
- Note that each symbol on the output tape of a Type-II machine needs to be written down after finitely many operations in the machine.

Type-II Computable Functions

• A function f is Type-II computable, if there exists a Type-II Turing machine \mathcal{M}_f , such that given any name of $\gamma_{\vec{x}}$ of $\vec{x} \in dom(f)$,

 \mathcal{M}_f outputs a name of $\gamma_{f(\vec{x})}$ of $f(\vec{x})$.

 $f_M(y_1,...,y_k)=y$

'문▶' ★ 문▶

▲ 🗇 🕨 🔺

- Let \mathcal{F} be the set of all Type-II computable functions.
 - ► This is a very general framework: *F* contains polynomials, exp, sin, and solutions of Lipschitz-continuous ODEs.
- ▶ Consider the first-order the structure $\mathbb{R}_{\mathcal{F}} = \langle \mathbb{R}, 0, 1, \mathcal{F}, < \rangle$ and the corresponding language $\mathcal{L}_{\mathcal{F}}$.
- Can we solve SMT problems in $\mathcal{L}_{\mathcal{F}}$ over $\mathbb{R}_{\mathcal{F}}$?
 - This would allow us to solve formulas that arise in bounded model checking of hybrid systems.

< 日 > < 同 > < 三 > < 三 >

Suppose we want to decide a formula in $\mathcal{L}_\mathcal{F}$:

 $\exists x \in I.(f(x) = \mathbf{0} \land g(x) = \mathbf{0}).$

 $(I \subseteq \mathbb{R} \text{ is a bounded interval where } f \text{ and } g \text{ are defined}).$

- Numerical algorithms can never compute f(x) and g(x) precisely for all x.
- But how about fixing some error bound δ , and relaxing the formula to:

 $\exists x \in I. (|f(x)| < \delta \land |g(x)| < \delta)?$

We can consider formulas whose satisfiability is invariant under numerical perturbations. Formally:

• Consider any formula $\varphi := \bigwedge_i (\bigvee_j f_{ij}(\vec{x}) = 0).$

Inequalities are turned into interval bounds on slack variables.

► A δ -perturbation on φ is a constant vector \vec{c} satisfying $||\vec{c}|| < \delta$ ($|| \cdot ||$ denotes the maximum norm)

$$arphi^{ec{c}} := igwedge_i(igvee_j f_{ij}(ec{x}) = c_{ij})$$

• We say φ is δ -robust, if its satisfiability is invariant under δ -perturbations:

For any δ -perturbation \vec{c} , $\exists \vec{x}. \varphi \leftrightarrow \exists \vec{x}. \varphi^{\vec{c}}$.

As it turns out, robust formulas in $\mathcal{L}_{\mathcal{F}}$ have nice computational properties.

- ▶ Theorem: Satisfiability of robust bounded SMT problems over $\mathbb{R}_{\mathcal{F}}$ is decidable.
 - ► This is significant given the richness of *F*: exp, sin, ODEs...
- Decidability can be extended to quantified formulas.
- (Reasonably low) complexity results are in progress.

For general formulas, we can produce decision procedures using numerical oracles (with an error bound δ) that guarantee:

- \blacktriangleright If φ is decided as "unsatisfiable", then it is indeed unsatisfiable.
- If φ is decided as "satisfiable", then:

Under some δ -perturbation \vec{c} , $\varphi^{\vec{c}}$ is satisfiable.

If a decision procedure satisfies this property, we say it is " δ -complete".

Recall that when bounded model checking a hybrid system \mathcal{H} , we ask if $\varphi: \operatorname{Reach}_{\mathcal{H}}^{\leq n}(\vec{x}) \wedge \operatorname{Unsafe}(\vec{x})$

is satisfiable.

- If φ is unsatisfiable, then \mathcal{H} is safe up to depth n.
- If φ is satisfiable, then \mathcal{H} is unsafe.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Consequently, using a $\delta\text{-complete}$ decision procedure we can guarantee:

- If φ is "unsatisfiable", then \mathcal{H} is safe up to depth n.
- $\blacktriangleright~$ If φ is "satisfiable", then

 \mathcal{H} is unsafe under some δ -perturbation!

Consequently, if a system can become unsafe under some δ -perturbation, we will be able to detect such unsafety.

This can not be achieved using precise symbolic algorithms.

We are developing the practical SMT solver dReal.

- DPLL(T) + Interval Constraint Propagation (ICP).
 - ► ICP = Interval Arithmetic + Constraint Propagation
 - Floating-point arithmetic (no need for precise arithmetic)
 - ICP can handle highly complex nonlinear constraint systems with thousands of variables.
 - ► The DPLL(T) framework: SAT solver + ICP solver.
- Currently solvable signature: $+/\times$ exp, sin. [Gao et al. FMCAD 2010]
- ▶ In progress: Numerically stable ODEs.