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Problem Statement
Efficient Solver for Analysis of String Programs
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Common String Operations String Programs Types of Errors

Functions
String concatenation 
String extraction

Predicates
String comparison 
String assignment
Sanity checking of strings using RE

Traditional Apps
C/C++/Java Apps (Java String Library)
C#/.NET

Web Apps
Sanitization code in PHP, JavaScript
Client-side and server-side
Scripting code

Memory-related Errors
Buffer overflow
Code injection

Improper Sanitization
SQL injection 
XSS scripting
Incomplete sanity checking
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Problem Statement
Efficient Solver for Analysis of String Programs
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Program Reasoning 
Tool

String Program Specification

Program is Correct?
or Generate Tests

String 
Solver

String Formulas

SAT/UNSAT
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HAMPI String Solver
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HAMPI 
String Solver

String
Formulas

UNSAT

SAT

• X = concat(“SELECT...”,v) AND (X  ∈ SQL_grammar)
• JavaScript, PHP, ... string expressions
• NP-complete
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Rest of the Talk

• HAMPI Logic: A Theory of Strings

• Motivating Example: HAMPI-based Vulnerability Detection App

• How HAMPI works

• Experimental Results

• Related Work

• HAMPI 2.0
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Theory of Strings
The Hampi Language

6

PHP/JavaScript/C++... HAMPI: Theory of Strings Notes

Var a;
$a = ‘name’

Var a : 1...20; 
a = ‘name’

 Bounded String Variables
 String Constants

string_expr.” is ” concat(string_expr, “ is “);  Concat Function

substr(string_expr,1,3) string_expr[1:3]  Extract Function

assignments/strcmp
a = string_expr;
a /= string_expr;

equality
a = string_expr;
a /= string_expr;

 Equality Predicate

Sanity check in regular expression RE
Sanity check in context-free grammar CFG

string_expr in RE 
string_expr in SQL
string_expr NOT in SQL

 Membership Predicate

string_expr contains a sub_str
string_expr does not contain a sub_str

string_expr contains sub_str
string_expr NOT?contains sub_str

 Contains Predicate
 (Substring Predicate)
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities
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Backend
DataBase

Malicious SQL Query

Unauthorized 
Database Results

Buggy
Script

SELECT m FROM messages WHERE id=’1’ OR 1 = 1
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities
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Source: IBM Internet Security Systems, 2009
Source: Fatbardh Veseli, Gjovik University College, Norway
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities
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if (input in regexp(“[0-9]+”))
   query := “SELECT m FROM messages WHERE id=‘ ” + input +  “ ’ “)

Buggy Script

• input passes validation (regular expression check)

• query is syntactically-valid SQL

• query can potentially contain an attack substring
   (e.g., 1’ OR ‘1’ = ‘1)
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

9

if (input in regexp(“[0-9]+”))
   query := “SELECT m FROM messages WHERE id=‘ ” + input +  “ ’ “)

Buggy Script

• input passes validation (regular expression check)

• query is syntactically-valid SQL

• query can potentially contain an attack substring
   (e.g., 1’ OR ‘1’ = ‘1)

Should be:  “^[0-9]+$”
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities
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if (input in regexp(“[0-9]+”))
   query := “SELECT m FROM messages WHERE id=‘ ” + input +  “ ’ “)

Program Reasoning Tool

Specification

Generate Tests/
Report Vulnerability

HAMPI

String Formulas

SAT/UNSAT
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Rest of the Talk

• HAMPI Logic: A Theory of Strings

• HAMPI-based Vulnerability Detection App

• How HAMPI works

• Experimental Results

• Related Work

• HAMPI 2.0
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities
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Var v : 12; 

 

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond; 

cfg Cond := Val "=" Val | Cond " OR " Cond; 

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+; 

 

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'"); 

 

assert q in SqlSmall;     

assert q contains "OR ‘1'=‘1'"; 

  

SQL 
Grammar 

SQL Query 

Input String 

SQLI attack 
conditions 

“q is a valid SQL query” 

“q contains an attack vector” 

assert v in [0-9]+;

Friday, June 17, 2011



Hampi Key Conceptual Idea
Bounding, expressiveness and efficiency
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Li
Complexity of
∅ = L1 ∩ ... ∩ Ln

Current Solvers

Context-free Undecidable n/a

Regular PSPACE-complete Quantified 
Boolean Logic

Bounded NP-complete SAT
Efficient in practice
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Hampi Key Idea: Bounded Logics
Testing, Vulnerability Detection,...
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• Finding satisfying assignment is key

• Short assignments are sufficient

• Hence, bounding strings is sufficient

• Furthermore, bounded logics are easier to decide

• HAMPI bounds sets defined by Context-free Grammars (CFG)
   and Regular Expressions (RE) 
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Hampi Key Idea: Bounded Logics
Bounding vs. Completeness
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• Bounding leads to incompleteness

• Testing (Bounded MC) vs. Verification (MC)

• Bounding allows trade-off (Scalability vs. Completeness)

• Completeness (also, soundness) as resources 
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities
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Var v : 12; 

 

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond; 

cfg Cond := Val "=" Val | Cond " OR " Cond; 

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+; 

 

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'"); 

 

assert q in SqlSmall;     

assert q contains "OR ‘1'=‘1'"; 

  

SQL 
Grammar 

SQL Query 

Input String 

SQLI attack 
conditions 

“q is a valid SQL query” 

“q contains an attack vector” 

assert v in [0-9]+;
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How Hampi Works
Bird’s Eye View: Strings into Bit-vectors
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Hampi

Find a 4-char string v:
• (v) is in E
• (v) contains ()()

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v = )()(

Bit-vector 
Constraints

Bit-vector 
Solution

Normalizer

Friday, June 17, 2011



How Hampi Works
Unroll Bounded CFGs into Regular Exp.

18

Bound(E,6)  
([()() + (())]) +
()[()() + (())] +
[()() + (())]()

Hampivar v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v = )()(

Bit-vector 
Constraints

Bit-vector 
Solution

Normalizer
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How Hampi Works
Unroll Bounded CFGs into Regular Exp.

18

Bound(E,6)  
([()() + (())]) +
()[()() + (())] +
[()() + (())]()

Hampivar v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v = )()(

Bit-vector 
Constraints

Bit-vector 
Solution

Normalizer

Bound Auto-derived
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STP Bit-vector & Array Solver
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STP Solver
Program

Expressions
(x = z+2 OR

mem[i] + y <= 01)

UNSAT

SAT

• Bit-vector or machine arithmetic
•  Arrays for memory
• C/C++/Java expressions
• NP-complete
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Impact of STP: Notable Projects
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Category Research Project Project Leader/Institution

Formal Methods
ACL2 Theorem Prover + STP
Verification-aware Design Checker
Java PathFinder Model Checker

Eric Smith & David Dill/Stanford
Jacob Chang & David Dill/Stanford
Mehlitz & Pasareanu/NASA

Program Analysis
BitBlaze & WebBlaze
BAP

Dawn Song et al./Berkeley
David Brumley/CMU

Automatic Testing
Security

Klee, EXE
SmartFuzz
Kudzu
S2E & Cloud9

Engler & Cadar/Stanford
Molnar & Wagner/Berkeley
Saxena & Song/Berkeley
Bucur & Candea/EPFL

Hardware Bounded 
Model-cheking (BMC)

Blue-spec BMC
BMC

Katelman & Dave/MIT
Haimed/NVIDIA

• Enabled Concolic Testing
• 100+ reliability and security projects
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• STP
• Enabled Concolic Testing
• EXE by Engler et al
• BAP/BitBlaze by Song et al.
• Model checking by Dill et al.

• Solver-based languages (Alloy team)
• Solver-based debuggers
• Solver-based type systems 
• Solver-based concurrency bugfinding

100,000 Constraints

1,000,000 Constraints

2005 2009 Today

• HAMPI: String Solvers
• Ardilla by Ernst et al.
• Kudzu & Kaluza by Song et al.
• Klee by Engler et al.
• George Candea’s Cloud 9 tester
• STP + HAMPI exceed 100+ projects

The History of STP

21
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Key Contributions
Name Key Concept Impact Pubs

STP 
Bit-vector & Array Solver1,2

Abstraction-refinement 
for Solving 

Concolic 
Testing

CAV 2007
CCS 2006
TISSEC 2008

HAMPI 
String Solver1

App-driven Bounding for 
Solving

Analysis of 
Web Apps

ISSTA 20093

TOSEM 2011
(Invited/in 
submission)

(Un)Decidability 
results for Strings

Insights from Practical 
Applications

First results for 
strings+length

In submission

22

1.  100+ research projects use STP and HAMPI
2.  STP won the SMTCOMP 2006 and 2010 competitions for bit-vector solvers
3.  ACM Best Paper Award 2009
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How Hampi Works
Bird’s Eye View: Strings into Bit-vectors

23

Hampi

Find a 4-char string v:
• (v) is in E
• (v) contains ()()

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v = )()(

Bit-vector 
Constraints

Bit-vector 
Solution

Normalizer
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How Hampi Works
Unroll Bounded CFGs into Regular Exp.

24

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

Auto-derive 
lower/upper bounds 

[L,B]
on CFG

[6,6]

cfg E := “()” | E E | “(“ E “)”

Look for 
minimal length 

string
“()”

Step 1:

Step 2:

Friday, June 17, 2011



How Hampi Works
Unroll Bounded CFGs into Regular Exp.
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cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct Partitions

[4,2]
[2,4]
[3,3]
[5,1]
[1,5]

[1,4,1]

Step 3:

Length: 6

Min. length constant: ”()”

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

Step 4:

Length: 6

Min. length constant: ”()”
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Unroll Bounded CFGs into Regular Exp.
Managing Exponential Blow-up

26

•Dynamic programming style

• Works well in practice

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

...

Length: 6

Min. length constant: ”()”
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Unroll Bounded CFGs into Regular Exp.
Managing Exponential Blow-up

27

Bound(E,6)  
([()() + (())]) +
()[()() + (())] +
[()() + (())]()

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

...

Length: 6

Min. length constant: ”()”

Friday, June 17, 2011



How Hampi Works
Converting Regular Exp. into Bit-vectors
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 ( v ) ∈ ()[()() + (())] + [()() + (())]() + ([()() + (())]) 

Formula Φ1   ∨  Formula Φ2   ∨  Formula Φ3 

Encode regular expressions recursively
•  Alphabet { (, ) }  0, 1
•  constant            bit-vector constant
•  union +            disjunction  ∨
•  concatenation  conjunction ∧
•  Kleene star *   conjunction ∧
•  Membership, equality equality

B[0]=0∧B[1]=1∧{B[2]=0∧B[3]=1∧B[4]=0∧B[5]=1 ∨…  
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How Hampi Works
Converting Regular Exp. into Bit-vectors
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 ( v ) ∈ ()[()() + (())] + [()() + (())]() + ([()() + (())]) 

Formula Φ1   ∨  Formula Φ2   ∨  Formula Φ3 

• Constraint Templates

• Encode once, and reuse

• On-demand formula generation

B[0]=0 ∧ B[1]=1 ∧ {B[2]=0∧B[3]=1∧B[4]=0∧B[5]=1 ∨… 

Friday, June 17, 2011



How Hampi Works
Decoder converts Bit-vectors to Strings 

30

Hampi

Find a 4-char string v:
• (v) is in E
• (v) contains ()()

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v = )()(

Bit-vector 
Constraints

Bit-vector 
Solution

Normalizer
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Rest of the Talk

• HAMPI Logic: A Theory of Strings

• HAMPI-based Vulnerability Detection App

• How HAMPI works

• Experimental Results

• Related Work

• Future Work

31
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HAMPI: Result 1
Static SQL Injection Analysis
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Grammar Size (# of productions) 

• 1367 string constraints from Wasserman & Su [PLDI’07]  
• Hampi scales to large grammars
• Hampi solved 99.7% of constraints in < 1sec
• All solvable constraints had short solutions
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HAMPI: Result 2
Security Testing

33

• Hampi used to build Ardilla security tester [Kiezun et al., ICSE’09]

• 60 new vulnerabilities on 5 PHP applications (300+ kLOC)
• 23 SQL injection
• 37 cross-site scripting (XSS) 5 added to 

US National Vulnerability DB

• 46% of constraints solved in < 1 second per constraint

• 100% of constraints solved in <10 seconds per constraint

Friday, June 17, 2011



HAMPI: Result 2
Security Testing and XSS
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• Attackers inject client-side script into web pages

• Somehow circumvent same-origin policy in websites

• echo “Thank you $my_poster for using the message board”;

• Unsanitized $my_poster

• Can be JavaScript

• Execution can be bad
Friday, June 17, 2011



HAMPI: Result 3
Comparison with Competing Tools
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Hampi

CFGAnalyzer

string size (characters)

• HAMPI vs. CFGAnalyzer (U. Munich): HAMPI ~7x faster for strings of size 50+
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HAMPI: Result 3
Comparison with Competing Tools

36

RE intersection problems

• HAMPI 100x faster than Rex (MSR)

• HAMPI 1000x faster than DPRLE (U. Virginia)

• Pieter Hooimeijer 2010 paper titled ‘Solving String Constraints Lazily’
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HAMPI: Result 4
Helping KLEE Pierce Parsers

37

 HAMPI for Klee

• Klee provides API to place constraints on symbolic inputs

•  Particularly useful for programs with highly-structured inputs

• Manually writing constraints is hard

• Specify grammar using HAMPI, compile to C code

• 2-5X improvement in line coverage
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Impact of Hampi: Notable Projects
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Category Research Project Project Leader/Institution

Static Analysis SQL-injection vulnerabilities Wasserman & Su/UC, Davis

Security Testing
Ardilla for PHP (SQL injections, 
cross-site scripting)

Kiezun & Ernst/MIT

Concolic Testing
Klee
SAGE
Kudzu
NoTamper

Engler & Cadar/Stanford
Godefroid/Microsoft Research
Saxena & Song/Berkeley
Bisht & Venkatakrishnan/U Chicago

New Solvers Kaluza Saxena & Song/Berkeley
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Impact of Hampi: Notable Projects
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Tool Name Description
Project Leader/
Institution

Kudzu JavaScript Bug Finder & Vulnerability Detector

Saxena
Akhawe  
Hanna
Mao
McCamant
Song/Berkeley

NoTamper Parameter Tamper Detection

Bisht
Hinrichs/U of Chicago
Skrupsky
Bobrowicz
Vekatakrishnan/ U. of Illinois, 
Chicago
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Impact of Hampi: Notable Projects
NoTamper
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Server

• Client-side checks (C), no server checks

• Find solutions S1,S2,... to C, and solutions E1,E2,... to ~C by calling HAMPI

• E1,E2,... are candidate exploits

• Submit (S1, E1),... to server

• If server response same, ignore

• If server response differ, report error
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Related Work

41

Tool Name
Project Leader/
Institution

Comparison with HAMPI

Rex
Bjorner, Tillman, Veanes et al. 
(Microsoft Research, Redmond)

• HAMPI 
   + Length+Replace(s1,s2,s3)
    - CFG
• Translation to int. linear arith. (Z3)

Mona Karllund et al. (U. of Aarhus)
• Can encode HAMPI & Rex
• User work
• Automata-based
• Non-elementary

DPRLE  Hooimeijer (U. of Virginia) • Regular expression constraints
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Topics Covered Today

• HAMPI Logic: A Theory of Strings

• HAMPI-based Testing App

• How HAMPI works

• Another HAMPI-based App: Tamper Detection

• Experimental Results

• Related Work (Kaluza, Rex,...)

42
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Conclusions
• String solvers essential for many apps

• HAMPI supports 
   string vars, constants, concat/extract, equality, membership, contains predicate

• Demand for even richer theories 

• Attribute grammars

• String theories with length

• Bounding: Powerful and versatile idea (BMC, bounded logics,...)

• Using completeness as a resource

43
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HAMPI 2.0

• HAMPI logic + length function + replace function

• Small model property (under certain conditions)

• Combination with other theories such as functions
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