
Solvers for
Theories of Strings

Vijay Ganesh, Adam Kiezun
Shay Artzi, Philip Guo, Pieter Hooimeijer, Michael Ernst

MIT
Monday June 13, 2011

Friday, June 17, 2011

Problem Statement
Efficient Solver for Analysis of String Programs

2

Common String Operations String Programs Types of Errors

Functions
String concatenation
String extraction

Predicates
String comparison
String assignment
Sanity checking of strings using RE

Traditional Apps
C/C++/Java Apps (Java String Library)
C#/.NET

Web Apps
Sanitization code in PHP, JavaScript
Client-side and server-side
Scripting code

Memory-related Errors
Buffer overflow
Code injection

Improper Sanitization
SQL injection
XSS scripting
Incomplete sanity checking

Friday, June 17, 2011

Problem Statement
Efficient Solver for Analysis of String Programs

3

Program Reasoning
Tool

String Program Specification

Program is Correct?
or Generate Tests

String
Solver

String Formulas

SAT/UNSAT

Friday, June 17, 2011

HAMPI String Solver

4

HAMPI
String Solver

String
Formulas

UNSAT

SAT

• X = concat(“SELECT...”,v) AND (X ∈ SQL_grammar)
• JavaScript, PHP, ... string expressions
• NP-complete

Friday, June 17, 2011

Rest of the Talk

• HAMPI Logic: A Theory of Strings

• Motivating Example: HAMPI-based Vulnerability Detection App

• How HAMPI works

• Experimental Results

• Related Work

• HAMPI 2.0

5
Friday, June 17, 2011

Theory of Strings
The Hampi Language

6

PHP/JavaScript/C++... HAMPI: Theory of Strings Notes

Var a;
$a = ‘name’

Var a : 1...20;
a = ‘name’

 Bounded String Variables
 String Constants

string_expr.” is ” concat(string_expr, “ is “); Concat Function

substr(string_expr,1,3) string_expr[1:3] Extract Function

assignments/strcmp
a = string_expr;
a /= string_expr;

equality
a = string_expr;
a /= string_expr;

 Equality Predicate

Sanity check in regular expression RE
Sanity check in context-free grammar CFG

string_expr in RE
string_expr in SQL
string_expr NOT in SQL

 Membership Predicate

string_expr contains a sub_str
string_expr does not contain a sub_str

string_expr contains sub_str
string_expr NOT?contains sub_str

 Contains Predicate
 (Substring Predicate)

Friday, June 17, 2011

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

7

Backend
DataBase

Malicious SQL Query

Unauthorized
Database Results

Buggy
Script

SELECT m FROM messages WHERE id=’1’ OR 1 = 1

Friday, June 17, 2011

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

8

Source: IBM Internet Security Systems, 2009
Source: Fatbardh Veseli, Gjovik University College, Norway

Friday, June 17, 2011

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

9

if (input in regexp(“[0-9]+”))
 query := “SELECT m FROM messages WHERE id=‘ ” + input + “ ’ “)

Buggy Script

• input passes validation (regular expression check)

• query is syntactically-valid SQL

• query can potentially contain an attack substring
 (e.g., 1’ OR ‘1’ = ‘1)

Friday, June 17, 2011

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

9

if (input in regexp(“[0-9]+”))
 query := “SELECT m FROM messages WHERE id=‘ ” + input + “ ’ “)

Buggy Script

• input passes validation (regular expression check)

• query is syntactically-valid SQL

• query can potentially contain an attack substring
 (e.g., 1’ OR ‘1’ = ‘1)

Should be: “^[0-9]+$”

Friday, June 17, 2011

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

10

if (input in regexp(“[0-9]+”))
 query := “SELECT m FROM messages WHERE id=‘ ” + input + “ ’ “)

Program Reasoning Tool

Specification

Generate Tests/
Report Vulnerability

HAMPI

String Formulas

SAT/UNSAT

Friday, June 17, 2011

Rest of the Talk

• HAMPI Logic: A Theory of Strings

• HAMPI-based Vulnerability Detection App

• How HAMPI works

• Experimental Results

• Related Work

• HAMPI 2.0

11
Friday, June 17, 2011

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

12

Var v : 12;

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond;

cfg Cond := Val "=" Val | Cond " OR " Cond;

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+;

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'");

assert q in SqlSmall;

assert q contains "OR ‘1'=‘1'";

SQL
Grammar

SQL Query

Input String

SQLI attack
conditions

“q is a valid SQL query”

“q contains an attack vector”

assert v in [0-9]+;

Friday, June 17, 2011

Hampi Key Conceptual Idea
Bounding, expressiveness and efficiency

13

Li
Complexity of
∅ = L1 ∩ ... ∩ Ln

Current Solvers

Context-free Undecidable n/a

Regular PSPACE-complete Quantified
Boolean Logic

Bounded NP-complete SAT
Efficient in practice

Friday, June 17, 2011

Hampi Key Idea: Bounded Logics
Testing, Vulnerability Detection,...

14

• Finding satisfying assignment is key

• Short assignments are sufficient

• Hence, bounding strings is sufficient

• Furthermore, bounded logics are easier to decide

• HAMPI bounds sets defined by Context-free Grammars (CFG)
 and Regular Expressions (RE)

Friday, June 17, 2011

Hampi Key Idea: Bounded Logics
Bounding vs. Completeness

15

• Bounding leads to incompleteness

• Testing (Bounded MC) vs. Verification (MC)

• Bounding allows trade-off (Scalability vs. Completeness)

• Completeness (also, soundness) as resources

Friday, June 17, 2011

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

16

Var v : 12;

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond;

cfg Cond := Val "=" Val | Cond " OR " Cond;

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+;

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'");

assert q in SqlSmall;

assert q contains "OR ‘1'=‘1'";

SQL
Grammar

SQL Query

Input String

SQLI attack
conditions

“q is a valid SQL query”

“q contains an attack vector”

assert v in [0-9]+;

Friday, June 17, 2011

How Hampi Works
Bird’s Eye View: Strings into Bit-vectors

17

Hampi

Find a 4-char string v:
• (v) is in E
• (v) contains ()()

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v =)()(

Bit-vector
Constraints

Bit-vector
Solution

Normalizer

Friday, June 17, 2011

How Hampi Works
Unroll Bounded CFGs into Regular Exp.

18

Bound(E,6)
([()() + (())]) +
()[()() + (())] +
[()() + (())]()

Hampivar v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v =)()(

Bit-vector
Constraints

Bit-vector
Solution

Normalizer

Friday, June 17, 2011

How Hampi Works
Unroll Bounded CFGs into Regular Exp.

18

Bound(E,6)
([()() + (())]) +
()[()() + (())] +
[()() + (())]()

Hampivar v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v =)()(

Bit-vector
Constraints

Bit-vector
Solution

Normalizer

Bound Auto-derived

Friday, June 17, 2011

STP Bit-vector & Array Solver

19

STP Solver
Program

Expressions
(x = z+2 OR

mem[i] + y <= 01)

UNSAT

SAT

• Bit-vector or machine arithmetic
• Arrays for memory
• C/C++/Java expressions
• NP-complete

Friday, June 17, 2011

Impact of STP: Notable Projects

20

Category Research Project Project Leader/Institution

Formal Methods
ACL2 Theorem Prover + STP
Verification-aware Design Checker
Java PathFinder Model Checker

Eric Smith & David Dill/Stanford
Jacob Chang & David Dill/Stanford
Mehlitz & Pasareanu/NASA

Program Analysis
BitBlaze & WebBlaze
BAP

Dawn Song et al./Berkeley
David Brumley/CMU

Automatic Testing
Security

Klee, EXE
SmartFuzz
Kudzu
S2E & Cloud9

Engler & Cadar/Stanford
Molnar & Wagner/Berkeley
Saxena & Song/Berkeley
Bucur & Candea/EPFL

Hardware Bounded
Model-cheking (BMC)

Blue-spec BMC
BMC

Katelman & Dave/MIT
Haimed/NVIDIA

• Enabled Concolic Testing
• 100+ reliability and security projects

Friday, June 17, 2011

• STP
• Enabled Concolic Testing
• EXE by Engler et al
• BAP/BitBlaze by Song et al.
• Model checking by Dill et al.

• Solver-based languages (Alloy team)
• Solver-based debuggers
• Solver-based type systems
• Solver-based concurrency bugfinding

100,000 Constraints

1,000,000 Constraints

2005 2009 Today

• HAMPI: String Solvers
• Ardilla by Ernst et al.
• Kudzu & Kaluza by Song et al.
• Klee by Engler et al.
• George Candea’s Cloud 9 tester
• STP + HAMPI exceed 100+ projects

The History of STP

21
Friday, June 17, 2011

Key Contributions
Name Key Concept Impact Pubs

STP
Bit-vector & Array Solver1,2

Abstraction-refinement
for Solving

Concolic
Testing

CAV 2007
CCS 2006
TISSEC 2008

HAMPI
String Solver1

App-driven Bounding for
Solving

Analysis of
Web Apps

ISSTA 20093

TOSEM 2011
(Invited/in
submission)

(Un)Decidability
results for Strings

Insights from Practical
Applications

First results for
strings+length

In submission

22

1. 100+ research projects use STP and HAMPI
2. STP won the SMTCOMP 2006 and 2010 competitions for bit-vector solvers
3. ACM Best Paper Award 2009

Friday, June 17, 2011

How Hampi Works
Bird’s Eye View: Strings into Bit-vectors

23

Hampi

Find a 4-char string v:
• (v) is in E
• (v) contains ()()

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v =)()(

Bit-vector
Constraints

Bit-vector
Solution

Normalizer

Friday, June 17, 2011

How Hampi Works
Unroll Bounded CFGs into Regular Exp.

24

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

Auto-derive
lower/upper bounds

[L,B]
on CFG

[6,6]

cfg E := “()” | E E | “(“ E “)”

Look for
minimal length

string
“()”

Step 1:

Step 2:

Friday, June 17, 2011

How Hampi Works
Unroll Bounded CFGs into Regular Exp.

25

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct Partitions

[4,2]
[2,4]
[3,3]
[5,1]
[1,5]

[1,4,1]

Step 3:

Length: 6

Min. length constant: ”()”

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

Step 4:

Length: 6

Min. length constant: ”()”

Friday, June 17, 2011

Unroll Bounded CFGs into Regular Exp.
Managing Exponential Blow-up

26

•Dynamic programming style

• Works well in practice

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

...

Length: 6

Min. length constant: ”()”

Friday, June 17, 2011

Unroll Bounded CFGs into Regular Exp.
Managing Exponential Blow-up

27

Bound(E,6)
([()() + (())]) +
()[()() + (())] +
[()() + (())]()

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

...

Length: 6

Min. length constant: ”()”

Friday, June 17, 2011

How Hampi Works
Converting Regular Exp. into Bit-vectors

28

 (v) ∈ ()[()() + (())] + [()() + (())]() + ([()() + (())])

Formula Φ1 ∨ Formula Φ2 ∨ Formula Φ3

Encode regular expressions recursively
•  Alphabet { (,) } 0, 1
•  constant bit-vector constant
•  union + disjunction ∨
•  concatenation conjunction ∧
•  Kleene star * conjunction ∧
•  Membership, equality equality

B[0]=0∧B[1]=1∧{B[2]=0∧B[3]=1∧B[4]=0∧B[5]=1 ∨…

Friday, June 17, 2011

How Hampi Works
Converting Regular Exp. into Bit-vectors

29

 (v) ∈ ()[()() + (())] + [()() + (())]() + ([()() + (())])

Formula Φ1 ∨ Formula Φ2 ∨ Formula Φ3

• Constraint Templates

• Encode once, and reuse

• On-demand formula generation

B[0]=0 ∧ B[1]=1 ∧ {B[2]=0∧B[3]=1∧B[4]=0∧B[5]=1 ∨…

Friday, June 17, 2011

How Hampi Works
Decoder converts Bit-vectors to Strings

30

Hampi

Find a 4-char string v:
• (v) is in E
• (v) contains ()()

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v =)()(

Bit-vector
Constraints

Bit-vector
Solution

Normalizer

Friday, June 17, 2011

Rest of the Talk

• HAMPI Logic: A Theory of Strings

• HAMPI-based Vulnerability Detection App

• How HAMPI works

• Experimental Results

• Related Work

• Future Work

31
Friday, June 17, 2011

HAMPI: Result 1
Static SQL Injection Analysis

32

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000

T
im

e
To

 S
ol

ve
 (

se
c)

Grammar Size (# of productions)

• 1367 string constraints from Wasserman & Su [PLDI’07]
• Hampi scales to large grammars
• Hampi solved 99.7% of constraints in < 1sec
• All solvable constraints had short solutions

Friday, June 17, 2011

HAMPI: Result 2
Security Testing

33

• Hampi used to build Ardilla security tester [Kiezun et al., ICSE’09]

• 60 new vulnerabilities on 5 PHP applications (300+ kLOC)
• 23 SQL injection
• 37 cross-site scripting (XSS) 5 added to

US National Vulnerability DB

• 46% of constraints solved in < 1 second per constraint

• 100% of constraints solved in <10 seconds per constraint

Friday, June 17, 2011

HAMPI: Result 2
Security Testing and XSS

34

• Attackers inject client-side script into web pages

• Somehow circumvent same-origin policy in websites

• echo “Thank you $my_poster for using the message board”;

• Unsanitized $my_poster

• Can be JavaScript

• Execution can be bad
Friday, June 17, 2011

HAMPI: Result 3
Comparison with Competing Tools

35
av

er
ag

e
tim

e
(se

c.)

 0 10 20 30 40 50
 0

 5

 10

 15

 20

 25

Hampi

CFGAnalyzer

string size (characters)

• HAMPI vs. CFGAnalyzer (U. Munich): HAMPI ~7x faster for strings of size 50+

Friday, June 17, 2011

HAMPI: Result 3
Comparison with Competing Tools

36

RE intersection problems

• HAMPI 100x faster than Rex (MSR)

• HAMPI 1000x faster than DPRLE (U. Virginia)

• Pieter Hooimeijer 2010 paper titled ‘Solving String Constraints Lazily’

Friday, June 17, 2011

HAMPI: Result 4
Helping KLEE Pierce Parsers

37

 HAMPI for Klee

• Klee provides API to place constraints on symbolic inputs

• Particularly useful for programs with highly-structured inputs

• Manually writing constraints is hard

• Specify grammar using HAMPI, compile to C code

• 2-5X improvement in line coverage

Friday, June 17, 2011

Impact of Hampi: Notable Projects

38

Category Research Project Project Leader/Institution

Static Analysis SQL-injection vulnerabilities Wasserman & Su/UC, Davis

Security Testing
Ardilla for PHP (SQL injections,
cross-site scripting)

Kiezun & Ernst/MIT

Concolic Testing
Klee
SAGE
Kudzu
NoTamper

Engler & Cadar/Stanford
Godefroid/Microsoft Research
Saxena & Song/Berkeley
Bisht & Venkatakrishnan/U Chicago

New Solvers Kaluza Saxena & Song/Berkeley

Friday, June 17, 2011

Impact of Hampi: Notable Projects

39

Tool Name Description
Project Leader/
Institution

Kudzu JavaScript Bug Finder & Vulnerability Detector

Saxena
Akhawe
Hanna
Mao
McCamant
Song/Berkeley

NoTamper Parameter Tamper Detection

Bisht
Hinrichs/U of Chicago
Skrupsky
Bobrowicz
Vekatakrishnan/ U. of Illinois,
Chicago

Friday, June 17, 2011

Impact of Hampi: Notable Projects
NoTamper

40

Server

• Client-side checks (C), no server checks

• Find solutions S1,S2,... to C, and solutions E1,E2,... to ~C by calling HAMPI

• E1,E2,... are candidate exploits

• Submit (S1, E1),... to server

• If server response same, ignore

• If server response differ, report error

Friday, June 17, 2011

Related Work

41

Tool Name
Project Leader/
Institution

Comparison with HAMPI

Rex
Bjorner, Tillman, Veanes et al.
(Microsoft Research, Redmond)

• HAMPI
 + Length+Replace(s1,s2,s3)
 - CFG
• Translation to int. linear arith. (Z3)

Mona Karllund et al. (U. of Aarhus)
• Can encode HAMPI & Rex
• User work
• Automata-based
• Non-elementary

DPRLE Hooimeijer (U. of Virginia) • Regular expression constraints

Friday, June 17, 2011

Topics Covered Today

• HAMPI Logic: A Theory of Strings

• HAMPI-based Testing App

• How HAMPI works

• Another HAMPI-based App: Tamper Detection

• Experimental Results

• Related Work (Kaluza, Rex,...)

42
Friday, June 17, 2011

Conclusions
• String solvers essential for many apps

• HAMPI supports
 string vars, constants, concat/extract, equality, membership, contains predicate

• Demand for even richer theories

• Attribute grammars

• String theories with length

• Bounding: Powerful and versatile idea (BMC, bounded logics,...)

• Using completeness as a resource

43
Friday, June 17, 2011

HAMPI 2.0

• HAMPI logic + length function + replace function

• Small model property (under certain conditions)

• Combination with other theories such as functions

44
Friday, June 17, 2011

