
Karem A. Sakallah*
University of Michigan, Ann Arbor

June 13, 2011

Presented at SAT/SMT Summer School
MIT

* Joint work with Zaher Andraus and Mark Liffiton

Karem A. Sakallah*
University of Michigan, Ann Arbor

June 13, 2011

Presented at SAT/SMT Summer School
MIT

* Joint work with Zaher Andraus and Mark Liffiton

CEGAR+SMT:
Formal Verification

of Control Logic
in the Reveal System

CEGAR+SMT:
Formal Verification

of Control Logic
in the Reveal System

2

Motivation

High-Level Control Optimizations:
Pipelining, Caching, Multi-Core,
Power Management, ..

Requirements:
Power, Performance,
Reliability, Features, …

8086 80286 80386 80486 Pentium
Core
Duo

Design Control Logic:
Complex, Error-Prone, Non-reusable, ..

Lack of Automation Limits Scalability

We Demonstrate a Fully Automatic
Approach to Formal Verification

of Control Logic

Control Logic
Complexity

Gap

Verification
Capability

Time

3

Turn-Key Formal Verification of
Control Logic in Digital Systems

Refinement
Automatic

Abstraction
Automatic

Reasoning
Automatic Formal Efficient

Scalability

4

Pipelining

PC Instruction
memory

Register
File

DMEM

ALU

Control Logic: Instruction Decode

5

Pipelining

PC Instruction
memory

Register
File

DMEM

ALU

Control Logic: Instruction Decode

6

PC

Instruction
memory

Register
File

DMEMALU

Control Logic: Decoding, Bypassing/Forwarding, Stalling

7

Instruction
memory

ALU

PC

Instruction
memory

Register
FileDMEMALU

PC

Register
File

DMEM

Equivalence

SPEC Control Logic
IMPL Control Logic

8

Outline
• Verification Framework
• Datapath Abstraction and Basic Refinement
• Advanced Refinement
• The Reveal System
• Results
• Conclusions

9

Verification Framework
Golden
Model
(Spec)

ISA (document)
Non-pipelined Verilog

Transaction C/C++ Module

Register Transfer Level
Verilog

Implementation
Equivalence

10

FF

FF FF

=property
p

Unfolding

11

FF

FF FF

property
p

Unfolding

12

0

1

0

1
>>1

{.,.}

>>2

m
0
1
2
3

a

0
1
2
3

b

c

e
f

d

0

p

=
=

=
=

0

1

0

1

0

l

g

Is p=1 for all assignments to circuit inputs?

h

Does the property hold?

13

(,)
(2)
E b g
g b


  0

1

0

1
>>1

{.,.}

>>2

m
0
1
2
3

a

0
1
2
3

b

c

e
f

d

0

p

=
=

=
=

0

1

0

1

0

l

g

Is p=1 for all assignments to circuit inputs? Is Ep=1 for all variable assignments?

h

(,)
([3] 0)
([2] 0)
([1] [3])
([0] [2])

E b g
g
g
g b
g b


 
 
 


(, ,)
()
()

E c g d
l d g
l d c


  
  

th

(, , ,)

(i component)
i

E a b h

E







14

SAT-based Verification

NO

Design is
Correct

YES

Impl

Spec
in p

Formula
Generation

Ep 

is SAT? Bug
Witness

State Explosion

15

Approximation
• Replace exact behavior of the design with a less

precise behavior to speed up verification
 Compromise Accuracy for Speed

• Sound Approximation
[Approximation Correct  Design Correct]

• Complete Approximation
[Approximation Buggy  Design Buggy]

16

Outline
• Verification Framework
• Datapath Abstraction and Basic Refinement
• Advanced Refinement
• The Reveal System
• Results
• Conclusions

17

Datapath Abstraction

ADDx
y ADD(x,y)

Functional Consistency:
x1=x2 & y1=y2 

ADD(x1,y1)=ADD(x2,y2)

4

Counting Aritmetic:
pred(succ (PC))=PC

Mem

Memory Consistency:
Dout presents the last Din
written to same address

Din

Ain

Dout

x
y

x+y

32

Un-interpreted
Function

Adder

PC
32

ADDPC
four ADD(PC,four)

succ4PC succ4(PC)

Mem
Din

Ain

Dout

32

18

0

1

0

1
>>1

{.,.}

>>2

m
0
1
2
3

a

0
1
2
3

b

c

e
f

d

0

p

=
=

=
=

0

1

0

1

0

l

g

Is Ep=1 for all variable assignments?

h

19

0

1

0

1

m

p

=
=

=
=

1

0

1

0

l

Is Ap=1 for all variable assignments?Is Ep=1 for all variable assignments?


0

SR


0

CT

SR

EX1
EX2

EX3

e

h


c

g

f


d


a

b



2


1

(,2)g SR b
 

2()l EX a


() ()l d c l d g  
  

th

(, , ,)

(i component)
i

A a b h

A





  

20

Abstraction-based Verification

NO

Design is
Correct

YES

in p

Formula
Generation

Ap 


is SAT?

Impl

Spec
in p

Abstraction

X* ?
Abstraction is

Sound

21

0

1

0

1

m

p

=
=

=
=

1

0

1

0

l


0

SR


0

CT

SR

EX1
EX2

EX3

0
0

0

1

0

3

2

1 1

3

2

15
4

5

5

0

Is ?

e

h


c

g

f


d


a

b



2


1

| 1XEp | 1XAp 

Property is violated on the abstract design Is property violated on the concrete design?

22

0

1

0

1
>>1

{.,.}

>>2

m
0
1
2
3

a

0
1
2
3

b

c

e
f

d

0

p

=
=

=
=

0

1

0

1

0

l

g

0

0

0

0010

0011

0101

0000

0101

0
0
0
0

0
0
1
0

0010

0011

1

1

1111

0100

h

*| 0XEp 
Violation is inconsistent with concrete design

23

Counterexample Guided
Abstraction Refinement

NO

Design is
Correct

YES

in p

Formula
Generation

is SAT?

Impl

Spec
in p

Abstraction

Bug
Witness

Yes

No

X*

Ap 


*| SAT?XEp

*A A X  Check Feasibility

Refine by Refuting
the Counterexample

Running example:
14148 iterations

24

Outline
• Verification Framework
• Datapath Abstraction and Basic Refinement
• Advanced Refinement
• The Reveal System
• Results
• Conclusions

25

0

1

0

1

m

p

=
=

=
=

1

0

1

0

l


0

SR


0

CT

SR

EX1
EX2

EX3 15

5

0
0

0

0

2

3

2

4

5

0
e

h


c

g
d


a

b
 3

f



2


1

*| 1XAp  1Ap viol 

d f
 

d c
 

f e
 

f b
 

0a 


1l 

1m 

(, , ,)viol a b c
  

1 1

26

Counterexample Guided
Abstraction Refinement

NO

Design is
Correct

YES

Impl

Spec
in p

Abstraction &
Formula

Generation

X*
Generalization

viol

Bug
Witness

No

Yes

Similarity to
Learning in SMTAp 



is SAT?

?Ep viol SAT

A A viol 

Refute a Family
of Counterexamples

Running example:
444 iterations

27

Generalization
• Pros

– Resolves the issue of out-of-bound constants
– Captures and refines a family of counterexamples

• Cons
– Expensive feasibility check on the circuit itself
– Many refinement iterations due to unnecessary (dis-)

equalities
• Only cone-of-influence (w.r.t. counterexample) is relevant in each

refinement iteration
• Only a subset of the (dis-)equalities is needed in each iteration

– A one-time only lemma  cannot be reused

28

0

1

0

1

m

p

=
=

=
=

1

0

1

0

l


0

SR


0

CT

SR

EX1
EX2

EX3

0

0

0

1

e

h


c

g
d


f


a

b


0a 


2


1

29

0

1

0

1

m

p

=
=

=
=

1

0

1

0

l


0

SR


0

CT

SR

EX1
EX2

EX3

0

3

2

l=1

e

h


c

g
d


f


a

b


0a 


2


1

2() 1EX a 


30

0

1

0

1

m

p

=
=

=
=

1

0

1

0

l


0

SR


0

CT

SR

EX1
EX2

EX3
0

3

2

3

2

e

h


c

g
d


f


a

b


0a 


2() 1EX a 



2


1

f d
 

h g
 

(0, 3()) (,2)CT EX b SR b
  

31

0

1

0

1

m

p

=
=

=
=

1

0

1

0

l


0

SR


0

CT

SR

EX1
EX2

EX3

e

h


c

g
d


f


a

b


0a 


2() 1EX a 


(0, 3()) (,2)CT EX b SR b
  


2


1

32

Feasibility/Refinement based on
Explaining the Abstract Counterexample

• Distill a simplified expression
– Include only equalities/dis-equalities
– Exclude logic that is not in the cone-of-

influence
– Exclude numeric values
– Exclude Control Logic
– Based on Primary Inputs
 allow independent feasibility checking

33

Improved Feasibility/Refinement

(0) (2() 1) ((0, 3()) (,2))a EX a CT EX b SR b    
   

UNSAT

3 2 1 0 0 3 2 3 2{ 0000} { 1} {00 00 }a a a a a b b b b    

34

Improved Feasibility/Refinement

• Lemma: A high-level universal truth

• Refutes a family of spurious counterexamples

• Can be reused whenever relevant
– Across refinement iterations
– Across various invocations of the verification on

modifications of the design/property

([0] [2() 1] [(0, 3()) (,2)])a EX a CT EX b SR b     
   

35

Refinement based on Lemmas

NO

Design is
Correct

YES

Impl

Spec
in p

Abstraction &
Formula

Generation

X*

Generalization
& Explanation

viol

Bug
Witness

No

Yes

Lemma
Database

Ap 


is SAT?

?Ep viol SAT

Running example:
3 iterations

36

Minimization

An All-MUS algorithm can generate lemmas
• As many as possible
• As compact as possible

[(0) (2() 1)]a EX a    

3 2 1 0 0 3 2 3 2{ 0000} { 1} {00 00 }a a a a a b b b b    

3 2 3 2{00 00 }b b b b3 2 1 0 0{ 0000} { 1}a a a a a  
(UNSAT) (UNSAT)

((0, 3()) (,2))CT EX b SR b 
  

(Lemma) (Lemma)

37

Refinement based on Lemmas

NO

Design is
Correct

YES

Impl

Spec
in p

Abstraction &
Formula

Generation

X*

Generalization
& Explanation

viol

Bug
Witness

No

Yes

Lemma
Database

Explain
Infeasibility

User
Input

Ap 


 is SAT?

?Ep viol SAT

Running example:
2 iterations

In general:
crucial for convergence

38

Trade-Offs
• Efficiency in each Step

– Validity Check
– Feasibility Check
– Refinement

• Preciseness of Initial abstraction
– Precise (detailed) versus Impresice (coarse)

• Refinement Convergence

 Overall Performance

39

Outline
• Verification Framework
• Datapath Abstraction and Basic Refinement
• Advanced Refinement
• The Reveal System
• Results
• Conclusions

40

The Reveal System

C++
Implementation

NO

Design is
Correct

YES

Impl

Spec
in p

Abstraction &
Formula

Generation

X*

Generalization
& Explanation

viol

Bug
Witness

No

Yes

Lemma
Database

Explain
Infeasibility

User
Input

YICES SMT Solver

CAMUS:
Extraction of

MUSES based on
SMT Solving

Ap 


is SAT?

?Ep viol SAT

YICES using the
BV Theory

RTL Verilog

41

Outline
• Verification Framework
• Datapath Abstraction and Basic Refinement
• Advanced Refinement
• The Reveal System
• Results
• Conclusions

42

Test Cases and Setup

Name Verilog
Lines

Verilog
Signals

State
Bits

Sorter 79 30 35 to 1x103

DLX 2.4x103 399 1x1011

Risc16F84 1.2x103 169 1x105

X86 1.3x104 1x103 5.8x103

Setup: 2.2 GHz AMD Opteron Processor, 8GB RAM, Linux

43

Test Case1: Sorter

d1

d2

res1

res2

1

0

d1>d2

d1

d2
res1

1

0

d1>d2

d2

d1
res2

Sort2

44

Sorter: Implementation

ires1

ires2

ires3

ires4
s23

s14

s11
Sub

d1

d2

Sub
d3

d4

Sub

Sub

Sub

s12

s13

s21

s22

s24

Registers Registers Registers

45

Sorter: Specification

s4

s1
Sub

d1

d2

Sub
d3

d4

s2

s3

Registers

C
O
N
T
R
O
L

sres1

sres2

sres3

sres4

46

Sorter Equivalence

d1
d2

Implementation

d3
d4

Specification

Equivalent?

47

Test Case 1: Sorter

• A Sort Algorithm for 4 W-bits vectors

• Equivalence between 2 Implementations

48

Test Case2: RISC16F84

• A Microcontroller from OpenCores.org
• 213x14-bit I-Mem, 29x8-bit D-Mem
• 34 Op-codes
• 4-stage pipeline
• Property: Equivalence to a 1-stage Spec

starting from an arbitrary state:

49

Test Case3: DLX

• DLX is a 32-bit RISC microprocessor*
• 32-bit address space, I-memory, D-memory
• 32-word register file, 2 read ports, 1 write port
• 38 op-codes
• 5-stage Pipeline
• Property: Pipeline to Non-pipeline Equivalence

Starting from Reset:

50

Test Case4: X86*

* http://vlsi.cs.iitm.ernet.in/x86_proj/x86HomePage.html

51

IA-32 Decoder Unit

PC_in

memBus
buffer1

buffer2

PC

Integer
Decoder

Floating
Point

Decoder
MMX

Decoder
SSE

Decoder
SSE2

Decoder

CONTROL

reset flush decode

Instruction

32

32

32

32

32

128

m u x

enable

PC_out

operation, op1Tytpe, op2Type, ...

updatePC
obtainPC

readMem

52

Runtime Comparison on Sorter

0.01

0.1

1

10

100

1000

2 8 14 20 26 32 38 44 50 56 62

Datapath Bit Width

Ve
rif

ic
at

io
n

tim
e,

 s
ec

.

VIS
Reveal(B)
VCEGAR
VIS(BMC)
UCLID
BAT
Reveal(C)

53

Variations of Test Cases 2, 3, 4
D1 Bug-free DLXSpec and DLXImpl

D2 Pipeline ‘Stall’ Control stuck-at-1

D3 Incorrect Calculation of Address for jump Instruction

R1 Bug-free OCSpec and OCImpl

R2 Floating ‘carry-in’ Signal for Addition
R3 ‘aluout_zero_node’ is stuck-at-1 in OCImpl

X1 Bug-free X86 Design and Property
X2 The Property Swaps enInteger and enFloatingPoint

X3 Erronuous FSM Transition from 000 to 011
X4 The Opcode for CMP Activates the FP Unit

54

Reveal’s Performance

0

100

200

300

400

500

600

700

R1 R2 R3 D1 X1 X2 X4

B
CV
ELS
CLS
ELM
CLM

B – Bit-Level
E – EUF Abstr.
C – CLU Abst.

V – Viol. Ref.
L – Lemma Ref.

S – Single Lemma
M – Multiple Lemma

55

Refinement Iterations for
EUF and CLU Abstractions

0
10
20
30
40
50
60
70
80
90

100

R1 R2 R3 D1 X1 X2 X4

ELM-Iters
CLM-Iters

56

Genuine Bug Discovered

• OpenCores/RISC16F84:
– A bug due to a floating c_in signal in:

57

Lemmas
Lemma Source

58

Experimental Conclustions
• Memory Abstraction reduces the size of the

verification condition significantly  speeds up
runtime UCLID, BAT, and Reveal

• Datapath Abstraction + Counterexample-Guided
Refinement + Multiple Lemmas per Iteration 
Scalable

• SMT-based Solving (YICES) is very scalable
• Integrating Counting Arithmetic Speeds up

Convergence, but might slow down each iteration

59

Outline
• Verification Framework
• Datapath Abstraction and Basic Refinement
• Advanced Refinement
• The Reveal System
• Results
• Related Work
• Conclusions

60

Related Work
• Earlier efforts in verifying microprocessor

control logic (past two decades)
– How to formulate the correctness criterion?
– What mathematical model to use?

• Two Abstraction Approaches
– Datapath Abstraction
– Property-driven Abstraction

61

Datapath Abstraction
• Theorem Proving

– For two decades (PVS, HOL, ACL2, etc.)
– Representing the datapath with integers, rationales,

high-order logic relations, black-boxes, arrays, lists,
etc.

– Both the modeling and formulation of proofs require
continuous user intervention

• Towards Automation
– The work of Burch and Dill ‘94: EUF
– The work of Bryant et al. ‘02: UCLID
– The work of Andraus and Sakallah ’04: Vapor

62

Property-driven Verification
and Abstraction

• Based on generic formal methods
• Property is closely integrated in the

abstraction and verification
• Abstraction methods:

– Predicate abstraction
– Localization reduction
– Interpolants

63

Conclusions
Datapath Abstraction
(Significant Reduction in the State Space)
• Various Abstraction Targets: EUF, CLU

Memory Abstraction
Lambda Expressions for

Memory State

Powerful Refinement
• Lemma Generation
• Multiple/All Lemmas per Iteration
• Generic (Template) Lemmas

Automatic and Easy to Use!
Input: RTL Verilog for Design/Property
 Tool Is Directly Used by Designers

SMT-based Verification (YICES)
Leverages the Advantages of Efficient
SAT Solving Techniques

Effective Discovery
of Genuine Bugs

Establishes Correctness
within Short Time-to-Market

Can be Used
by Designers

