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Motivation

High-Level Control Optimizations: 
Pipelining, Caching, Multi-Core, 
Power Management, ..

Requirements: 
Power, Performance, 
Reliability, Features, …

8086 80286 80386 80486 Pentium
Core 
Duo

Design Control Logic: 
Complex, Error-Prone, Non-reusable, .. 

Lack of Automation Limits Scalability 

We Demonstrate a Fully Automatic
Approach to Formal Verification

of Control Logic

Control Logic
Complexity

Gap

Verification
Capability

Time



3

Turn-Key Formal Verification of 
Control Logic in Digital Systems

Refinement
Automatic

Abstraction
Automatic

Reasoning
Automatic Formal Efficient

Scalability
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Pipelining

PC Instruction
memory

Register
File

DMEM

ALU

Control Logic: Instruction Decode



5

Pipelining

PC Instruction
memory

Register
File

DMEM

ALU

Control Logic: Instruction Decode
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PC

Instruction
memory

Register
File

DMEMALU

Control Logic: Decoding, Bypassing/Forwarding, Stalling
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Instruction
memory

ALU

PC

Instruction
memory

Register
FileDMEMALU

PC

Register
File

DMEM

Equivalence

SPEC Control Logic
IMPL Control Logic
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Outline
• Verification Framework
• Datapath Abstraction and Basic Refinement
• Advanced Refinement
• The Reveal System
• Results
• Conclusions
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Verification Framework
Golden
Model
(Spec)

ISA (document)
Non-pipelined Verilog

Transaction C/C++ Module

Register Transfer Level 
Verilog

Implementation
Equivalence
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SAT-based Verification

NO

Design is
Correct

YES

Impl

Spec
in p

Formula 
Generation

Ep 

is SAT? Bug
Witness

State Explosion
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Approximation
• Replace exact behavior of the design with a less 

precise behavior to speed up verification
 Compromise Accuracy for Speed 

• Sound Approximation
[Approximation Correct  Design Correct]

• Complete Approximation
[Approximation Buggy  Design Buggy]
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Outline
• Verification Framework
• Datapath Abstraction and Basic Refinement
• Advanced Refinement
• The Reveal System
• Results
• Conclusions
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Datapath Abstraction

ADDx
y ADD(x,y)

Functional Consistency:
x1=x2 & y1=y2 

ADD(x1,y1)=ADD(x2,y2)

4

Counting Aritmetic:
pred(succ (PC))=PC

Mem

Memory Consistency:
Dout presents the last Din
written to same address

Din

Ain

Dout

x
y

x+y

32

Un-interpreted
Function

Adder

PC
32

ADDPC
four ADD(PC,four)

succ4PC succ4(PC)

Mem
Din

Ain

Dout

32
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Abstraction-based Verification

NO

Design is
Correct

YES

in p

Formula 
Generation

Ap 


is SAT?

Impl

Spec
in p

Abstraction

X* ?
Abstraction is

Sound
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Counterexample Guided 
Abstraction Refinement

NO

Design is
Correct

YES

in p

Formula 
Generation
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

*|  SAT?XEp

___
*A A X  Check Feasibility

Refine by Refuting
the Counterexample

Running example:
14148 iterations
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Outline
• Verification Framework
• Datapath Abstraction and Basic Refinement
• Advanced Refinement
• The Reveal System
• Results
• Conclusions
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Counterexample Guided 
Abstraction Refinement

NO

Design is
Correct

YES

Impl

Spec
in p

Abstraction &
Formula

Generation

X*
Generalization
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Bug
Witness

No

Yes

Similarity to 
Learning in SMTAp 



is SAT?

?Ep viol SAT

___
A A viol 

Refute a Family
of Counterexamples

Running example:
444 iterations
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Generalization
• Pros

– Resolves the issue of out-of-bound constants
– Captures and refines a family of counterexamples

• Cons
– Expensive feasibility check on the circuit itself
– Many refinement iterations due to unnecessary (dis-) 

equalities
• Only cone-of-influence (w.r.t. counterexample) is relevant in each 

refinement iteration
• Only a subset of the (dis-)equalities is needed in each iteration

– A one-time only lemma  cannot be reused
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Feasibility/Refinement based on 
Explaining the Abstract Counterexample

• Distill a simplified expression 
– Include only equalities/dis-equalities
– Exclude logic that is not in the cone-of-

influence
– Exclude numeric values
– Exclude Control Logic 
– Based on Primary Inputs 
 allow independent feasibility checking 
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Improved Feasibility/Refinement

( 0) ( 2( ) 1) ( (0, 3( )) ( ,2))a EX a CT EX b SR b    
   

UNSAT

3 2 1 0 0 3 2 3 2{ 0000} { 1} {00 00 }a a a a a b b b b    
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Improved Feasibility/Refinement

• Lemma: A high-level universal truth 

• Refutes a family of spurious counterexamples

• Can be reused whenever relevant
– Across refinement iterations
– Across various invocations of the verification on 

modifications of the design/property

([ 0] [ 2( ) 1] [ (0, 3( )) ( ,2)])a EX a CT EX b SR b     
   
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Refinement based on Lemmas

NO

Design is
Correct

YES

Impl

Spec
in p

Abstraction &
Formula

Generation

X*

Generalization
& Explanation

viol

Bug
Witness

No

Yes

Lemma
Database

Ap 


is SAT?

?Ep viol SAT

Running example:
3 iterations
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Minimization

An All-MUS algorithm can generate lemmas
• As many as possible
• As compact as possible

[( 0) ( 2( ) 1)]a EX a    

3 2 1 0 0 3 2 3 2{ 0000} { 1} {00 00 }a a a a a b b b b    

3 2 3 2{00 00 }b b b b3 2 1 0 0{ 0000} { 1}a a a a a  
(UNSAT) (UNSAT)

( (0, 3( )) ( ,2))CT EX b SR b 
  

(Lemma) (Lemma)
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Refinement based on Lemmas

NO

Design is
Correct

YES

Impl

Spec
in p

Abstraction &
Formula

Generation

X*

Generalization
& Explanation

viol

Bug
Witness

No

Yes

Lemma
Database

Explain
Infeasibility

User
Input

Ap 


 is SAT?

?Ep viol SAT

Running example:
2 iterations

In general: 
crucial for convergence
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Trade-Offs
• Efficiency in each Step

– Validity Check
– Feasibility Check
– Refinement

• Preciseness of Initial abstraction
– Precise (detailed) versus Impresice (coarse)

• Refinement Convergence

 Overall Performance
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Outline
• Verification Framework
• Datapath Abstraction and Basic Refinement
• Advanced Refinement
• The Reveal System
• Results
• Conclusions
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The Reveal System

C++ 
Implementation

NO

Design is
Correct

YES

Impl

Spec
in p

Abstraction &
Formula

Generation

X*

Generalization
& Explanation

viol

Bug
Witness

No

Yes

Lemma
Database

Explain
Infeasibility

User
Input

YICES SMT Solver

CAMUS: 
Extraction of 

MUSES based on 
SMT Solving

Ap 


is SAT?

?Ep viol SAT

YICES using the
BV Theory

RTL Verilog
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Outline
• Verification Framework
• Datapath Abstraction and Basic Refinement
• Advanced Refinement
• The Reveal System
• Results
• Conclusions
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Test Cases and Setup

Name Verilog 
Lines

Verilog 
Signals

State
Bits

Sorter 79 30 35 to 1x103

DLX 2.4x103 399 1x1011

Risc16F84 1.2x103 169 1x105

X86 1.3x104 1x103 5.8x103

Setup: 2.2 GHz AMD Opteron Processor, 8GB RAM, Linux
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Test Case1: Sorter

d1

d2

res1

res2

1

0

d1>d2

d1

d2
res1

1

0

d1>d2

d2

d1
res2

Sort2
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Sorter: Implementation

ires1

ires2

ires3

ires4
s23

s14

s11
Sub

d1

d2

Sub
d3

d4

Sub

Sub

Sub

s12

s13

s21

s22

s24

Registers Registers Registers
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Sorter: Specification

s4

s1
Sub

d1

d2

Sub
d3

d4

s2

s3

Registers

C
O
N
T
R
O
L

sres1

sres2

sres3

sres4
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Sorter Equivalence

d1
d2

Implementation

d3
d4

Specification

Equivalent?
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Test Case 1: Sorter

• A Sort Algorithm for 4 W-bits vectors

• Equivalence between 2 Implementations 
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Test Case2: RISC16F84

• A Microcontroller from OpenCores.org
• 213x14-bit I-Mem, 29x8-bit D-Mem
• 34 Op-codes
• 4-stage pipeline
• Property: Equivalence to a 1-stage Spec 

starting from an arbitrary state:
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Test Case3: DLX

• DLX is a 32-bit RISC microprocessor*
• 32-bit address space, I-memory, D-memory
• 32-word register file, 2 read ports, 1 write port
• 38 op-codes
• 5-stage Pipeline
• Property: Pipeline to Non-pipeline Equivalence 

Starting from Reset:
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Test Case4: X86*

* http://vlsi.cs.iitm.ernet.in/x86_proj/x86HomePage.html
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IA-32 Decoder Unit

PC_in

memBus
buffer1

buffer2

PC

Integer
Decoder

Floating
Point

Decoder
MMX

Decoder
SSE

Decoder
SSE2

Decoder

CONTROL

reset flush decode

Instruction

32

32

32

32

32

128

m u x

enable

PC_out

operation, op1Tytpe, op2Type, ...

updatePC
obtainPC

readMem
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Runtime Comparison on Sorter
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Variations of Test Cases 2, 3, 4
D1 Bug-free DLXSpec and DLXImpl

D2 Pipeline ‘Stall’ Control stuck-at-1

D3 Incorrect Calculation of Address for jump Instruction

R1 Bug-free OCSpec and OCImpl

R2 Floating ‘carry-in’ Signal for Addition
R3 ‘aluout_zero_node’ is stuck-at-1 in OCImpl

X1 Bug-free X86 Design and Property
X2 The Property Swaps enInteger and enFloatingPoint

X3 Erronuous FSM Transition from 000 to 011
X4 The Opcode for CMP Activates the FP Unit
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Reveal’s Performance

0

100

200

300

400

500

600

700

R1 R2 R3 D1 X1 X2 X4

B
CV
ELS
CLS
ELM
CLM

B – Bit-Level
E – EUF Abstr.
C – CLU Abst.

V – Viol. Ref.
L – Lemma Ref.

S – Single Lemma
M – Multiple Lemma
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Refinement Iterations for  
EUF and CLU Abstractions

0
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ELM-Iters
CLM-Iters
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Genuine Bug Discovered

• OpenCores/RISC16F84:
– A bug due to a floating c_in signal in:
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Lemmas
Lemma Source
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Experimental Conclustions
• Memory Abstraction reduces the size of the 

verification condition significantly  speeds up 
runtime UCLID, BAT, and Reveal

• Datapath Abstraction + Counterexample-Guided 
Refinement + Multiple Lemmas per Iteration 
Scalable

• SMT-based Solving (YICES) is very scalable
• Integrating Counting Arithmetic Speeds up 

Convergence, but might slow down each iteration
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Outline
• Verification Framework
• Datapath Abstraction and Basic Refinement
• Advanced Refinement
• The Reveal System
• Results
• Related Work
• Conclusions
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Related Work
• Earlier efforts in verifying microprocessor 

control logic (past two decades)
– How to formulate the correctness criterion?
– What mathematical model to use?

• Two Abstraction Approaches
– Datapath Abstraction
– Property-driven Abstraction
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Datapath Abstraction
• Theorem Proving

– For two decades (PVS, HOL, ACL2, etc.)
– Representing the datapath with integers, rationales, 

high-order logic relations, black-boxes, arrays, lists, 
etc.

– Both the modeling and formulation of proofs require 
continuous user intervention

• Towards Automation
– The work of Burch and Dill ‘94: EUF
– The work of Bryant et al. ‘02: UCLID
– The work of Andraus and Sakallah ’04: Vapor
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Property-driven Verification 
and Abstraction

• Based on generic formal methods
• Property is closely integrated in the 

abstraction and verification
• Abstraction methods:

– Predicate abstraction
– Localization reduction
– Interpolants 
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Conclusions
Datapath Abstraction
(Significant Reduction in the State Space)
• Various Abstraction Targets: EUF, CLU

Memory Abstraction
Lambda Expressions for 

Memory State

Powerful Refinement
• Lemma Generation
• Multiple/All Lemmas per Iteration
• Generic (Template) Lemmas

Automatic and Easy to Use!
Input: RTL Verilog for Design/Property
 Tool Is Directly Used by Designers

SMT-based Verification (YICES)
Leverages the Advantages of Efficient
SAT Solving Techniques

Effective Discovery 
of Genuine Bugs

Establishes Correctness
within Short Time-to-Market

Can be Used
by Designers


