
BitBlaze & WebBlaze:
Tools for Computer Security

using SMT Solvers
Devdatta Akhawe, Domagoj Babić, Adam Barth, Juan Caballero,

Steve Hanna, Lorenzo Martignoni, Stephen McCamant,
Feng Mao, James Newsome, Prateek Saxena, and

Prof. Dawn Song
smcc@cs.berkeley.edu

University of California, Berkeley

Outline

Core technique: symbolic reasoning

Binary-level bug-finding

Binary-level influence measurement

Strings and browser content sniffing

Strings and JavaScript vulnerabilities

Basic idea

Choose some of state (e.g., program or
function input) to be symbolic:
introduce variables for their values
Computations on symbolic state
produce formulas rather than concrete
(e.g., integer) values
Construct queries with these formulas,
solve to answer questions about
possible program behavior

Why symbolic reasoning?

+ Precise: formulas can capture exact
program behavior without
approximation

+ Complete solver: (i.e. decision
procedure) will always produce a
correct solution without human help

+ Flexibility: Formulas independent of
particular form of query

Why not symbolic reasoning?

- Precise, but often not complete: don’t
prove that a given behavior can never
happen

- Complete solver, but solution not
guaranteed within reasonable
space/time

- Flexibility, but may be be less efficient
than more specialized approach

Possible approaches



Applications
Vulnerability signatures [Oakland’06,CSF’07] Protocol replay

[CCS’06] Deviation discovery [USENIX’07] Patch-based exploit

generation [Oakland’08] Modeling content sniffing [Oakland’09]

Influence measurement [PLAS’09] Loop-extended SE

[ISSTA’09] Protocol-level exploration [RAID’09] Kernel API

exploration Decomposing crypto functions [CCS’10] Fixing

under-tainting [NDSS’11] Protocol-model assisted SE [USENIX’11]

JavaScript SE [Oakland’10] Static-guided test generation

[ISSTA’11] Emulator verification [submitted]

Applications
Vulnerability signatures [Oakland’06,CSF’07] Protocol replay

[CCS’06] Deviation discovery [USENIX’07] Patch-based exploit

generation [Oakland’08] Modeling content sniffing [Oakland’09]

Influence measurement [PLAS’09] Loop-extended SE

[ISSTA’09] Protocol-level exploration [RAID’09] Kernel API

exploration Decomposing crypto functions [CCS’10] Fixing

under-tainting [NDSS’11] Protocol-model assisted SE [USENIX’11]

JavaScript SE [Oakland’10] Static-guided test generation

[ISSTA’11] Emulator verification [submitted]

Challenges of binary symbolic reasoning

Instruction set complexity
Rewrite to simpler intermediate language

Variable-size memory accesses
Lazy conversion with mixed-granularity
storage

No type distinction between integers
and pointers

Analyze symbolic expression structure

Outline

Core technique: symbolic reasoning

Binary-level bug-finding

Binary-level influence measurement

Strings and browser content sniffing

Strings and JavaScript vulnerabilities

Setting: vulnerability finding

Find exploitable bugs in software, before the bad
guys do
Many bugs found by independent researchers,
without benefit of source code
Example vulnerability type: buffer overflow
Incorrect or missing bounds check allows
malicious input to overwrite other sensitive state
Despite extensive research, and some progress
in practice, still a major bug category in C/C++
programs

Static analysis

Widely used at source-code level
Can be sound (report all potential problems), at
cost of false positives (imprecision)
Challenge 1: more difficult at binary level

Soundness/precision tradeoff less favorable
Challenge 2: developers have a low tolerance for
false positives

Won’t use a tool that wastes their time



Combined static/dynamic approach

Before static analysis, use dynamic traces to help
where static binary analysis has trouble (e.g.,
indirect control flow)
Design and optimize static analysis for
binary-level challenges (e.g., variable identification,
overlapping memory accesses)
After static analysis, prioritize true positives by
searching for test cases with symbolic execution

Combined static/dynamic approach

Before static analysis, use dynamic traces to help
where static binary analysis has trouble (e.g.,
indirect control flow)
Design and optimize static analysis for
binary-level challenges (e.g., variable identification,
overlapping memory accesses)
After static analysis, prioritize true positives by
searching for test cases with symbolic execution

Key challenge: guiding the search

Increase the chances that the paths we
explore will lead to a bug

Path must reach the code location of the
bug
Program state at that location must
trigger the bug

Combination of two approaches:
1. Data-flow slice and control-flow distance

to direct paths toward a potential bug
2. Explore patterns of loop body paths to

cover cases likely to overflow

Key challenge: guiding the search

Increase the chances that the paths we
explore will lead to a bug

Path must reach the code location of the
bug
Program state at that location must
trigger the bug

Combination of two approaches:
1. Data-flow slice and control-flow distance

to direct paths toward a potential bug
2. Explore patterns of loop body paths to

cover cases likely to overflow

Guidance toward a bug Guidance toward a bug



Guidance toward a bug Guidance toward a bug

Guidance toward a bug Guidance toward a bug

Guidance toward a bug Guidance toward a bug



Guidance toward a bug Guidance toward a bug

Guidance toward a bug Guidance toward a bug

Guidance toward a bug Sub-problem: control-flow distance

An interprocedural control-flow graph has
nodes for statements, and edges between
statements and for calls and returns

However, we can’t use a regular graph distance
measure (Dijkstra’s algorithm), because of call
and return matching

Exclude: f calls g, g returns to h

Instead, new two-phase distance algorithm that
first computes entry-to-exit distances bottom
up, then adds unmatched returns and calls



Guidance results

Unguided Guided
Benchmark Paths Time (s) Paths Time (s)

BIND/b4 1 1:9 1 1:8

Sendmail/s5 3 19:0 3 22:9

BIND/b1 54 2:8 20 3:6

BIND/b2 137 13:3 72 25:1

BIND/b3 9 1:6 4 2:6

Sendmail/s2 16 2:9 9 97:0

Sendmail/s7 56 6:9 1 1:9

WU-FTPD/f1 309 8:1 11 1:1

WU-FTPD/f2 1455 65:8 11 1:4

WU-FTPD/f3 143 60:0 18 11:4

Sendmail/s5 T/O > 21600:0 332 200:4

Sendmail/s6 T/O > 21600:0 86 11:3

Sendmail/s1 T/O > 21600:0 7297 7474:4

Sendmail/s3 T/O > 21600:0 T/O > 21600:0

Guidance results

Unguided Guided
Benchmark Paths Time (s) Paths Time (s)

! BIND/b4 1 1:9 1 1:8

! Sendmail/s5 3 19:0 3 22:9

BIND/b1 54 2:8 20 3:6

BIND/b2 137 13:3 72 25:1

BIND/b3 9 1:6 4 2:6

Sendmail/s2 16 2:9 9 97:0

Sendmail/s7 56 6:9 1 1:9

WU-FTPD/f1 309 8:1 11 1:1

WU-FTPD/f2 1455 65:8 11 1:4

WU-FTPD/f3 143 60:0 18 11:4

Sendmail/s5 T/O > 21600:0 332 200:4

Sendmail/s6 T/O > 21600:0 86 11:3

Sendmail/s1 T/O > 21600:0 7297 7474:4

Sendmail/s3 T/O > 21600:0 T/O > 21600:0

Guidance results

Unguided Guided
Benchmark Paths Time (s) Paths Time (s)

BIND/b4 1 1:9 1 1:8

Sendmail/s5 3 19:0 3 22:9

! BIND/b1 54 2:8 20 3:6

! BIND/b2 137 13:3 72 25:1

! BIND/b3 9 1:6 4 2:6

! Sendmail/s2 16 2:9 9 97:0

Sendmail/s7 56 6:9 1 1:9

WU-FTPD/f1 309 8:1 11 1:1

WU-FTPD/f2 1455 65:8 11 1:4

WU-FTPD/f3 143 60:0 18 11:4

Sendmail/s5 T/O > 21600:0 332 200:4

Sendmail/s6 T/O > 21600:0 86 11:3

Sendmail/s1 T/O > 21600:0 7297 7474:4

Sendmail/s3 T/O > 21600:0 T/O > 21600:0

Guidance results

Unguided Guided
Benchmark Paths Time (s) Paths Time (s)

BIND/b4 1 1:9 1 1:8

Sendmail/s5 3 19:0 3 22:9

BIND/b1 54 2:8 20 3:6

BIND/b2 137 13:3 72 25:1

BIND/b3 9 1:6 4 2:6

Sendmail/s2 16 2:9 9 97:0

! Sendmail/s7 56 6:9 1 1:9

!WU-FTPD/f1 309 8:1 11 1:1

!WU-FTPD/f2 1455 65:8 11 1:4

!WU-FTPD/f3 143 60:0 18 11:4

Sendmail/s5 T/O > 21600:0 332 200:4

Sendmail/s6 T/O > 21600:0 86 11:3

Sendmail/s1 T/O > 21600:0 7297 7474:4

Sendmail/s3 T/O > 21600:0 T/O > 21600:0

Guidance results

Unguided Guided
Benchmark Paths Time (s) Paths Time (s)

BIND/b4 1 1:9 1 1:8

Sendmail/s5 3 19:0 3 22:9

BIND/b1 54 2:8 20 3:6

BIND/b2 137 13:3 72 25:1

BIND/b3 9 1:6 4 2:6

Sendmail/s2 16 2:9 9 97:0

Sendmail/s7 56 6:9 1 1:9

WU-FTPD/f1 309 8:1 11 1:1

WU-FTPD/f2 1455 65:8 11 1:4

WU-FTPD/f3 143 60:0 18 11:4

! Sendmail/s5 T/O > 21600:0 332 200:4

! Sendmail/s6 T/O > 21600:0 86 11:3

Sendmail/s1 T/O > 21600:0 7297 7474:4

Sendmail/s3 T/O > 21600:0 T/O > 21600:0

Guidance results

Unguided Guided
Benchmark Paths Time (s) Paths Time (s)

BIND/b4 1 1:9 1 1:8

Sendmail/s5 3 19:0 3 22:9

BIND/b1 54 2:8 20 3:6

BIND/b2 137 13:3 72 25:1

BIND/b3 9 1:6 4 2:6

Sendmail/s2 16 2:9 9 97:0

Sendmail/s7 56 6:9 1 1:9

WU-FTPD/f1 309 8:1 11 1:1

WU-FTPD/f2 1455 65:8 11 1:4

WU-FTPD/f3 143 60:0 18 11:4

Sendmail/s5 T/O > 21600:0 332 200:4

Sendmail/s6 T/O > 21600:0 86 11:3

! Sendmail/s1 T/O > 21600:0 7297 7474:4

Sendmail/s3 T/O > 21600:0 T/O > 21600:0



Guidance results

Unguided Guided
Benchmark Paths Time (s) Paths Time (s)

BIND/b4 1 1:9 1 1:8

Sendmail/s5 3 19:0 3 22:9

BIND/b1 54 2:8 20 3:6

BIND/b2 137 13:3 72 25:1

BIND/b3 9 1:6 4 2:6

Sendmail/s2 16 2:9 9 97:0

Sendmail/s7 56 6:9 1 1:9

WU-FTPD/f1 309 8:1 11 1:1

WU-FTPD/f2 1455 65:8 11 1:4

WU-FTPD/f3 143 60:0 18 11:4

Sendmail/s5 T/O > 21600:0 332 200:4

Sendmail/s6 T/O > 21600:0 86 11:3

Sendmail/s1 T/O > 21600:0 7297 7474:4

! Sendmail/s3 T/O > 21600:0 T/O > 21600:0

What do our formulas look like?
The key theory is fixed-size bit-vectors,
representing machine integers

Exact treatment of overflow, signs, etc.
important for binaries

Could use arrays for general memory,
lookup tables, but usually don’t

Instead, fix memory layout to be concrete
(or unconstrained symbolic)

Usually easy to solve, whether SAT or
UNSAT

Solver performance

For easy formulas, mundane changes matter (sample

of 84355 formulas, not a general tool comparison)

���������	
���
���������������
�������
����
���������������

������
�����	�����	�
�

�

����

����

����

����

����

����

�
 
	
��
�
�
�!
�
"

Outline

Core technique: symbolic reasoning

Binary-level bug-finding

Binary-level influence measurement

Strings and browser content sniffing

Strings and JavaScript vulnerabilities

Due and undue influence

How much influence should network
inputs have on a program?
For instance, on an indirect jump target

Some influence ! select a legal behavior
Too much influence ! control flow
hijacking attack

High and low influence examples

void (*func_ptr)(void);
func_ptr = untrusted_input();
(*func_ptr)();

void (*func_ptr)(void);
switch (untrusted_input()) {

case CMD_OPEN: func_ptr = &open_file;
case CMD_READ: func_ptr = &read_file;
default: func_ptr = &error;

}
(*func_ptr)();



Channel capacity as influence

For a given variable, how many values
can an attacker produce?

Influence = log2(# values)

Special case of channel capacity from
information theory

Scalability and precision

Want to analyze large (e.g., commercial)
software

Want results with no error

Our goal: improved trade-off points
between these ideals

Problem statement
Given:

A deterministic program with designated
inputs
An output variable

Question: how many values of the
output are possible, given different
inputs?

Program to formula example
/* Convert low 4 bits of integer to hex */
char tohex(int i) {

int low = i & 0xf;
char v;
if (low < 10)

v = '0' + low;
else

v = 'a' + (low - 10);
return v;

}

Dynamic: (i & 15) < 10^ (v = 48+ (i & 15))

Program to formula example
/* Convert low 4 bits of integer to hex */
char tohex(int i) {

int low = i & 0xf;
char v;
if (low < 10)

v = '0' + low;
else

v = 'a' + (low - 10);
return v;

}

Static: ((i & 15) < 10 ^ (v = 48+ (i & 15)) _

((i & 15) � 10 ^ (v = 97+ (i & 15) - 10))

Query techniques

Point-by-point exhaustion

Range exclusion

Random output sampling

Probabilistic model counting



Query techniques

Point-by-point exhaustion

Range exclusion

Random output sampling

Probabilistic model counting

Query techniques

Point-by-point exhaustion

Range exclusion

Random output sampling

Probabilistic model counting

Point-by-point exhaustion

Is v = f(i) satisfiable?

Suppose it is, by v1 = f(i1)

Is v = f(i)^ v 6= v1 satisfiable?

. . .

We repeat up to at most 26 = 64

distinct outputs, so every bound up to
6 bits is exact

Range exclusion

Is v = f(i)^ (a � v � b) satisfiable?

If not, a whole range is excluded

If so, can subdivide

We also use this with binary search to
find the minimum and maximum
outputs

Random output sampling

Pick vr at random, and check if
vr = f(i) is satisfiable

By default, our tool uses 20 samples,
and computes a 95% confidence
interval

Probabilistic model counting

Use XOR streamlining [GSS06] to
probabilistically reduce #SAT to SAT

Analogy: counting audience members

Random parity constraints over enough
bits are effectively independent

Perform repeated experiments with
different numbers of constraints



Probabilistic model counting

Choose # of constraints so that p(SAT) � 0:5

 0

 0.2

 0.4

 0.6

 p(SAT)

 0.8

 1

 0  5  10  15  20

 # parity constraints added

 25  30  35

Identity function

v = i

Low High Sample #SAT Actual
6.04 32.0 [31.8, 32.0] 32.0 32

tohex

sprintf(&v, "%x", i & 0xf)

Static:
Low High Sample #SAT Actual
4.00 4.00 N/A N/A 4

Dynamic:
Low High Sample #SAT Actual
3.32 3.32 N/A N/A log2 10
2.58 2.58 N/A N/A log2 6

Mix and duplicate

f(x � y) = (x� y) � (x� y)

f(0x00000042) = 0x00420042

f(0x02461111) = 0x13571357

f(0xcafebebe) = 0x74407440

Low High Sample #SAT Actual
6.04 32.0 [0.0, 28.6] 15.8 16

Results summary

Goal: distinguish attacks from false positives

Confirming attacks

Vulnerable Windows and Linux binaries

Real attacks all have high influence, at
least 26 bits

Program High Sample #SAT Value Set
RPC DCOM 32.0 [31.8, 32.0] 30.4
SQL Server 30.9 [26.7, 28.3] 26.6
ATPhttpd 32.0 [31.8, 32.0] 31.0



Reveal false positives

Examples cause taint analysis warnings

Measured influence exactly, less than 5
bits

Program Low High Value Set
RPC %esp 3.81 3.81
Samba func. ptr 3.32 3.32

Directions for improving solving

Further targeted query strategies
E.g., two-bit patterns [Meng & Smith,
PLAS’11]

Refined strategy for choosing number
of parity constraints
Interface with off-the-shelf #SAT
solvers

Question: how to restrict counting to
output bits?

Outline

Core technique: symbolic reasoning

Binary-level bug-finding

Binary-level influence measurement

Strings and browser content sniffing

Strings and JavaScript vulnerabilities

Web browser content sniffing

An HTTP response contains a content
type header

E.g., text/html or image/png

But sometimes (�1%) the content type
is missing or invalid

Thus browsers sometimes attempt to
sniff (guess) the type from the content
or URL

When content sniffing goes bad

Content type matters because it
affects privilege

Some types of content (HTML, Flash) can
contain code

An unexpected upgrade can allow an
untrusted user to inject JavaScript

I.e., a kind of cross-site scripting (XSS)

Usually a mismatch between the
browser and another filter

HotCRP attack example

Conference site allows authors to upload
PostScript papers

What if the site accepts this file as PS, but the
reviewer’s browser considers it HTML?

%!PS-Adobe

%%Creator: <script>submitReview("A+");

...

Your paper gets accepted :-)



Modeling content sniffing

To understand such attacks, we want a
formal model of the sniffer’s behavior

E.g., MH(c) = true if the file contents c

are sniffed as HTML
Boolean combinations correspond to
possible mismatch attacks

MP
1
(c)^MH

2
(c)

Model extraction
The content-sniffing strategies of
closed-source browsers are often un-
or under-documented

We look at IE 7, Safari 3.1

Extract from the binary using white-box
exploration (symbolic execution)

Model is a disjunction of path
conditions from accepting paths

Abstracting string functions

Sniffing code makes heavy use of
string routines

Reason about their semantics, not their
implementation

+ Summarize multiple paths

+ Skip implementation details

+ Take advantage of specialized solvers
(future)

Translating string functions

1. Recognize over 100 binary-level
functions (mostly documented)

2. Canonicalize to 14 semantic classes

3. Express in terms of a core constraint
language

4. Reduce core constraints to STP bit
vectors

Exploration advantage of strings

Block coverage for Safari:

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 0  5000  10000  15000  20000

N
u
m

b
e
r 

o
f 
b
lo

c
k
s

Time(seconds)

strings
bytes

Summary of attacks found

Tool finds attacks to upgrade 6 content
types each in IE and Safari to HTML.

But which pass a common server-side
filter
Wikipedia has a more complex filter, but it
can also be bypassed

Automatically generated PS ! HTML
example:

%!t?HPTw\nOtKoCglD<HeadswssssRsD



Happy ending: safe sniffing

Our models can be used to create
matching server-side filters
We propose client-side design
principles for safe sniffing

Avoid privilege escalation
Prefix-disjoint signatures

Adopted by IE 8 (partial), Chrome, and
HTML 5

Outline

Core technique: symbolic reasoning

Binary-level bug-finding

Binary-level influence measurement

Strings and browser content sniffing

Strings and JavaScript vulnerabilities

Example attack: gadget overwrite Example attack: explanation

Cross-site scripting can exist entirely in
client-side JavaScript
Unsanitized data passed to HTML
creation (document.write) or eval
In the example, a malicious link injects
code into the TVGuide gadget, turning it
into a phishing vector

What’s new here?
Source/sink problem, somewhat like
SQL injection or server-side XSS, but:

JS code takes many kinds of inputs as
unstructured strings, requiring custom
parsing
Sanitization is not standardized, and often
application-specific

! More difficult challenges for string
reasoning

Exploration overview

Two kinds of exploration:

Event space: GUI actions such as
clicking check-boxes or links
Value space: contents of form,
message, and URL inputs

Explore new program paths
Check whether sanitization is sufficient
(compare to attack grammar)



Kudzu system overview Usage of string operations

   Substr /

Substring / 

CharAt / 

CharCodeAt

5%

IndexOf / 

LastIndexOf 

/ Strlen

78%

Replace / 

EncodeURI / 

DecodeURI

8%

Match / Test 

/ Split 

1%
Concat

8%

Expressiveness

Regular expression
membership

Arbitrary concatenation
(word equations)

String length function

Can also mix in boolean and (31-bit)
integer constraints

Nested architecture

Approach overview

Flatten concatenations to a linear
sequence

Abstract to length constraints

For each length assignment:
Expand regexps (HAMPI code)
Combine in single bitvector query
bitvector SAT ! string SAT

Exhausted lengths ! string UNSAT

Approach details

Real JavaScript “regexes” are more
complex that textbook ones
Regexp lengths ! ultimately periodic set
Translate replace with fixed number of
occurrences



Kaluza performance results

0 50 100 150 200 250

0.05

0.5

5

50

Solve Time (SAT cases) Solve Time(UNSAT cases)

Overall results

Tested 5 AJAX applications and 13
iGoogle gadgets (all live)
Event and value space exploration both
contribute to coverage

But some code and events not yet
covered

Found vulnerabilities in 11 apps, including
2 missed by our previous taint-directed
fuzzer

Summary, and for more info

Symbolic execution and SMT solvers
enable a wide variety of security
applications

Web sites have papers and TRs, plus:

http://bitblaze.cs.berkeley.edu/

BitBlaze core: Vine and TEMU (GPL/LGPL)

http://webblaze.cs.berkeley.edu/

Kaluza solver binary download and online
demo


