
Computer Science Laboratory, SRI International

Yices and Applications

Bruno Dutertre, SRI International

SAT/SMT Solver Summer School

MIT, June 2011

Computer Science Laboratory, SRI International

Outline

Overview of Yices

Two Examples

◦ Scheduling for Timed-Triggered Ethernet (Steiner, 2010)
◦ Verification of timed systems (Brown & Pike, 2006)

1

Computer Science Laboratory, SRI International

SMT Solvers at SRI

2000-2004: Integrated Canonizer and Solver (ICS)

◦ Based on Shostak’s method + a non-clausal SAT solver

2005: Two solvers in the SMT competition

◦ Simplics: linear arithmetic (Simplex based)
◦ Yices 0.1: linear arithmetic, arrays, uninterpreted functions

2006: Yices 1 released

◦ supported all SMT logics at that time: arithmetic, bitvectors, quantifiers
◦ main developer: Leonardo de Moura

Since 2006: Yices 1 maintained and developed

2008 and 2009: prototypes of a new solver (Yices 2) entered SMT-COMP

2

Computer Science Laboratory, SRI International

Current Releases

Yices 1 is SRI’s current SMT solver

◦ Current release: Yices 1.0.29
◦ Available for many platforms and OSs (Linux, Windows, MacOS X, Solaris)
◦ Supports SMT-LIB 1.2 or Yices language + usable via an API

Yices 2 Prototype

◦ This is a prerelease of Yices 2 that entered SMT COMP in 2009
◦ Input: SMT-LIB 1.2 input only (no API yet)

Both are available at http://yices.csl.sri.com/

3

http://yices.csl.sri.com/

Computer Science Laboratory, SRI International

Main Features of Yices 1

Supported Theories

◦ Uninterpreted functions
◦ Linear real and integer arithmetic
◦ Extensional arrays
◦ Fixed-size bit-vectors
◦ Scalar types
◦ Recursive datatypes, tuples, records
◦ Quantifiers and lambda expressions

Other Features

◦ Model generation, unsatisfiable cores
◦ Supports incremental assertions: push, pop, retract
◦ Max SMT (weighted assertions)

4

Computer Science Laboratory, SRI International

Yices 2: The New Yices

Started in 2008

◦ Complete redesign and new implementation
◦ Written entirely in C
◦ UF + arithmetic done in 2008, arrays + bitvectors added in 2009
◦ Developments since 2009:

– model construction + queries
– support for incremental use (push/pop)
– better simplification/preprocessing

Goals:

◦ Increase flexibility and usability as a library
◦ Simplify the type system to ensure easy type checking
◦ Improve performance over Yices 1

5

Computer Science Laboratory, SRI International

Yices 2 Architecture

Internalizer Solver

Internalizer Solver

Term Construction

Term/Type

Database

Context Management

Contexts

Model Management

Model

Model

Model

Three Main Modules: Type/Term database, Contexts, Models

◦ Several contexts can coexist
◦ Models are constructed from contexts but can be queried independently

6

Computer Science Laboratory, SRI International

Solver Interaction

Solver

SAT
Solver

CORE
(UF Solver)

Arithmetic

Bitvector

Array/Fun

Solver

Solver

DPLL

The actual solver combination used by a context can be configured via the API

7

Computer Science Laboratory, SRI International

Current Solvers in Yices 2

SAT Solver

◦ Similar to MiniSat/Picosat, with extensions for interaction with theory solvers

Core/UF Solver

◦ Congruence-closure solver for uninterpreted functions and tuples
◦ Improvement over Yices 1: better equality propagation and support for theory

combination (Nelson-Oppen, lazy generation of interface equalities)

Arithmetic Solvers

◦ Default: simplex
◦ Floyd-Warshall solvers for difference logic

Bitvector Solver: simplifier + bit blasting

Array Solver: lazy instantiation of array axioms

8

Computer Science Laboratory, SRI International

Example Uses of Yices

Model Checking

◦ Backend solver to the SAL model checkers (SRI)
◦ MCMT (Ghilardi & Ranise)
◦ Model checking of Lustre Programs (Hagen & Tinelli)

Program Analysis

◦ Symbolic Execution: Sireum/Kiasan (Deng, Robby, Hatcliff), JPF (Anand,
Păsăreanu, Visser)
◦ Backend prover for SPARK-ADA (Jackson, Ellis, Sharp)

Within Interactive Theorem Provers

◦ PVS, Isabelle/HOL can use Yices as an end-game solver

9

Computer Science Laboratory, SRI International

Application 1: Scheduling for TTEthernet

End
System

End
System

Switch

Switch

Switch

Dataflow

Ethernet for real-time, distributed systems:

◦ Guarantees for real-time messages: low jitter, predictable latency, no collisions
◦ All nodes are synchronized (fault-tolerant clock synchronization protocol)
◦ All communication and computation follow a system-wide, cyclic schedule

10

Computer Science Laboratory, SRI International

Computing a Communication Schedule

Input

◦ a set of virtual links: dataflows from one end system to one or more end
systems
◦ the communication period

Constraints

◦ no contention: all frames on every link are in a different time slot
◦ path constraints: relayed frames must be scheduled after they are received
◦ other constraints: limits on switch memory, application constraints, etc.

11

Computer Science Laboratory, SRI International

TTE Scheduling as an SMT Problem (Steiner, 2010)

Frames

◦ Messages are called frames in TTE.
◦ A frame f is characterized by its period f.period and its length f.length.
◦ Routing is static: we know a priori the source of f, all receivers, and the set of

communication links that will transport f.
◦ Given a link i, our goal is to compute when to send f over that link. The start of

this transmission is denoted by offsetf,i

Simplification: in the simplest case, all frames have the same period (equal to the
schedule cycle).

12

Computer Science Laboratory, SRI International

Example Scheduling Constraints

No Collisions: if distinct frames f and g use link i:

offsetf,i + f.period 6 offsetg,i or offsetg,i + g.period 6 offsetf,i

Path Constraints: if a switch receives f on link i and relays it on link j

offsetf,j − offsetf,i > maxhopdelay

End-to-End Latency: along a path i0, i1, . . . , in

offsetf,in − offsetf,i0 6 maxlatency

13

Computer Science Laboratory, SRI International

Resulting SMT Problem

Large Difference Logic Problem (over the integers)

◦ Typical size: 10000-20000 variables, 106 to 107 constraints
◦ This depends on the network topology and number of virtual links

Solving this with Yices

◦ Yices 1 can solve moderate size instances (about 120 virtual links) out of the
box
◦ In Wilfried Steiner’s RTSS 2010 paper: incremental approach using push/pop

can solve much larger instances (up to 1000 virtual links)

14

Computer Science Laboratory, SRI International

Application 2: Verification of Timed Systems

Yices used as backend to SAL

◦ SAL is a toolkit for modeling and verification of state-transition systems
◦ Specification language: guarded commands + extensions
◦ SAL supports both synchronous and asychronous composition
◦ Tools

– BDD-based model checker: sal-smc
– SAT-based bounded model checker: sal-bmc (for finite systems)
– SMT-based bounded model checker: sal-inf-bmc (for infinite systems)
– Test-case generation: sal-atg

Many timed systems can be modeled in SAL and verified using sal-inf-bmc
and Yices

15

Computer Science Laboratory, SRI International

Example: Biphase Mark Protocol (BMP)

Biphase Mark: Physical layer protocol for data transmission (over serial links)

◦ transmitter and receiver have independent clocks
◦ encoding merges transmitter clock + data into a single bit stream
◦ decoding goal: recover the data from the bit stream
◦ Issues: must take into account jitter and sampling uncertainties

16

Computer Science Laboratory, SRI International

BMP: SAL Model

Output from the transmitter
WIRE: TYPE = { Zero, One, ToZero, ToOne };
...
OUTPUT tdata : WIRE
...

phase = Stable AND tstate = 1 -->
tdata’ = ttoggle;
tstate’ = 0;

[] phase = Stable AND tstate = 0 -->
tdata’ = IF (tbit = 1) THEN ttoggle ELSE tdata ENDIF;
tstate’ = 1;

[] phase = Settle -->
tdata’ = IF tdata = ToOne THEN One

ELSIF tdata = ToZero THEN Zero
ELSE tdata
ENDIF;

Sampling
sample(w : WIRE) : [WIRE -> BOOLEAN] =

IF (w = ToZero OR w = ToOne) THEN {Zero, One}
ELSE {w}
ENDIF;

17

Computer Science Laboratory, SRI International

SAL Model: Time and Clocks

Use a global real-valued time variable
Transmitter and receiver use timeout variables to schedule future discrete
transitions:

INPUT time : TIME
OUTPUT tclk : TIME

INITIALIZATION
...
tclk IN {x : TIME | 0 <= x AND x <= TSTABLE};

TRANSITION
[time = tclk AND phase = Stable -->

tclk’ = time + TSETTLE;
phase’ = Settle;

[] time = tclk AND phase = Settle -->
tclk’ = time + TSTABLE;
phase’ = Stable;

18

Computer Science Laboratory, SRI International

SAL Model: Properties

Correct Reception Theorem

system : MODULE = clock [] rx [] tx;

BMP_Thm : THEOREM
system |- G(rstate = 1 AND time = rclk =>

(time /= tclk) AND (tstate = 1) AND X(rbit = tbit));

19

Computer Science Laboratory, SRI International

Conversion to SMT

State-transition systems

M = 〈X, I(X), T (X,X ′)〉

◦ X set of state variables
◦ formula I(X) defines the initial states
◦ formula T (X,X ′) defines the transition relation

Traces

◦ Sequences of states x0 → x1 → x2 . . . such that
– x0 satisfies I(X)

– for every t ∈ N, (xt, xt+1) satisfies T (X,X ′)

20

Computer Science Laboratory, SRI International

Bounded Model Checking

Goal

◦ Find counterexamples to a property
◦ Usually the property is an invariant 2P
◦ The goal is then to find a reachable state that does not satisfy P .

Technique

◦ Fix a bound k

◦ Search for a state reachable in k steps that falsifies P

◦ This is the same as checking the satisfiability of the formula

I(x0) ∧ T (x0, x1) ∧ T (x1, x2) ∧ . . . ∧ T (xk−1, xk) ∧ ¬P (xk)

21

Computer Science Laboratory, SRI International

Induction

Goal

◦ Prove that P is invariant

Standard Induction

◦ Show that the following formulas are valid (their negation is not satisfiable)

I(x0)→ P (x0)

P (x0) ∧ T (x0, x1)→ P (x1)

◦ Limitations:
– This may fail even if P is invariant forM
– If the induction fails, P must be strengthened:

find Q such that Q implies P and such that Q is an inductive invariant

22

Computer Science Laboratory, SRI International

k-induction

Generalizes induction to k steps

◦ Base case:

I(x0) ∧ T (x0, x1) ∧ . . . ∧ T (xk−1, xk)⇒ P (x0) ∧ . . . ∧ P (xk)

◦ Induction step:

T (x0, x1) ∧ . . . ∧ T (xk, xk+1) ∧ P (x0) ∧ . . . ∧ P (xk)⇒ P (xk+1)

How good is it?

◦ In most cases, k-induction is stronger than standard induction (when k > 2)
2P is provable by k-induction iff 2(P ∧ ◦P ∧ . . . ∧ ◦kP) is provable by induction.

◦ There are counterexamples: For example, if T is reflexive, then 2P is provable
by k-induction iff 2P is provable by standard induction.

23

Computer Science Laboratory, SRI International

BMP Verification

Proof Process

◦ The correctness property is not invariant (for any reasonable k)
◦ We need auxiliary lemmas:

l0 : LEMMA system |- G(phase = Settle OR tdata = One OR tdata = Zero);
l1 : LEMMA system |- G(phase = Stable => (tclk <= (time + TSTABLE)));
l2 : LEMMA system |- G(phase = Settle => (tclk <= (time + TSETTLE)));

◦ The full proof requires four auxiliary lemmas, the main one is proved by k

induction for k = 5.
◦ All proofs run in a few seconds.

Much Easier than Previous Proofs of BMP

◦ Vaandrager and de Groot, 2004, use PVS and Uppaal
Difficult proof: need 37 invariants, 4000 proof steps, hours to run

24

Computer Science Laboratory, SRI International

Conclusion

Many Applications of SMT Solvers

◦ Backend/constraint solvers in another tool (e.g., static analysis, model
checkers)
◦ Producing models is one of the most important features (e.g., test generation,

scheduling, counterexamples)

Yices is becoming the backbone of SRI and others verification tools

◦ Solver for SAL
◦ Decision procedure for PVS

25

