
checking axiomatic
specifications of
memory models

MemSAT
Emina Torlak · Mandana Vaziri · Julian Dolby

MIT SAT/SMT Summer School · June 16, 2011

memory model

‣ contract between programmer
and programming environment

‣ specifies which writes can be
seen by a read

‣ described (in)formally by a set of
axioms and litmus tests

‣ hard to design and reason about

Introduction

2

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

r1==r2==1?r1==r2==1?

memory model

‣ contract between programmer
and programming environment

‣ specifies which writes can be
seen by a read

‣ described (in)formally by a set of
axioms and litmus tests

‣ hard to design and reason about

Introduction
On Validity of Program Transformations in the Java Memory Model 47

5. For all reads r ∈ Ai − Ci−1 we have Wi(r) ≤hbi r.
6. For all reads r ∈ Ci − Ci−1 we have W (r) ∈ Ci−1.
7. If y ∈ Ci is an external action and x ≤hb y then x ∈ Ci.

The original definition of legality from [11,18] differs in rules 2 and 6, and adds
rule 8:

2. ≤hbi |Ci =≤hb |Ci .
6. For all reads r ∈ Ci − Ci−1 we have W (r) ∈ Ci−1 and Wi(r) ∈ Ci−1.
8. If x <sswi y ≤hbi z and z ∈ Ci − Ci−1, then x <swj y for all j ≥ i, where

<sswi is the transitive reduction of ≤hbi without any ≤poi edges, and the
transitive reduction of ≤hbi is a minimum relation such that its transitive
closure is ≤hbi .

The reasons for weakening the rules are invalidity of reordering of independent
statements, broken JMM causality tests 17–20 [21], and redundancy. For details,
see [5,6].

For reasoning about validity of reordering, we define observable behaviours of
executions and programs. Intuitively, a program P has an observable behaviour
B if B is a subset of external actions of some execution of P , and B is downward
closed on happens-before order (restricted to external actions). The JMM cap-
tures non-termination as a behaviour in the definition of allowable behaviours.

Definition 9. An execution 〈A, P,≤po, ≤so, W, V 〉 with happens-before order
≤hb has a set of observable behaviours O if for all x ∈ O we have y ≤hb x
or y ≤so x implies y ∈ O or T (y) = θinit. Moreover, there is no x ∈ O such that
T (x) = θinit.

The allowable behaviours may contain a special external hang action if the ex-
ecution does not terminate. We will use the notation Ext(A)) for all external
actions of set A, i.e., Ext(A) = {a | K(a) = Ex}.

Definition 10. A finite set of actions B is an allowable behaviour of a program
P if either

– There is a legal execution E of P with a set of observable behaviours O such
that B = Ext(O), or B = Ext(O) ∪ {hang} and E is hung.

– There is a set O such that B = Ext(O) ∪ {hang}, and for all n ≥ |O| there
must be a legal execution E of P with set of actions A, and a set of actions
O′ such that (i) O and O′ are observable behaviours of E, (ii) O ⊆ O′ ⊆ A,
(iii) n ≤ |O′|, and (iv) Ext(O′) = Ext(O).

B Proof

We prove validity of irrelevant read elimination, elimination of redundant write
before write, elimination of redundant read after write, and reordering of non-
volatile memory accesses to different variables.

46 J. Ševč́ık and D. Aspinall

3. |t| > 0 implies πK(()t0) = St (start action first),
4. πK(()ti) = Fin implies i = |t| − 1 (finish action last).
5. θ = θinit implies ∀i. 1 ≤ i < |t| − 1 → ∃v. πK(()ti) = Wr(v) ∨ πK(()ti) =

Wrv(v) and πK(()t|t|−1) = Fin (initialisation thread only contains writes).

The well-formedness of programs should not be hard to establish for any rea-
sonable sequential language.

The next definition places some sensible restriction on executions.

Definition 7. We say that an execution 〈A, P,≤po, ≤so, W, V 〉 is well-formed
if

1. A is finite.
2. ≤po restricted on actions of one thread is a total order, ≤po does not relate

actions of different threads.
3. ≤so is total on synchronisation actions of A.
4. ≤so is consistent with ≤po.
5. W is properly typed: for every non-volatile read r ∈ A, W (r) is a non-volatile

write; for every volatile read r ∈ A, W (r) is a volatile write.
6. Locking is proper: for all lock actions l ∈ A on monitors m and all threads θ

different from the thread of l, the number of locks in θ before l in ≤so is the
same as the number of unlocks in θ before l in ≤so.

7. Program order is intra-thread consistent: for each thread θ, the trace of θ in
E is sequentially valid for Pθ.

8. ≤so is consistent with W : for every volatile read r of a variable v we have
W (r) ≤so r and for any volatile write w to v, either w ≤so W (r) or r ≤so w.

9. ≤hb is consistent with W : for all reads r of v it holds that r *≤hb W (r) and
there is no intervening write w to v, i.e. if W (r) ≤hb w ≤hb r and w writes
to v then W (r) = w.

10. The initialisation thread θinit finishes before any other thread starts, i.e.,
∀a, b ∈ A. K(a) = Fin ∧ T (a) = θinit ∧ K(b) = St ∧ T (b) *= θinit → a ≤so b.

The following definition of legal execution constitutes the core of the Java Mem-
ory Model. In our work, we use a weakened version of the memory model that
we suggested in [5] and which permits more transformations than the original
version. In Tbl. 1, we label this version by ‘JMM-Alt’.

Definition 8. A well-formed execution 〈A, P,≤po, ≤so, W, V 〉 with happens be-
fore order ≤hb is legal if there is a finite sequence of sets of actions Ci and
well-formed executions Ei = 〈Ai, P, ≤poi , ≤soi , Wi, Vi〉 with happens-before ≤hbi

and synchronises-with <swi such that C0 = ∅, Ci−1 ⊆ Ci for all i > 0,
⋃

Ci = A,
and for each i > 0 the following rules are satisfied:

1. Ci ⊆ Ai.
2. For all reads r ∈ Ci we have W (r) ≤hb r ⇐⇒ W (r) ≤hbi r, and r *≤hbi

W (r),
3. Vi|Ci = V |Ci .
4. Wi|Ci−1 = W |Ci−1 .

On Validity of Program Transformations in the Java Memory Model 45

Definition 2. An execution E is a tuple E = 〈A, P,≤po, ≤so, W, V 〉, where
A ⊆ A is a set of actions; P is a program, represented as a thread-indexed set of
memory traces; the partial order ≤po⊆ A × A is the program order, which is a
union of total orders on actions of each thread; ≤so⊆ A×A is the synchronisation
order, which is a total order on all synchronisation actions in A; V :: A ⇒V is
a value-written function that assigns a value to each write from A; W :: A ⇒A
is a write-seen function that assigns a write to each read action from A, the
W (r) denotes the write seen by r, i.e. the value read by r is V (W (r)).

Definition 3. In an execution with synchronisation order ≤so, an action a
synchronises-with an action b (written a <sw b) if a ≤so b and a and b sat-
isfy one of the following conditions:

– a is an unlock on monitor m and b is a lock on monitor m,
– a is a volatile write to v and b is a volatile read from v.

Definition 4. The happens-before order of an execution is the transitive closure
of the composition of its synchronises-with order and its program order, i.e.
≤hb= (<sw ∪ ≤po)+.

To relate a (sequential) program to a sequence of actions performed by one
thread we must define a notion of sequential validity. We consider single-thread
programs as sets of sequences of pairs of an action kind and a value, which we
call traces. A multi-thread program is a set of single-thread programs indexed
by thread identifiers.

Definition 5. Given an execution E = 〈A, P,≤po, ≤so, W, V 〉, the action trace
of thread θ in E, denoted TrE(θ), is the list of actions of thread θ in the order
≤po. The trace of thread θ in E, written TrE(θ) is the list of action kinds and
corresponding values obtained from the action trace (i.e., V (W (a)) if a is a read,
V (a) otherwise).

By writing t ≤ t′ we mean that t is a prefix of t′, set(t) is the set of elements of
the list t, ι(t, a) is an index i such that ti = a, or 0 if a /∈ set(t). For an action
kind-value pair p = 〈k, v〉 we will use the notation πK(p) for the action kind k
and πV (p) for the value v. We say that a sequence s of action kind-value pairs
is sequentially valid with respect to a program P if t ∈ P . A sequentially valid
trace t is finished for P if there is no sequentially valid trace t′ > t. The operator
++ stands for trace concatenation.

To establish reasonable properties of concurrent programs we assume reason-
able properties of the underlying sequential language:

Definition 6. We say that program P is well-formed if sequential validity of
trace t in P implies:

1. any trace t′ ≤ t is sequentially valid (prefix closedness),
2. if the last action of t is a read with value v, then the trace obtained from t

by replacing the value in the last action by v′ is also sequentially valid in P
(final read value independence),

44 J. Ševč́ık and D. Aspinall

16. Maessen, J.-W., Shen, X.: Improving the Java memory model using CRF. In: OOP-
SLA, pp. 1–12. ACM Press, New York (2000)

17. Manson, J.: The Java memory model. PhD thesis, University of Maryland, College
Park (2004)

18. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL 2005:
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages, pp. 378–391. ACM Press, New York (2005)

19. Paleczny, M., Vick, C., Click, C.: The Java Hotspot(TM) server compiler. In:
USENIX Java(TM) Virtual Machine Research and Technology Symposium (April
2001)

20. Pugh, W.: The Java memory model is fatally flawed. Concurrency - Practice and
Experience 12(6), 445–455 (2000)

21. Pugh, W., Manson, J.: Java memory model causality test cases (2004),
http://www.cs.umd.edu/∼pugh/java/memoryModel/CausalityTestCases.html

22. Reynolds, J.C.: Toward a grainless semantics for shared-variable concurrency. In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 35–48.
Springer, Heidelberg (2004)

23. Saraswat, V., Jagadeesan, R., Michael, M., von Praun, C.: A theory of memory
models. In: ACM 2007 SIGPLAN Conference on Principles and Practice of Parallel
Computing. ACM Press, New York (2007)

24. Sparc International. Sparc architecture manual, version 9 (2000),
http://developers.sun.com/solaris/articles/sparcv9.html

25. Ševč́ık, J.: The Sun Hotspot JVM does not conform with the Java memory model.
Technical Report EDI-INF-RR-1252, School of Informatics, University of Edin-
burgh (2008)

A JMM Definitions

The following definitions are mostly from [11,18]; however, we have weakened
the definition of execution legality as suggested in [5]. We use letters θ for thread
names, m for synchronisation monitor names, and v for variables (i.e., memory
locations, in examples, x, y, v etc.). The abstract type V will denote values.

The starting point is the notion of action.

Definition 1. An action is a memory-related operation; it is modelled by an
abstract type A with the following properties: (1) Each action belongs to one
thread, we will denote it by T (a). (2) An action is one of the following action
kinds:

– volatile read of v,
– volatile write to v,
– normal read from v,

– normal write to v,
– lock on m,
– unlock on m,

– thread start,
– thread finish,
– external action.

We denote the action kind of a by K(a), the action kinds will be abbreviated to
Rdv(v), Wrv(v), Rd(v), Wr(v), L(m), U(m), St, Fin, Ex. An action kind also
includes the associated variable or monitor. The volatile read, volatile write, lock,
unlock, start, finish actions are called synchronisation actions.

The JMM also defines thread spawn and join action kinds. We omit these for
simplicity.

2

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

r1==r2==1?r1==r2==1?
‣ described (in)formally by a set of

axioms and litmus tests

memory model

‣ contract between programmer
and programming environment

‣ specifies which writes can be
seen by a read

‣ described (in)formally by a set of
axioms and litmus tests

‣ hard to design and reason about

Introduction
On Validity of Program Transformations in the Java Memory Model 47

5. For all reads r ∈ Ai − Ci−1 we have Wi(r) ≤hbi r.
6. For all reads r ∈ Ci − Ci−1 we have W (r) ∈ Ci−1.
7. If y ∈ Ci is an external action and x ≤hb y then x ∈ Ci.

The original definition of legality from [11,18] differs in rules 2 and 6, and adds
rule 8:

2. ≤hbi |Ci =≤hb |Ci .
6. For all reads r ∈ Ci − Ci−1 we have W (r) ∈ Ci−1 and Wi(r) ∈ Ci−1.
8. If x <sswi y ≤hbi z and z ∈ Ci − Ci−1, then x <swj y for all j ≥ i, where

<sswi is the transitive reduction of ≤hbi without any ≤poi edges, and the
transitive reduction of ≤hbi is a minimum relation such that its transitive
closure is ≤hbi .

The reasons for weakening the rules are invalidity of reordering of independent
statements, broken JMM causality tests 17–20 [21], and redundancy. For details,
see [5,6].

For reasoning about validity of reordering, we define observable behaviours of
executions and programs. Intuitively, a program P has an observable behaviour
B if B is a subset of external actions of some execution of P , and B is downward
closed on happens-before order (restricted to external actions). The JMM cap-
tures non-termination as a behaviour in the definition of allowable behaviours.

Definition 9. An execution 〈A, P,≤po, ≤so, W, V 〉 with happens-before order
≤hb has a set of observable behaviours O if for all x ∈ O we have y ≤hb x
or y ≤so x implies y ∈ O or T (y) = θinit. Moreover, there is no x ∈ O such that
T (x) = θinit.

The allowable behaviours may contain a special external hang action if the ex-
ecution does not terminate. We will use the notation Ext(A)) for all external
actions of set A, i.e., Ext(A) = {a | K(a) = Ex}.

Definition 10. A finite set of actions B is an allowable behaviour of a program
P if either

– There is a legal execution E of P with a set of observable behaviours O such
that B = Ext(O), or B = Ext(O) ∪ {hang} and E is hung.

– There is a set O such that B = Ext(O) ∪ {hang}, and for all n ≥ |O| there
must be a legal execution E of P with set of actions A, and a set of actions
O′ such that (i) O and O′ are observable behaviours of E, (ii) O ⊆ O′ ⊆ A,
(iii) n ≤ |O′|, and (iv) Ext(O′) = Ext(O).

B Proof

We prove validity of irrelevant read elimination, elimination of redundant write
before write, elimination of redundant read after write, and reordering of non-
volatile memory accesses to different variables.

46 J. Ševč́ık and D. Aspinall

3. |t| > 0 implies πK(()t0) = St (start action first),
4. πK(()ti) = Fin implies i = |t| − 1 (finish action last).
5. θ = θinit implies ∀i. 1 ≤ i < |t| − 1 → ∃v. πK(()ti) = Wr(v) ∨ πK(()ti) =

Wrv(v) and πK(()t|t|−1) = Fin (initialisation thread only contains writes).

The well-formedness of programs should not be hard to establish for any rea-
sonable sequential language.

The next definition places some sensible restriction on executions.

Definition 7. We say that an execution 〈A, P,≤po, ≤so, W, V 〉 is well-formed
if

1. A is finite.
2. ≤po restricted on actions of one thread is a total order, ≤po does not relate

actions of different threads.
3. ≤so is total on synchronisation actions of A.
4. ≤so is consistent with ≤po.
5. W is properly typed: for every non-volatile read r ∈ A, W (r) is a non-volatile

write; for every volatile read r ∈ A, W (r) is a volatile write.
6. Locking is proper: for all lock actions l ∈ A on monitors m and all threads θ

different from the thread of l, the number of locks in θ before l in ≤so is the
same as the number of unlocks in θ before l in ≤so.

7. Program order is intra-thread consistent: for each thread θ, the trace of θ in
E is sequentially valid for Pθ.

8. ≤so is consistent with W : for every volatile read r of a variable v we have
W (r) ≤so r and for any volatile write w to v, either w ≤so W (r) or r ≤so w.

9. ≤hb is consistent with W : for all reads r of v it holds that r *≤hb W (r) and
there is no intervening write w to v, i.e. if W (r) ≤hb w ≤hb r and w writes
to v then W (r) = w.

10. The initialisation thread θinit finishes before any other thread starts, i.e.,
∀a, b ∈ A. K(a) = Fin ∧ T (a) = θinit ∧ K(b) = St ∧ T (b) *= θinit → a ≤so b.

The following definition of legal execution constitutes the core of the Java Mem-
ory Model. In our work, we use a weakened version of the memory model that
we suggested in [5] and which permits more transformations than the original
version. In Tbl. 1, we label this version by ‘JMM-Alt’.

Definition 8. A well-formed execution 〈A, P,≤po, ≤so, W, V 〉 with happens be-
fore order ≤hb is legal if there is a finite sequence of sets of actions Ci and
well-formed executions Ei = 〈Ai, P, ≤poi , ≤soi , Wi, Vi〉 with happens-before ≤hbi

and synchronises-with <swi such that C0 = ∅, Ci−1 ⊆ Ci for all i > 0,
⋃

Ci = A,
and for each i > 0 the following rules are satisfied:

1. Ci ⊆ Ai.
2. For all reads r ∈ Ci we have W (r) ≤hb r ⇐⇒ W (r) ≤hbi r, and r *≤hbi

W (r),
3. Vi|Ci = V |Ci .
4. Wi|Ci−1 = W |Ci−1 .

On Validity of Program Transformations in the Java Memory Model 45

Definition 2. An execution E is a tuple E = 〈A, P,≤po, ≤so, W, V 〉, where
A ⊆ A is a set of actions; P is a program, represented as a thread-indexed set of
memory traces; the partial order ≤po⊆ A × A is the program order, which is a
union of total orders on actions of each thread; ≤so⊆ A×A is the synchronisation
order, which is a total order on all synchronisation actions in A; V :: A ⇒V is
a value-written function that assigns a value to each write from A; W :: A ⇒A
is a write-seen function that assigns a write to each read action from A, the
W (r) denotes the write seen by r, i.e. the value read by r is V (W (r)).

Definition 3. In an execution with synchronisation order ≤so, an action a
synchronises-with an action b (written a <sw b) if a ≤so b and a and b sat-
isfy one of the following conditions:

– a is an unlock on monitor m and b is a lock on monitor m,
– a is a volatile write to v and b is a volatile read from v.

Definition 4. The happens-before order of an execution is the transitive closure
of the composition of its synchronises-with order and its program order, i.e.
≤hb= (<sw ∪ ≤po)+.

To relate a (sequential) program to a sequence of actions performed by one
thread we must define a notion of sequential validity. We consider single-thread
programs as sets of sequences of pairs of an action kind and a value, which we
call traces. A multi-thread program is a set of single-thread programs indexed
by thread identifiers.

Definition 5. Given an execution E = 〈A, P,≤po, ≤so, W, V 〉, the action trace
of thread θ in E, denoted TrE(θ), is the list of actions of thread θ in the order
≤po. The trace of thread θ in E, written TrE(θ) is the list of action kinds and
corresponding values obtained from the action trace (i.e., V (W (a)) if a is a read,
V (a) otherwise).

By writing t ≤ t′ we mean that t is a prefix of t′, set(t) is the set of elements of
the list t, ι(t, a) is an index i such that ti = a, or 0 if a /∈ set(t). For an action
kind-value pair p = 〈k, v〉 we will use the notation πK(p) for the action kind k
and πV (p) for the value v. We say that a sequence s of action kind-value pairs
is sequentially valid with respect to a program P if t ∈ P . A sequentially valid
trace t is finished for P if there is no sequentially valid trace t′ > t. The operator
++ stands for trace concatenation.

To establish reasonable properties of concurrent programs we assume reason-
able properties of the underlying sequential language:

Definition 6. We say that program P is well-formed if sequential validity of
trace t in P implies:

1. any trace t′ ≤ t is sequentially valid (prefix closedness),
2. if the last action of t is a read with value v, then the trace obtained from t

by replacing the value in the last action by v′ is also sequentially valid in P
(final read value independence),

44 J. Ševč́ık and D. Aspinall

16. Maessen, J.-W., Shen, X.: Improving the Java memory model using CRF. In: OOP-
SLA, pp. 1–12. ACM Press, New York (2000)

17. Manson, J.: The Java memory model. PhD thesis, University of Maryland, College
Park (2004)

18. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL 2005:
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages, pp. 378–391. ACM Press, New York (2005)

19. Paleczny, M., Vick, C., Click, C.: The Java Hotspot(TM) server compiler. In:
USENIX Java(TM) Virtual Machine Research and Technology Symposium (April
2001)

20. Pugh, W.: The Java memory model is fatally flawed. Concurrency - Practice and
Experience 12(6), 445–455 (2000)

21. Pugh, W., Manson, J.: Java memory model causality test cases (2004),
http://www.cs.umd.edu/∼pugh/java/memoryModel/CausalityTestCases.html

22. Reynolds, J.C.: Toward a grainless semantics for shared-variable concurrency. In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 35–48.
Springer, Heidelberg (2004)

23. Saraswat, V., Jagadeesan, R., Michael, M., von Praun, C.: A theory of memory
models. In: ACM 2007 SIGPLAN Conference on Principles and Practice of Parallel
Computing. ACM Press, New York (2007)

24. Sparc International. Sparc architecture manual, version 9 (2000),
http://developers.sun.com/solaris/articles/sparcv9.html

25. Ševč́ık, J.: The Sun Hotspot JVM does not conform with the Java memory model.
Technical Report EDI-INF-RR-1252, School of Informatics, University of Edin-
burgh (2008)

A JMM Definitions

The following definitions are mostly from [11,18]; however, we have weakened
the definition of execution legality as suggested in [5]. We use letters θ for thread
names, m for synchronisation monitor names, and v for variables (i.e., memory
locations, in examples, x, y, v etc.). The abstract type V will denote values.

The starting point is the notion of action.

Definition 1. An action is a memory-related operation; it is modelled by an
abstract type A with the following properties: (1) Each action belongs to one
thread, we will denote it by T (a). (2) An action is one of the following action
kinds:

– volatile read of v,
– volatile write to v,
– normal read from v,

– normal write to v,
– lock on m,
– unlock on m,

– thread start,
– thread finish,
– external action.

We denote the action kind of a by K(a), the action kinds will be abbreviated to
Rdv(v), Wrv(v), Rd(v), Wr(v), L(m), U(m), St, Fin, Ex. An action kind also
includes the associated variable or monitor. The volatile read, volatile write, lock,
unlock, start, finish actions are called synchronisation actions.

The JMM also defines thread spawn and join action kinds. We omit these for
simplicity.

2

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

r1==r2==1?r1==r2==1?
‣ described (in)formally by a set of

axioms and litmus tests
‣ hard to design and reason about

MemSAT overview

3

memory model

litmus test

finitization
parameters

legality witness

proof of illegality
MemSATMem

MemSAT overview

3

memory model

finitization
parameters

legality witness

proof of illegality

P

annotated java
program with one
or more assertions

MemSATMem

MemSAT overview

3

finitization
parameters

legality witness

proof of illegalityM

P

annotated java
program with one
or more assertions

set of constraints
in relational logic

MemSATMem

MemSAT overview

3

finitization
parameters

legality witness

proof of illegalityM

P

annotated java
program with one
or more assertions

set of constraints
in relational logic

‣ translate P to relational logic
‣ combine result with M
‣ solve combined constraints

F(P, M)MemSAT

MemSAT overview

3

finitization
parameters

legality witness

proof of illegalityM

P

annotated java
program with one
or more assertions

set of constraints
in relational logic

‣ translate P to relational logic
‣ combine result with M
‣ solve combined constraints

kodkod

F(P, M)

MemSAT overview

3

finitization
parameters

proof of illegalityM

P model(F(P, M))

annotated java
program with one
or more assertions

set of constraints
in relational logic

model (solution) of
the legality formula

sat

‣ translate P to relational logic
‣ combine result with M
‣ solve combined constraints

kodkod

F(P, M)

MemSAT overview

3

finitization
parameters

M

P model(F(P, M))

mincore(F(P, M))

annotated java
program with one
or more assertions

set of constraints
in relational logic

minimal unsatisfiable
core of the legality formula

model (solution) of
the legality formula

sat

unsat

‣ translate P to relational logic
‣ combine result with M
‣ solve combined constraints

kodkod

F(P, M)

Specifying a litmus test

4

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

r1==r2==1?r1==r2==1?

public class Test0 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
y = 1;
assert r1==1;

}

@thread
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

‣ control flow
‣ synchronize
‣ method calls
‣ field and array accesses
‣ assertions

Specifying a memory model

5

constants

variables

relational
logic

Specifying a memory model

5

constants

variables

relational
logic

first order logic (∀, ∃, ∧, ∨, ¬)
relational algebra (., ∪, ∩, ∕, ×, ⊆)
bitvector arithmetic (+, -, *, /,)

Specifying a memory model

5

constants

variables

relational
logic

first order logic (∀, ∃, ∧, ∨, ¬)
relational algebra (., ∪, ∩, ∕, ×, ⊆)
bitvector arithmetic (+, -, *, /,)

relational constants capture
static properties of a program
‣ co, control flow
‣ to, thread order

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

Specifying a memory model

5

constants

variables

relational
logic

first order logic (∀, ∃, ∧, ∨, ¬)
relational algebra (., ∪, ∩, ∕, ×, ⊆)
bitvector arithmetic (+, -, *, /,)

relational constants capture
static properties of a program
‣ co, control flow
‣ to, thread order

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

Specifying a memory model

5

t2t1

t0

constants

variables

relational
logic

first order logic (∀, ∃, ∧, ∨, ¬)
relational algebra (., ∪, ∩, ∕, ×, ⊆)
bitvector arithmetic (+, -, *, /,)

relational constants capture
static properties of a program
‣ co, control flow
‣ to, thread order

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

Specifying a memory model

5

t2t1

t0

constants

variables

relational
logic

first order logic (∀, ∃, ∧, ∨, ¬)
relational algebra (., ∪, ∩, ∕, ×, ⊆)
bitvector arithmetic (+, -, *, /,)

relational constants capture
static properties of a program
‣ co, control flow
‣ to, thread orderto = { 〈t0, t1〉, 〈t0, t2〉 }

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

Specifying a memory model

5

t2t1

t0

constants

variables

relational
logic

first order logic (∀, ∃, ∧, ∨, ¬)
relational algebra (., ∪, ∩, ∕, ×, ⊆)
bitvector arithmetic (+, -, *, /,)

relational constants capture
static properties of a program
‣ co, control flow
‣ to, thread order

relational variables capture runtime
properties of a program
‣ A, set of all executed actions
‣ W, maps reads to seen writes
‣ V, maps writes to written values
‣ l, maps reads/writes to locations
‣ m, maps locks/unlocks to monitors

to = { 〈t0, t1〉, 〈t0, t2〉 }

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

a00: start
a01: write(x, 0)
a02: write(y, 0)
a03: end

Specifying a memory model

5

t2t1

constants

variables

relational
logic

first order logic (∀, ∃, ∧, ∨, ¬)
relational algebra (., ∪, ∩, ∕, ×, ⊆)
bitvector arithmetic (+, -, *, /,)

relational constants capture
static properties of a program
‣ co, control flow
‣ to, thread order

relational variables capture runtime
properties of a program
‣ A, set of all executed actions
‣ W, maps reads to seen writes
‣ V, maps writes to written values
‣ l, maps reads/writes to locations
‣ m, maps locks/unlocks to monitors

to = { 〈t0, t1〉, 〈t0, t2〉 }

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

a00: start
a01: write(x, 0)
a02: write(y, 0)
a03: end

Specifying a memory model

5

t2

constants

variables

relational
logic

first order logic (∀, ∃, ∧, ∨, ¬)
relational algebra (., ∪, ∩, ∕, ×, ⊆)
bitvector arithmetic (+, -, *, /,)

relational constants capture
static properties of a program
‣ co, control flow
‣ to, thread order

relational variables capture runtime
properties of a program
‣ A, set of all executed actions
‣ W, maps reads to seen writes
‣ V, maps writes to written values
‣ l, maps reads/writes to locations
‣ m, maps locks/unlocks to monitors

to = { 〈t0, t1〉, 〈t0, t2〉 }

a10: start
a11: read(x, 0)
a12: write(y, 1)
a13: end

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

a00: start
a01: write(x, 0)
a02: write(y, 0)
a03: end

Specifying a memory model

5

constants

variables

relational
logic

first order logic (∀, ∃, ∧, ∨, ¬)
relational algebra (., ∪, ∩, ∕, ×, ⊆)
bitvector arithmetic (+, -, *, /,)

relational constants capture
static properties of a program
‣ co, control flow
‣ to, thread order

relational variables capture runtime
properties of a program
‣ A, set of all executed actions
‣ W, maps reads to seen writes
‣ V, maps writes to written values
‣ l, maps reads/writes to locations
‣ m, maps locks/unlocks to monitors

to = { 〈t0, t1〉, 〈t0, t2〉 }

a20: start
a21: read(y, 1)
a22: write(x, 1)
a23: end

a10: start
a11: read(x, 0)
a12: write(y, 1)
a13: end

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

a00: start
a01: write(x, 0)
a02: write(y, 0)
a03: end

Specifying a memory model

5

constants

variables

relational
logic

first order logic (∀, ∃, ∧, ∨, ¬)
relational algebra (., ∪, ∩, ∕, ×, ⊆)
bitvector arithmetic (+, -, *, /,)

relational constants capture
static properties of a program
‣ co, control flow
‣ to, thread order

relational variables capture runtime
properties of a program
‣ A, set of all executed actions
‣ W, maps reads to seen writes
‣ V, maps writes to written values
‣ l, maps reads/writes to locations
‣ m, maps locks/unlocks to monitors

to = { 〈t0, t1〉, 〈t0, t2〉 }

A = { 〈a00〉, 〈a01〉, ..., 〈a23〉 }
a20: start
a21: read(y, 1)
a22: write(x, 1)
a23: end

a10: start
a11: read(x, 0)
a12: write(y, 1)
a13: end

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

a00: start
a01: write(x, 0)
a02: write(y, 0)
a03: end

Specifying a memory model

5

constants

variables

relational
logic

first order logic (∀, ∃, ∧, ∨, ¬)
relational algebra (., ∪, ∩, ∕, ×, ⊆)
bitvector arithmetic (+, -, *, /,)

relational constants capture
static properties of a program
‣ co, control flow
‣ to, thread order

relational variables capture runtime
properties of a program
‣ A, set of all executed actions
‣ W, maps reads to seen writes
‣ V, maps writes to written values
‣ l, maps reads/writes to locations
‣ m, maps locks/unlocks to monitors

to = { 〈t0, t1〉, 〈t0, t2〉 }

A = { 〈a00〉, 〈a01〉, ..., 〈a23〉 }
W = { 〈a11, a01〉, 〈a21, a12〉 }a20: start

a21: read(y, 1)
a22: write(x, 1)
a23: end

a10: start
a11: read(x, 0)
a12: write(y, 1)
a13: end

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

a00: start
a01: write(x, 0)
a02: write(y, 0)
a03: end

Specifying a memory model

5

constants

variables

relational
logic

first order logic (∀, ∃, ∧, ∨, ¬)
relational algebra (., ∪, ∩, ∕, ×, ⊆)
bitvector arithmetic (+, -, *, /,)

relational constants capture
static properties of a program
‣ co, control flow
‣ to, thread order

relational variables capture runtime
properties of a program
‣ A, set of all executed actions
‣ W, maps reads to seen writes
‣ V, maps writes to written values
‣ l, maps reads/writes to locations
‣ m, maps locks/unlocks to monitors

to = { 〈t0, t1〉, 〈t0, t2〉 }

A = { 〈a00〉, 〈a01〉, ..., 〈a23〉 }
W = { 〈a11, a01〉, 〈a21, a12〉 }
V = { 〈a01, 0〉, 〈a02, 0〉, 〈a12, 1〉, 〈a22, 1〉 }

a20: start
a21: read(y, 1)
a22: write(x, 1)
a23: end

a10: start
a11: read(x, 0)
a12: write(y, 1)
a13: end

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

a00: start
a01: write(x, 0)
a02: write(y, 0)
a03: end

Specifying a memory model

5

constants

variables

relational
logic

first order logic (∀, ∃, ∧, ∨, ¬)
relational algebra (., ∪, ∩, ∕, ×, ⊆)
bitvector arithmetic (+, -, *, /,)

relational constants capture
static properties of a program
‣ co, control flow
‣ to, thread order

relational variables capture runtime
properties of a program
‣ A, set of all executed actions
‣ W, maps reads to seen writes
‣ V, maps writes to written values
‣ l, maps reads/writes to locations
‣ m, maps locks/unlocks to monitors

to = { 〈t0, t1〉, 〈t0, t2〉 }

A = { 〈a00〉, 〈a01〉, ..., 〈a23〉 }
W = { 〈a11, a01〉, 〈a21, a12〉 }
V = { 〈a01, 0〉, 〈a02, 0〉, 〈a12, 1〉, 〈a22, 1〉 }
l = { 〈a01, x〉, 〈a02, y〉, ..., 〈a22, x〉 }

a20: start
a21: read(y, 1)
a22: write(x, 1)
a23: end

a10: start
a11: read(x, 0)
a12: write(y, 1)
a13: end

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

a00: start
a01: write(x, 0)
a02: write(y, 0)
a03: end

Specifying a memory model

5

constants

variables

relational
logic

first order logic (∀, ∃, ∧, ∨, ¬)
relational algebra (., ∪, ∩, ∕, ×, ⊆)
bitvector arithmetic (+, -, *, /,)

relational constants capture
static properties of a program
‣ co, control flow
‣ to, thread order

relational variables capture runtime
properties of a program
‣ A, set of all executed actions
‣ W, maps reads to seen writes
‣ V, maps writes to written values
‣ l, maps reads/writes to locations
‣ m, maps locks/unlocks to monitors

to = { 〈t0, t1〉, 〈t0, t2〉 }

A = { 〈a00〉, 〈a01〉, ..., 〈a23〉 }
W = { 〈a11, a01〉, 〈a21, a12〉 }
V = { 〈a01, 0〉, 〈a02, 0〉, 〈a12, 1〉, 〈a22, 1〉 }
l = { 〈a01, x〉, 〈a02, y〉, ..., 〈a22, x〉 }
m = { }

a20: start
a21: read(y, 1)
a22: write(x, 1)
a23: end

a10: start
a11: read(x, 0)
a12: write(y, 1)
a13: end

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

Example: sequential consistency

6

all statements appear to execute in a total
order that agrees with the program text

interleaved semantics

Execution order is total,
antisymmetric, and
transitive.

It respects the control flow and
thread order.
Reads cannot see out of order writes.
No write interferes between a read and the
write seen by that read.

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

Example: sequential consistency

6

all statements appear to execute in a total
order that agrees with the program text

interleaved semantics

antisymmetric, and
transitive.

It respects the control flow and
thread order.
Reads cannot see out of order writes.
No write interferes between a read and the
write seen by that read.

Execution order is total,

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

Example: sequential consistency

6

all statements appear to execute in a total
order that agrees with the program text

interleaved semantics

transitive.

It respects the control flow and
thread order.
Reads cannot see out of order writes.
No write interferes between a read and the
write seen by that read.

Execution order is total,
antisymmetric, and

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

Example: sequential consistency

6

all statements appear to execute in a total
order that agrees with the program text

interleaved semantics

It respects the control flow and
thread order.
Reads cannot see out of order writes.
No write interferes between a read and the
write seen by that read.

Execution order is total,
antisymmetric, and
transitive.

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

Example: sequential consistency

6

all statements appear to execute in a total
order that agrees with the program text

interleaved semantics

thread order.
Reads cannot see out of order writes.
No write interferes between a read and the
write seen by that read.

Execution order is total,
antisymmetric, and
transitive.

It respects the control flow and

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

Example: sequential consistency

6

all statements appear to execute in a total
order that agrees with the program text

interleaved semantics

Reads cannot see out of order writes.
No write interferes between a read and the
write seen by that read.

Execution order is total,
antisymmetric, and
transitive.

It respects the control flow and
thread order.

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

Example: sequential consistency

6

all statements appear to execute in a total
order that agrees with the program text

interleaved semantics

No write interferes between a read and the
write seen by that read.

Execution order is total,
antisymmetric, and
transitive.

It respects the control flow and
thread order.
Reads cannot see out of order writes.

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

Example: sequential consistency

6

all statements appear to execute in a total
order that agrees with the program text

interleaved semantics

Execution order is total,
antisymmetric, and
transitive.

It respects the control flow and
thread order.
Reads cannot see out of order writes.
No write interferes between a read and the
write seen by that read.

A

A2, W2, V2,
l2, m2,
po2, so2,
sw2, hb2

E2

Ak, Wk, Vk,
lk, mk,
pok, sok,
swk, hbk

Ek

A, W, V,
l, m,
po, so,
sw, hb

E

Example: Java memory model

7

1. ∀ i: [1..k] | Ci ⊆ Ai

2. ∀ i: [1..k], r: Ci ∩ Read | (hb[W[r], r] ⇔
hbi[W[r], r]) ∧ ¬ hbi[r, W[r]]

3. ∀ i: [1..k] | Ci ◁ Vi = Ci ◁ V
4. ∀ i: [1..k] | Ci-1 ◁ Wi = Ci-1 ◁ W
5. ∀ i: [1..k], r: (Ai ⧵ Ci) ∩ Read | hbi[Wi[r], r]
6. ∀ i: [1..k], r: (Ci ⧵ Ci-1) ∩ Read | Wi[r] ⊆ Ci-1

7. ∀ i: [1..k], y: Ci , x: Ai | (y ⊆ Special ∧
hb[x, y]) ⇒ x ⊆ Ci-1

an execution is legal if it can be derived by
committing and executing actions in a
sequence of speculative executions

committing semantics

A1, W1, V1,
l1, m1,
po1, so1,
sw1, hb1

E1 ⇝ …⇝… ⇝

A

A1

A2, W2, V2,
l2, m2,
po2, so2,
sw2, hb2

E2

Ak, Wk, Vk,
lk, mk,
pok, sok,
swk, hbk

Ek

A, W, V,
l, m,
po, so,
sw, hb

E

Example: Java memory model

7

1. ∀ i: [1..k] | Ci ⊆ Ai

2. ∀ i: [1..k], r: Ci ∩ Read | (hb[W[r], r] ⇔
hbi[W[r], r]) ∧ ¬ hbi[r, W[r]]

3. ∀ i: [1..k] | Ci ◁ Vi = Ci ◁ V
4. ∀ i: [1..k] | Ci-1 ◁ Wi = Ci-1 ◁ W
5. ∀ i: [1..k], r: (Ai ⧵ Ci) ∩ Read | hbi[Wi[r], r]
6. ∀ i: [1..k], r: (Ci ⧵ Ci-1) ∩ Read | Wi[r] ⊆ Ci-1

7. ∀ i: [1..k], y: Ci , x: Ai | (y ⊆ Special ∧
hb[x, y]) ⇒ x ⊆ Ci-1

an execution is legal if it can be derived by
committing and executing actions in a
sequence of speculative executions

committing semantics

A1, W1, V1,
l1, m1,
po1, so1,
sw1, hb1

E1 ⇝ …⇝… ⇝

initial execution: reads
can only see writes that
happen-before them

AC1

A1

A2, W2, V2,
l2, m2,
po2, so2,
sw2, hb2

E2

Ak, Wk, Vk,
lk, mk,
pok, sok,
swk, hbk

Ek

A, W, V,
l, m,
po, so,
sw, hb

E

Example: Java memory model

7

1. ∀ i: [1..k] | Ci ⊆ Ai

2. ∀ i: [1..k], r: Ci ∩ Read | (hb[W[r], r] ⇔
hbi[W[r], r]) ∧ ¬ hbi[r, W[r]]

3. ∀ i: [1..k] | Ci ◁ Vi = Ci ◁ V
4. ∀ i: [1..k] | Ci-1 ◁ Wi = Ci-1 ◁ W
5. ∀ i: [1..k], r: (Ai ⧵ Ci) ∩ Read | hbi[Wi[r], r]
6. ∀ i: [1..k], r: (Ci ⧵ Ci-1) ∩ Read | Wi[r] ⊆ Ci-1

7. ∀ i: [1..k], y: Ci , x: Ai | (y ⊆ Special ∧
hb[x, y]) ⇒ x ⊆ Ci-1

an execution is legal if it can be derived by
committing and executing actions in a
sequence of speculative executions

committing semantics

A1, W1, V1,
l1, m1,
po1, so1,
sw1, hb1

E1 ⇝ …⇝… ⇝

initial execution: reads
can only see writes that
happen-before them

AC1

A2, W2, V2,
l2, m2,
po2, so2,
sw2, hb2

E2

Ak, Wk, Vk,
lk, mk,
pok, sok,
swk, hbk

Ek

A, W, V,
l, m,
po, so,
sw, hb

E

Example: Java memory model

7

1. ∀ i: [1..k] | Ci ⊆ Ai

2. ∀ i: [1..k], r: Ci ∩ Read | (hb[W[r], r] ⇔
hbi[W[r], r]) ∧ ¬ hbi[r, W[r]]

3. ∀ i: [1..k] | Ci ◁ Vi = Ci ◁ V
4. ∀ i: [1..k] | Ci-1 ◁ Wi = Ci-1 ◁ W
5. ∀ i: [1..k], r: (Ai ⧵ Ci) ∩ Read | hbi[Wi[r], r]
6. ∀ i: [1..k], r: (Ci ⧵ Ci-1) ∩ Read | Wi[r] ⊆ Ci-1

7. ∀ i: [1..k], y: Ci , x: Ai | (y ⊆ Special ∧
hb[x, y]) ⇒ x ⊆ Ci-1

an execution is legal if it can be derived by
committing and executing actions in a
sequence of speculative executions

committing semantics

A1, W1, V1,
l1, m1,
po1, so1,
sw1, hb1

E1 ⇝ …⇝… ⇝

ith execution: committed
reads can see committed
writes; other reads must
see writes that happen-
before them

A2

C2 AC1

A2, W2, V2,
l2, m2,
po2, so2,
sw2, hb2

E2

Ak, Wk, Vk,
lk, mk,
pok, sok,
swk, hbk

Ek

A, W, V,
l, m,
po, so,
sw, hb

E

Example: Java memory model

7

1. ∀ i: [1..k] | Ci ⊆ Ai

2. ∀ i: [1..k], r: Ci ∩ Read | (hb[W[r], r] ⇔
hbi[W[r], r]) ∧ ¬ hbi[r, W[r]]

3. ∀ i: [1..k] | Ci ◁ Vi = Ci ◁ V
4. ∀ i: [1..k] | Ci-1 ◁ Wi = Ci-1 ◁ W
5. ∀ i: [1..k], r: (Ai ⧵ Ci) ∩ Read | hbi[Wi[r], r]
6. ∀ i: [1..k], r: (Ci ⧵ Ci-1) ∩ Read | Wi[r] ⊆ Ci-1

7. ∀ i: [1..k], y: Ci , x: Ai | (y ⊆ Special ∧
hb[x, y]) ⇒ x ⊆ Ci-1

an execution is legal if it can be derived by
committing and executing actions in a
sequence of speculative executions

committing semantics

A1, W1, V1,
l1, m1,
po1, so1,
sw1, hb1

E1 ⇝ …⇝… ⇝

ith execution: committed
reads can see committed
writes; other reads must
see writes that happen-
before them

A2

C2 AC1

A2, W2, V2,
l2, m2,
po2, so2,
sw2, hb2

E2

Ak, Wk, Vk,
lk, mk,
pok, sok,
swk, hbk

Ek

A, W, V,
l, m,
po, so,
sw, hb

E

Example: Java memory model

7

1. ∀ i: [1..k] | Ci ⊆ Ai

2. ∀ i: [1..k], r: Ci ∩ Read | (hb[W[r], r] ⇔
hbi[W[r], r]) ∧ ¬ hbi[r, W[r]]

3. ∀ i: [1..k] | Ci ◁ Vi = Ci ◁ V
4. ∀ i: [1..k] | Ci-1 ◁ Wi = Ci-1 ◁ W
5. ∀ i: [1..k], r: (Ai ⧵ Ci) ∩ Read | hbi[Wi[r], r]
6. ∀ i: [1..k], r: (Ci ⧵ Ci-1) ∩ Read | Wi[r] ⊆ Ci-1

7. ∀ i: [1..k], y: Ci , x: Ai | (y ⊆ Special ∧
hb[x, y]) ⇒ x ⊆ Ci-1

an execution is legal if it can be derived by
committing and executing actions in a
sequence of speculative executions

committing semantics

A1, W1, V1,
l1, m1,
po1, so1,
sw1, hb1

E1 ⇝ …⇝… ⇝

ith execution: committed
reads can see committed
writes; other reads must
see writes that happen-
before them

Ak

C2 AC1 … Ck

A2, W2, V2,
l2, m2,
po2, so2,
sw2, hb2

E2

Ak, Wk, Vk,
lk, mk,
pok, sok,
swk, hbk

Ek

A, W, V,
l, m,
po, so,
sw, hb

E

Example: Java memory model

7

1. ∀ i: [1..k] | Ci ⊆ Ai

2. ∀ i: [1..k], r: Ci ∩ Read | (hb[W[r], r] ⇔
hbi[W[r], r]) ∧ ¬ hbi[r, W[r]]

3. ∀ i: [1..k] | Ci ◁ Vi = Ci ◁ V
4. ∀ i: [1..k] | Ci-1 ◁ Wi = Ci-1 ◁ W
5. ∀ i: [1..k], r: (Ai ⧵ Ci) ∩ Read | hbi[Wi[r], r]
6. ∀ i: [1..k], r: (Ci ⧵ Ci-1) ∩ Read | Wi[r] ⊆ Ci-1

7. ∀ i: [1..k], y: Ci , x: Ai | (y ⊆ Special ∧
hb[x, y]) ⇒ x ⊆ Ci-1

an execution is legal if it can be derived by
committing and executing actions in a
sequence of speculative executions

committing semantics

A1, W1, V1,
l1, m1,
po1, so1,
sw1, hb1

E1 ⇝ …⇝… ⇝

ith execution: committed
reads can see committed
writes; other reads must
see writes that happen-
before them

Ak

C2 AC1 … Ck

A2, W2, V2,
l2, m2,
po2, so2,
sw2, hb2

E2

Ak, Wk, Vk,
lk, mk,
pok, sok,
swk, hbk

Ek

A, W, V,
l, m,
po, so,
sw, hb

E

Example: Java memory model

7

1. ∀ i: [1..k] | Ci ⊆ Ai

2. ∀ i: [1..k], r: Ci ∩ Read | (hb[W[r], r] ⇔
hbi[W[r], r]) ∧ ¬ hbi[r, W[r]]

3. ∀ i: [1..k] | Ci ◁ Vi = Ci ◁ V
4. ∀ i: [1..k] | Ci-1 ◁ Wi = Ci-1 ◁ W
5. ∀ i: [1..k], r: (Ai ⧵ Ci) ∩ Read | hbi[Wi[r], r]
6. ∀ i: [1..k], r: (Ci ⧵ Ci-1) ∩ Read | Wi[r] ⊆ Ci-1

7. ∀ i: [1..k], y: Ci , x: Ai | (y ⊆ Special ∧
hb[x, y]) ⇒ x ⊆ Ci-1

an execution is legal if it can be derived by
committing and executing actions in a
sequence of speculative executions

committing semantics

A1, W1, V1,
l1, m1,
po1, so1,
sw1, hb1

E1 ⇝ …⇝… ⇝

Witness of legality (model)

8

a00: start

a01: write(x, 0)

a02: write(y, 0)

a03: end

a10: start

a11: read(x, 0)

a12: write(y, 1)

a13: end

a20: start

a21: read(y, 0)

a22: write(x, 1)

a23: end

W1 hb1

C1

E1

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

r1==r2==1?r1==r2==1? JMM

witness: an execution of the
program that satisfies both the
assertions and the memory
model constraints.

C2

E2

a00: start

a01: write(x, 0)

a02: write(y, 0)

a03: end

a10: start

a11: read(x, 0)

a12: write(y, 1)

a13: end

a20: start

a21: read(y, 0)

a22: write(x, 1)

a23: end

W2 hb2

E

a00: start

a01: write(x, 0)

a02: write(y, 0)

a03: end

a10: start

a11: read(x, 1)

a12: write(y, 1)

a13: end

a20: start

a21: read(y, 1)

a22: write(x, 1)

a23: end

W

hb

Proof of illegality (minimal core)

9

SC

minimal core: an unsatisfiable
subset of the program and
memory model constraints that
becomes satisfiable if one of its
members is removed

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

r1==1 && r2==1?r1==1 && r2==1?

V[a01] = 0
V[a02] = 0

V[W[a11]] = 1
V[W[a21]] = 1

∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
∀ k: A ∩ Read | ¬ ord[k, W[k]]

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]

5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

Proof of illegality (minimal core)

9

SC

minimal core: an unsatisfiable
subset of the program and
memory model constraints that
becomes satisfiable if one of its
members is removed

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

r1==1 && r2==1?r1==1 && r2==1?

V[a01] = 0
V[a02] = 0

V[W[a11]] = 1
V[W[a21]] = 1

∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
∀ k: A ∩ Read | ¬ ord[k, W[k]]

aij represents the action (if
any) performed by the jth
statement of the ith thread

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]

5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

Proof of illegality (minimal core)

9

SC

minimal core: an unsatisfiable
subset of the program and
memory model constraints that
becomes satisfiable if one of its
members is removed

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

r1==1 && r2==1?r1==1 && r2==1?

V[a01] = 0
V[a02] = 0

V[W[a11]] = 1
V[W[a21]] = 1

∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
∀ k: A ∩ Read | ¬ ord[k, W[k]]

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]

5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

Proof of illegality (minimal core)

9

SC

minimal core: an unsatisfiable
subset of the program and
memory model constraints that
becomes satisfiable if one of its
members is removed

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

r1==1 && r2==1?r1==1 && r2==1?

V[a01] = 0
V[a02] = 0

V[W[a11]] = 1
V[W[a21]] = 1

∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
∀ k: A ∩ Read | ¬ ord[k, W[k]]

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]

5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

Proof of illegality (minimal core)

9

SC

minimal core: an unsatisfiable
subset of the program and
memory model constraints that
becomes satisfiable if one of its
members is removed

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

r1==1 && r2==1?r1==1 && r2==1?

V[a01] = 0
V[a02] = 0

V[W[a11]] = 1
V[W[a21]] = 1

∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
∀ k: A ∩ Read | ¬ ord[k, W[k]]

a01: write(x, 1)
a02: write(y, 0)
a11: read(x, 1)
a12: write(y, 1)
a21: read(y, 1)
a22: write(x, 1)

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]

5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

x = 1, ✄

Proof of illegality (minimal core)

9

SC

minimal core: an unsatisfiable
subset of the program and
memory model constraints that
becomes satisfiable if one of its
members is removed

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

r1==1 && r2==1?r1==1 && r2==1?

V[a01] = 0
V[a02] = 0

V[W[a11]] = 1
V[W[a21]] = 1

∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
∀ k: A ∩ Read | ¬ ord[k, W[k]]

a01: write(x, 1)
a02: write(y, 0)
a11: read(x, 1)
a12: write(y, 1)
a21: read(y, 1)
a22: write(x, 1)

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]

5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

a01: write(x, 0)
a02: write(y, 0)
a11: read(x, 0)
a12: write(y, 1)
a21: read(y, 1)
a22: write(x, 1)

✄

Proof of illegality (minimal core)

9

SC

minimal core: an unsatisfiable
subset of the program and
memory model constraints that
becomes satisfiable if one of its
members is removed

x = 0, y = 0x = 0, y = 0

r1 = x r2 = y

y = 1 x = 1

r1==1 && r2==1?r1==1 && r2==1?

V[a01] = 0
V[a02] = 0

V[W[a11]] = 1
V[W[a21]] = 1

∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
∀ k: A ∩ Read | ¬ ord[k, W[k]]

a01: write(x, 1)
a02: write(y, 0)
a11: read(x, 1)
a12: write(y, 1)
a21: read(y, 1)
a22: write(x, 1)

1. ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2. ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3. ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4. ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]

5. ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6. ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7. ∀ k: A ∩ Read, j: A ∩ Write |

¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

a01: write(x, 0)
a02: write(y, 0)
a11: read(x, 0)
a12: write(y, 1)
a21: read(y, 1)
a22: write(x, 1)

a01: write(x, 0)
a02: write(y, 0)
a12: write(y, 1)
a21: read(y, 1)
a22: write(x, 1)
a11: read(x, 1)

✄

Approach

10

Memory
model

Program preprocessor translator

constraint
assembler

bounds
assembler

solver

finitization
parameters

Approach

10

Memory
model

Program preprocessor translator

constraint
assembler

bounds
assembler

solver

I(P)

finitize P and
convert it to an
intermediate form

finitization
parameters

Approach

10

Memory
model

Program preprocessor translator

constraint
assembler

bounds
assembler

solver

I(P)

R(P)

finitize P and
convert it to an
intermediate form

translate I(P) to
a relational
representation

finitization
parameters

Approach

10

Memory
model

Program preprocessor translator

constraint
assembler

bounds
assembler

solver

I(P)

R(P)

F(P, M)

finitize P and
convert it to an
intermediate form

translate I(P) to
a relational
representation

combine R(P)
and M into the
legality formula

finitization
parameters

compute a set of
bounds on the
search space

Approach

10

Memory
model

Program preprocessor translator

constraint
assembler

bounds
assembler

solver

I(P)

R(P)

F(P, M)

B(P, M)

finitize P and
convert it to an
intermediate form

translate I(P) to
a relational
representation

combine R(P)
and M into the
legality formula

finitization
parameters

Approach

10

Memory
model

Program preprocessor translator

constraint
assembler

bounds
assembler

finitization
parameters

kodkod + MiniSat

WALA MemSAT
contributions

efficiency
modularity

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

Preprocessing

11

I(P)
finitize P and
convert it to an
intermediate form

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

Preprocessing

11

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

Preprocessing

11

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

control flow

thread order

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

Preprocessing

11

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

Preprocessing

11

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

Translation

12

translate I(P) to a
relational
representation

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

R(P)

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

Translation

12

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

Translation

12

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

maps reads, writes, locks,
and unlocks to relations
representing locations that
are accessed

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

Translation

12

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

maps reads, writes, locks,
and unlocks to relations
representing locations that
are accessed

relational constants
that represent fields:
x = {<x>} and y =
{<y>}

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

Translation

12

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

maps writes and
asserts to relational
encodings of the values
written or asserted

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

Translation

12

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

maps writes and
asserts to relational
encodings of the values
written or asserted

relational variable
that acts as a
placeholder for the
value read into r1

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

Translation

12

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

maps statements to
formulas that
encode their guards

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

Translation

12

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

F(P, M)
construct the
legality formula
for R(P) and M

Constraint assembly

13

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly

13

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly

13

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

The witness execution E
respects the sequential
semantics of P

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly

13

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

The witness execution E
respects the sequential
semantics of P

E executes and
satisfies the
assertions in P

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly

13

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

The witness execution E
respects the sequential
semantics of P

Each speculative
execution Ei respects
the sequential
semantics of P

E executes and
satisfies the
assertions in P

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly

13

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

The witness execution E
respects the sequential
semantics of P

E and all Ei respect the
memory model constraints

Each speculative
execution Ei respects
the sequential
semantics of P

E executes and
satisfies the
assertions in P

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly

13

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly: Fα(R(P), E)

14

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly: Fα(R(P), E)

14

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors
00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

relational variable aij
represents the action
performed if E executes
the statement ij

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly: Fα(R(P), E)

14

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors
00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a21]]

V[W[a11]]

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly: Fα(R(P), E)

14

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a21]]

V[W[a11]]V[W[a11]]

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly: F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]] (|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]]

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly: F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]]

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly: F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

‣ 0 or 1 action performed

‣ action performed iff the
guard is true

‣ no other statement
performs the same action

‣ action location is valid

‣ action value is valid

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]]

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly: F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

‣ 0 or 1 action performed

‣ action performed iff the
guard is true

‣ no other statement
performs the same action

‣ action location is valid

‣ action value is valid

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]]

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

V[W[a11]]

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly: F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

‣ action performed iff the
guard is true

‣ no other statement
performs the same action

‣ action location is valid

‣ action value is valid

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]]

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

V[W[a11]]

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly: F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

‣ no other statement
performs the same action

‣ action location is valid

‣ action value is valid

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]]

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

V[W[a11]]

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly: F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

‣ action location is valid

‣ action value is valid

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]]

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

V[W[a11]]

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly: F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

‣ action value is valid

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]]

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

V[W[a11]]

F(R(P), E) ∧

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly: F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]]

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

V[W[a11]]

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

Bounds assembly

16

F(P, M)

compute a set of
bounds on the
search space

B(P, M)

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

Bounds assembly

16

F(P, M) {…} ⊆ A ⊆ {…}

{…} ⊆ V ⊆ {…}

{…} ⊆ W ⊆ {…}

{…} ⊆ l ⊆ {…}

{…} ⊆ m ⊆ {…}

-8, 1, 2, 4, x, y,
a00, a01, a02, a03,
a10, a11, a13, a16,
a20, a21, a22, a24

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

Bounds assembly: universe

17

F(P, M)

-8, 1, 2, 4, x, y,
a00, a01, a02, a03,
a10, a11, a13, a16,
a20, a21, a22, a24

finite universe of
symbolic values from
which the model, if
any, is drawn

{…} ⊆ A ⊆ {…}

{…} ⊆ V ⊆ {…}

{…} ⊆ W ⊆ {…}

{…} ⊆ l ⊆ {…}

{…} ⊆ m ⊆ {…}

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

Bounds assembly: universe

17

F(P, M)

-8, 1, 2, 4, x, y,
a00, a01, a02, a03,
a10, a11, a13, a16,
a20, a21, a22, a24

finite universe of
symbolic values from
which the model, if
any, is drawn

primitives fields

{…} ⊆ A ⊆ {…}

{…} ⊆ V ⊆ {…}

{…} ⊆ W ⊆ {…}

{…} ⊆ l ⊆ {…}

{…} ⊆ m ⊆ {…}

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

Bounds assembly: universe

17

F(P, M)

-8, 1, 2, 4, x, y,
a00, a01, a02, a03,
a10, a11, a13, a16,
a20, a21, a22, a24

finite universe of
symbolic values from
which the model, if
any, is drawn

a00

a01

a02

a03

a20

a21

a22

a24

a10

a11

a13

a16

primitives fields

actions

{…} ⊆ A ⊆ {…}

{…} ⊆ V ⊆ {…}

{…} ⊆ W ⊆ {…}

{…} ⊆ l ⊆ {…}

{…} ⊆ m ⊆ {…}

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

{…} ⊆ A ⊆ {…}

{…} ⊆ V ⊆ {…}

{…} ⊆ W ⊆ {…}

{…} ⊆ l ⊆ {…}

{…} ⊆ m ⊆ {…}

18

F(P, M)

-8, 1, 2, 4, x, y,
a00, a01, a02, a03,
a10, a11, a13, a16,
a20, a21, a22, a24

a00

a01

a02

a03

a20

a21

a22

a24

a10

a11

a13

a16

Bounds assembly: lower/upper bounds

upper and lower
bound on the value
of each relation that
appears in F(P, M)

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

{…} ⊆ A ⊆ {…}

{…} ⊆ V ⊆ {…}

{…} ⊆ W ⊆ {…}

{…} ⊆ l ⊆ {…}

{…} ⊆ m ⊆ {…}

18

F(P, M)

-8, 1, 2, 4, x, y,
a00, a01, a02, a03,
a10, a11, a13, a16,
a20, a21, a22, a24

a00

a01

a02

a03

a20

a21

a22

a24

a10

a11

a13

a16

Bounds assembly: lower/upper bounds

upper and lower
bound on the value
of each relation that
appears in F(P, M)

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

{…} ⊆ A ⊆ {…}

{…} ⊆ V ⊆ {…}

{…} ⊆ W ⊆ {…}

{…} ⊆ l ⊆ {…}

{…} ⊆ m ⊆ {…}

18

F(P, M)

-8, 1, 2, 4, x, y,
a00, a01, a02, a03,
a10, a11, a13, a16,
a20, a21, a22, a24

a00

a01

a02

a03

a20

a21

a22

a24

a10

a11

a13

a16

Bounds assembly: lower/upper bounds

<a00>, <a01>, <a02>,
<a03>, <a10>, <a11>,
<a13>, <a16>, <a20>,
<a21>, <a22>, <a24>
{ }

upper and lower
bound on the value
of each relation that
appears in F(P, M)

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

{…} ⊆ A ⊆ {…}

{…} ⊆ V ⊆ {…}

{…} ⊆ W ⊆ {…}

{…} ⊆ l ⊆ {…}

{…} ⊆ m ⊆ {…}

18

F(P, M)

-8, 1, 2, 4, x, y,
a00, a01, a02, a03,
a10, a11, a13, a16,
a20, a21, a22, a24

a00

a01

a02

a03

a20

a21

a22

a24

a10

a11

a13

a16

Bounds assembly: lower/upper bounds

<a00>, <a01>, <a02>,
<a03>, <a10>, <a11>,
<a13>, <a16>, <a20>,
<a21>, <a22>, <a24>
{ }<a00>, <a01>, <a02>,

<a03>, <a10>, <a11>,
 <a16>, <a20>,

<a21>, <a22>, <a24>
{ }

upper and lower
bound on the value
of each relation that
appears in F(P, M)

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

{…} ⊆ A ⊆ {…}

{…} ⊆ V ⊆ {…}

{…} ⊆ W ⊆ {…}

{…} ⊆ l ⊆ {…}

{…} ⊆ m ⊆ {…}

18

F(P, M)

-8, 1, 2, 4, x, y,
a00, a01, a02, a03,
a10, a11, a13, a16,
a20, a21, a22, a24

a00

a01

a02

a03

a20

a21

a22

a24

a10

a11

a13

a16

Bounds assembly: lower/upper bounds

<a00>, <a01>, <a02>,
<a03>, <a10>, <a11>,
<a13>, <a16>, <a20>,
<a21>, <a22>, <a24>
{ }<a00>, <a01>, <a02>,

<a03>, <a10>, <a11>,
 <a16>, <a20>,

<a21>, <a22>, <a24>
{ }

{
<a11, a01>,
<a11, a22>,
<a21, a02>,
<a21, a13>}upper and lower

bound on the value
of each relation that
appears in F(P, M)

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

{…} ⊆ A ⊆ {…}

{…} ⊆ V ⊆ {…}

{…} ⊆ W ⊆ {…}

{…} ⊆ l ⊆ {…}

{…} ⊆ m ⊆ {…}

18

F(P, M)

-8, 1, 2, 4, x, y,
a00, a01, a02, a03,
a10, a11, a13, a16,
a20, a21, a22, a24

a00

a01

a02

a03

a20

a21

a22

a24

a10

a11

a13

a16

Bounds assembly: lower/upper bounds

<a00>, <a01>, <a02>,
<a03>, <a10>, <a11>,
<a13>, <a16>, <a20>,
<a21>, <a22>, <a24>
{ }<a00>, <a01>, <a02>,

<a03>, <a10>, <a11>,
 <a16>, <a20>,

<a21>, <a22>, <a24>
{ }

{
<a11, a01>,
<a11, a22>,
<a21, a02>,
<a21, a13>}upper and lower

bound on the value
of each relation that
appears in F(P, M)

Results (highlights)

19

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21121

56

13

2322222222222 22221

96

35

2
4

22222232222

MemSAT performance on JMM causality tests

an
al

ys
is

 ti
m

e
(s

ec
)

JMM test

Original JMM
‣ validates 17 & 18 (Sevcik’08 ✘)
‣ violates 19 & 20 (Aspinall’07 ✔)

Revised JMM
‣ overconstrained as given; fixed it
‣ now validates all tests (Aspinall’07 ✔)

Conclusion

Practical checker for axiomatic specifications of memory models

‣ first tool to directly handle the current JMM
‣ first tool to provide minimal cores

Prior work (highlights)

‣ CheckFence hardcodes the memory model
‣ Nemos accepts simple axiomatic specs but no cores
‣ JMM checkers (e.g. OpMM) use operational approximations

Future work

‣ extend MemSAT to handle hardware memory models

20

M
em

SA
T

