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5. For all reads r ∈ Ai − Ci−1 we have Wi(r) ≤hbi r.
6. For all reads r ∈ Ci − Ci−1 we have W (r) ∈ Ci−1.
7. If y ∈ Ci is an external action and x ≤hb y then x ∈ Ci.

The original definition of legality from [11,18] differs in rules 2 and 6, and adds
rule 8:

2. ≤hbi |Ci =≤hb |Ci .
6. For all reads r ∈ Ci − Ci−1 we have W (r) ∈ Ci−1 and Wi(r) ∈ Ci−1.
8. If x <sswi y ≤hbi z and z ∈ Ci − Ci−1, then x <swj y for all j ≥ i, where

<sswi is the transitive reduction of ≤hbi without any ≤poi edges, and the
transitive reduction of ≤hbi is a minimum relation such that its transitive
closure is ≤hbi .

The reasons for weakening the rules are invalidity of reordering of independent
statements, broken JMM causality tests 17–20 [21], and redundancy. For details,
see [5,6].

For reasoning about validity of reordering, we define observable behaviours of
executions and programs. Intuitively, a program P has an observable behaviour
B if B is a subset of external actions of some execution of P , and B is downward
closed on happens-before order (restricted to external actions). The JMM cap-
tures non-termination as a behaviour in the definition of allowable behaviours.

Definition 9. An execution 〈A, P,≤po, ≤so, W, V 〉 with happens-before order
≤hb has a set of observable behaviours O if for all x ∈ O we have y ≤hb x
or y ≤so x implies y ∈ O or T (y) = θinit. Moreover, there is no x ∈ O such that
T (x) = θinit.

The allowable behaviours may contain a special external hang action if the ex-
ecution does not terminate. We will use the notation Ext(A)) for all external
actions of set A, i.e., Ext(A) = {a | K(a) = Ex}.

Definition 10. A finite set of actions B is an allowable behaviour of a program
P if either

– There is a legal execution E of P with a set of observable behaviours O such
that B = Ext(O), or B = Ext(O) ∪ {hang} and E is hung.

– There is a set O such that B = Ext(O) ∪ {hang}, and for all n ≥ |O| there
must be a legal execution E of P with set of actions A, and a set of actions
O′ such that (i) O and O′ are observable behaviours of E, (ii) O ⊆ O′ ⊆ A,
(iii) n ≤ |O′|, and (iv) Ext(O′) = Ext(O).

B Proof

We prove validity of irrelevant read elimination, elimination of redundant write
before write, elimination of redundant read after write, and reordering of non-
volatile memory accesses to different variables.
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3. |t| > 0 implies πK(()t0) = St (start action first),
4. πK(()ti) = Fin implies i = |t| − 1 (finish action last).
5. θ = θinit implies ∀i. 1 ≤ i < |t| − 1 → ∃v. πK(()ti) = Wr(v) ∨ πK(()ti) =

Wrv(v) and πK(()t|t|−1) = Fin (initialisation thread only contains writes).

The well-formedness of programs should not be hard to establish for any rea-
sonable sequential language.

The next definition places some sensible restriction on executions.

Definition 7. We say that an execution 〈A, P,≤po, ≤so, W, V 〉 is well-formed
if

1. A is finite.
2. ≤po restricted on actions of one thread is a total order, ≤po does not relate

actions of different threads.
3. ≤so is total on synchronisation actions of A.
4. ≤so is consistent with ≤po.
5. W is properly typed: for every non-volatile read r ∈ A, W (r) is a non-volatile

write; for every volatile read r ∈ A, W (r) is a volatile write.
6. Locking is proper: for all lock actions l ∈ A on monitors m and all threads θ

different from the thread of l, the number of locks in θ before l in ≤so is the
same as the number of unlocks in θ before l in ≤so.

7. Program order is intra-thread consistent: for each thread θ, the trace of θ in
E is sequentially valid for Pθ.

8. ≤so is consistent with W : for every volatile read r of a variable v we have
W (r) ≤so r and for any volatile write w to v, either w ≤so W (r) or r ≤so w.

9. ≤hb is consistent with W : for all reads r of v it holds that r *≤hb W (r) and
there is no intervening write w to v, i.e. if W (r) ≤hb w ≤hb r and w writes
to v then W (r) = w.

10. The initialisation thread θinit finishes before any other thread starts, i.e.,
∀a, b ∈ A. K(a) = Fin ∧ T (a) = θinit ∧ K(b) = St ∧ T (b) *= θinit → a ≤so b.

The following definition of legal execution constitutes the core of the Java Mem-
ory Model. In our work, we use a weakened version of the memory model that
we suggested in [5] and which permits more transformations than the original
version. In Tbl. 1, we label this version by ‘JMM-Alt’.

Definition 8. A well-formed execution 〈A, P,≤po, ≤so, W, V 〉 with happens be-
fore order ≤hb is legal if there is a finite sequence of sets of actions Ci and
well-formed executions Ei = 〈Ai, P, ≤poi , ≤soi , Wi, Vi〉 with happens-before ≤hbi

and synchronises-with <swi such that C0 = ∅, Ci−1 ⊆ Ci for all i > 0,
⋃

Ci = A,
and for each i > 0 the following rules are satisfied:

1. Ci ⊆ Ai.
2. For all reads r ∈ Ci we have W (r) ≤hb r ⇐⇒ W (r) ≤hbi r, and r *≤hbi

W (r),
3. Vi|Ci = V |Ci .
4. Wi|Ci−1 = W |Ci−1 .
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Definition 2. An execution E is a tuple E = 〈A, P,≤po, ≤so, W, V 〉, where
A ⊆ A is a set of actions; P is a program, represented as a thread-indexed set of
memory traces; the partial order ≤po⊆ A × A is the program order, which is a
union of total orders on actions of each thread; ≤so⊆ A×A is the synchronisation
order, which is a total order on all synchronisation actions in A; V :: A ⇒V is
a value-written function that assigns a value to each write from A; W :: A ⇒A
is a write-seen function that assigns a write to each read action from A, the
W (r) denotes the write seen by r, i.e. the value read by r is V (W (r)).

Definition 3. In an execution with synchronisation order ≤so, an action a
synchronises-with an action b (written a <sw b) if a ≤so b and a and b sat-
isfy one of the following conditions:

– a is an unlock on monitor m and b is a lock on monitor m,
– a is a volatile write to v and b is a volatile read from v.

Definition 4. The happens-before order of an execution is the transitive closure
of the composition of its synchronises-with order and its program order, i.e.
≤hb= (<sw ∪ ≤po)+.

To relate a (sequential) program to a sequence of actions performed by one
thread we must define a notion of sequential validity. We consider single-thread
programs as sets of sequences of pairs of an action kind and a value, which we
call traces. A multi-thread program is a set of single-thread programs indexed
by thread identifiers.

Definition 5. Given an execution E = 〈A, P,≤po, ≤so, W, V 〉, the action trace
of thread θ in E, denoted TrE(θ), is the list of actions of thread θ in the order
≤po. The trace of thread θ in E, written TrE(θ) is the list of action kinds and
corresponding values obtained from the action trace (i.e., V (W (a)) if a is a read,
V (a) otherwise).

By writing t ≤ t′ we mean that t is a prefix of t′, set(t) is the set of elements of
the list t, ι(t, a) is an index i such that ti = a, or 0 if a /∈ set(t). For an action
kind-value pair p = 〈k, v〉 we will use the notation πK(p) for the action kind k
and πV (p) for the value v. We say that a sequence s of action kind-value pairs
is sequentially valid with respect to a program P if t ∈ P . A sequentially valid
trace t is finished for P if there is no sequentially valid trace t′ > t. The operator
++ stands for trace concatenation.

To establish reasonable properties of concurrent programs we assume reason-
able properties of the underlying sequential language:

Definition 6. We say that program P is well-formed if sequential validity of
trace t in P implies:

1. any trace t′ ≤ t is sequentially valid (prefix closedness),
2. if the last action of t is a read with value v, then the trace obtained from t

by replacing the value in the last action by v′ is also sequentially valid in P
(final read value independence),

44 J. Ševč́ık and D. Aspinall

16. Maessen, J.-W., Shen, X.: Improving the Java memory model using CRF. In: OOP-
SLA, pp. 1–12. ACM Press, New York (2000)

17. Manson, J.: The Java memory model. PhD thesis, University of Maryland, College
Park (2004)

18. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL 2005:
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages, pp. 378–391. ACM Press, New York (2005)

19. Paleczny, M., Vick, C., Click, C.: The Java Hotspot(TM) server compiler. In:
USENIX Java(TM) Virtual Machine Research and Technology Symposium (April
2001)

20. Pugh, W.: The Java memory model is fatally flawed. Concurrency - Practice and
Experience 12(6), 445–455 (2000)

21. Pugh, W., Manson, J.: Java memory model causality test cases (2004),
http://www.cs.umd.edu/∼pugh/java/memoryModel/CausalityTestCases.html

22. Reynolds, J.C.: Toward a grainless semantics for shared-variable concurrency. In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 35–48.
Springer, Heidelberg (2004)

23. Saraswat, V., Jagadeesan, R., Michael, M., von Praun, C.: A theory of memory
models. In: ACM 2007 SIGPLAN Conference on Principles and Practice of Parallel
Computing. ACM Press, New York (2007)

24. Sparc International. Sparc architecture manual, version 9 (2000),
http://developers.sun.com/solaris/articles/sparcv9.html
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A JMM Definitions

The following definitions are mostly from [11,18]; however, we have weakened
the definition of execution legality as suggested in [5]. We use letters θ for thread
names, m for synchronisation monitor names, and v for variables (i.e., memory
locations, in examples, x, y, v etc.). The abstract type V will denote values.

The starting point is the notion of action.

Definition 1. An action is a memory-related operation; it is modelled by an
abstract type A with the following properties: (1) Each action belongs to one
thread, we will denote it by T (a). (2) An action is one of the following action
kinds:

– volatile read of v,
– volatile write to v,
– normal read from v,

– normal write to v,
– lock on m,
– unlock on m,

– thread start,
– thread finish,
– external action.

We denote the action kind of a by K(a), the action kinds will be abbreviated to
Rdv(v), Wrv(v), Rd(v), Wr(v), L(m), U(m), St, Fin, Ex. An action kind also
includes the associated variable or monitor. The volatile read, volatile write, lock,
unlock, start, finish actions are called synchronisation actions.

The JMM also defines thread spawn and join action kinds. We omit these for
simplicity.
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5. For all reads r ∈ Ai − Ci−1 we have Wi(r) ≤hbi r.
6. For all reads r ∈ Ci − Ci−1 we have W (r) ∈ Ci−1.
7. If y ∈ Ci is an external action and x ≤hb y then x ∈ Ci.

The original definition of legality from [11,18] differs in rules 2 and 6, and adds
rule 8:

2. ≤hbi |Ci =≤hb |Ci .
6. For all reads r ∈ Ci − Ci−1 we have W (r) ∈ Ci−1 and Wi(r) ∈ Ci−1.
8. If x <sswi y ≤hbi z and z ∈ Ci − Ci−1, then x <swj y for all j ≥ i, where

<sswi is the transitive reduction of ≤hbi without any ≤poi edges, and the
transitive reduction of ≤hbi is a minimum relation such that its transitive
closure is ≤hbi .

The reasons for weakening the rules are invalidity of reordering of independent
statements, broken JMM causality tests 17–20 [21], and redundancy. For details,
see [5,6].

For reasoning about validity of reordering, we define observable behaviours of
executions and programs. Intuitively, a program P has an observable behaviour
B if B is a subset of external actions of some execution of P , and B is downward
closed on happens-before order (restricted to external actions). The JMM cap-
tures non-termination as a behaviour in the definition of allowable behaviours.

Definition 9. An execution 〈A, P,≤po, ≤so, W, V 〉 with happens-before order
≤hb has a set of observable behaviours O if for all x ∈ O we have y ≤hb x
or y ≤so x implies y ∈ O or T (y) = θinit. Moreover, there is no x ∈ O such that
T (x) = θinit.

The allowable behaviours may contain a special external hang action if the ex-
ecution does not terminate. We will use the notation Ext(A)) for all external
actions of set A, i.e., Ext(A) = {a | K(a) = Ex}.

Definition 10. A finite set of actions B is an allowable behaviour of a program
P if either

– There is a legal execution E of P with a set of observable behaviours O such
that B = Ext(O), or B = Ext(O) ∪ {hang} and E is hung.

– There is a set O such that B = Ext(O) ∪ {hang}, and for all n ≥ |O| there
must be a legal execution E of P with set of actions A, and a set of actions
O′ such that (i) O and O′ are observable behaviours of E, (ii) O ⊆ O′ ⊆ A,
(iii) n ≤ |O′|, and (iv) Ext(O′) = Ext(O).

B Proof

We prove validity of irrelevant read elimination, elimination of redundant write
before write, elimination of redundant read after write, and reordering of non-
volatile memory accesses to different variables.
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3. |t| > 0 implies πK(()t0) = St (start action first),
4. πK(()ti) = Fin implies i = |t| − 1 (finish action last).
5. θ = θinit implies ∀i. 1 ≤ i < |t| − 1 → ∃v. πK(()ti) = Wr(v) ∨ πK(()ti) =

Wrv(v) and πK(()t|t|−1) = Fin (initialisation thread only contains writes).

The well-formedness of programs should not be hard to establish for any rea-
sonable sequential language.

The next definition places some sensible restriction on executions.

Definition 7. We say that an execution 〈A, P,≤po, ≤so, W, V 〉 is well-formed
if

1. A is finite.
2. ≤po restricted on actions of one thread is a total order, ≤po does not relate

actions of different threads.
3. ≤so is total on synchronisation actions of A.
4. ≤so is consistent with ≤po.
5. W is properly typed: for every non-volatile read r ∈ A, W (r) is a non-volatile

write; for every volatile read r ∈ A, W (r) is a volatile write.
6. Locking is proper: for all lock actions l ∈ A on monitors m and all threads θ

different from the thread of l, the number of locks in θ before l in ≤so is the
same as the number of unlocks in θ before l in ≤so.

7. Program order is intra-thread consistent: for each thread θ, the trace of θ in
E is sequentially valid for Pθ.

8. ≤so is consistent with W : for every volatile read r of a variable v we have
W (r) ≤so r and for any volatile write w to v, either w ≤so W (r) or r ≤so w.

9. ≤hb is consistent with W : for all reads r of v it holds that r *≤hb W (r) and
there is no intervening write w to v, i.e. if W (r) ≤hb w ≤hb r and w writes
to v then W (r) = w.

10. The initialisation thread θinit finishes before any other thread starts, i.e.,
∀a, b ∈ A. K(a) = Fin ∧ T (a) = θinit ∧ K(b) = St ∧ T (b) *= θinit → a ≤so b.

The following definition of legal execution constitutes the core of the Java Mem-
ory Model. In our work, we use a weakened version of the memory model that
we suggested in [5] and which permits more transformations than the original
version. In Tbl. 1, we label this version by ‘JMM-Alt’.

Definition 8. A well-formed execution 〈A, P,≤po, ≤so, W, V 〉 with happens be-
fore order ≤hb is legal if there is a finite sequence of sets of actions Ci and
well-formed executions Ei = 〈Ai, P, ≤poi , ≤soi , Wi, Vi〉 with happens-before ≤hbi

and synchronises-with <swi such that C0 = ∅, Ci−1 ⊆ Ci for all i > 0,
⋃

Ci = A,
and for each i > 0 the following rules are satisfied:

1. Ci ⊆ Ai.
2. For all reads r ∈ Ci we have W (r) ≤hb r ⇐⇒ W (r) ≤hbi r, and r *≤hbi

W (r),
3. Vi|Ci = V |Ci .
4. Wi|Ci−1 = W |Ci−1 .
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Definition 2. An execution E is a tuple E = 〈A, P,≤po, ≤so, W, V 〉, where
A ⊆ A is a set of actions; P is a program, represented as a thread-indexed set of
memory traces; the partial order ≤po⊆ A × A is the program order, which is a
union of total orders on actions of each thread; ≤so⊆ A×A is the synchronisation
order, which is a total order on all synchronisation actions in A; V :: A ⇒V is
a value-written function that assigns a value to each write from A; W :: A ⇒A
is a write-seen function that assigns a write to each read action from A, the
W (r) denotes the write seen by r, i.e. the value read by r is V (W (r)).

Definition 3. In an execution with synchronisation order ≤so, an action a
synchronises-with an action b (written a <sw b) if a ≤so b and a and b sat-
isfy one of the following conditions:

– a is an unlock on monitor m and b is a lock on monitor m,
– a is a volatile write to v and b is a volatile read from v.

Definition 4. The happens-before order of an execution is the transitive closure
of the composition of its synchronises-with order and its program order, i.e.
≤hb= (<sw ∪ ≤po)+.

To relate a (sequential) program to a sequence of actions performed by one
thread we must define a notion of sequential validity. We consider single-thread
programs as sets of sequences of pairs of an action kind and a value, which we
call traces. A multi-thread program is a set of single-thread programs indexed
by thread identifiers.

Definition 5. Given an execution E = 〈A, P,≤po, ≤so, W, V 〉, the action trace
of thread θ in E, denoted TrE(θ), is the list of actions of thread θ in the order
≤po. The trace of thread θ in E, written TrE(θ) is the list of action kinds and
corresponding values obtained from the action trace (i.e., V (W (a)) if a is a read,
V (a) otherwise).

By writing t ≤ t′ we mean that t is a prefix of t′, set(t) is the set of elements of
the list t, ι(t, a) is an index i such that ti = a, or 0 if a /∈ set(t). For an action
kind-value pair p = 〈k, v〉 we will use the notation πK(p) for the action kind k
and πV (p) for the value v. We say that a sequence s of action kind-value pairs
is sequentially valid with respect to a program P if t ∈ P . A sequentially valid
trace t is finished for P if there is no sequentially valid trace t′ > t. The operator
++ stands for trace concatenation.

To establish reasonable properties of concurrent programs we assume reason-
able properties of the underlying sequential language:

Definition 6. We say that program P is well-formed if sequential validity of
trace t in P implies:

1. any trace t′ ≤ t is sequentially valid (prefix closedness),
2. if the last action of t is a read with value v, then the trace obtained from t

by replacing the value in the last action by v′ is also sequentially valid in P
(final read value independence),
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A JMM Definitions

The following definitions are mostly from [11,18]; however, we have weakened
the definition of execution legality as suggested in [5]. We use letters θ for thread
names, m for synchronisation monitor names, and v for variables (i.e., memory
locations, in examples, x, y, v etc.). The abstract type V will denote values.

The starting point is the notion of action.

Definition 1. An action is a memory-related operation; it is modelled by an
abstract type A with the following properties: (1) Each action belongs to one
thread, we will denote it by T (a). (2) An action is one of the following action
kinds:

– volatile read of v,
– volatile write to v,
– normal read from v,

– normal write to v,
– lock on m,
– unlock on m,

– thread start,
– thread finish,
– external action.

We denote the action kind of a by K(a), the action kinds will be abbreviated to
Rdv(v), Wrv(v), Rd(v), Wr(v), L(m), U(m), St, Fin, Ex. An action kind also
includes the associated variable or monitor. The volatile read, volatile write, lock,
unlock, start, finish actions are called synchronisation actions.

The JMM also defines thread spawn and join action kinds. We omit these for
simplicity.

2

x = 0, y = 0x = 0, y = 0

r1 = x   r2 = y

y = 1   x = 1

r1==r2==1?r1==r2==1?
‣ described (in)formally by a set of 

axioms and litmus tests
‣ hard to design and reason about



MemSAT overview

3

memory model

litmus test

finitization
parameters

legality witness

proof of illegality
MemSATMem



MemSAT overview

3

memory model

finitization
parameters

legality witness

proof of illegality

P

annotated java 
program with one 
or more assertions

MemSATMem



MemSAT overview

3

finitization
parameters

legality witness

proof of illegalityM

P

annotated java 
program with one 
or more assertions

set of constraints 
in relational logic

MemSATMem



MemSAT overview

3

finitization
parameters

legality witness

proof of illegalityM

P

annotated java 
program with one 
or more assertions

set of constraints 
in relational logic

‣ translate P to relational logic
‣ combine result with M
‣ solve combined constraints

F(P, M)MemSAT



MemSAT overview

3

finitization
parameters

legality witness

proof of illegalityM

P

annotated java 
program with one 
or more assertions

set of constraints 
in relational logic

‣ translate P to relational logic
‣ combine result with M
‣ solve combined constraints

kodkod

F(P, M)



MemSAT overview

3

finitization
parameters

proof of illegalityM

P model(F(P, M))

annotated java 
program with one 
or more assertions

set of constraints 
in relational logic

model (solution) of 
the legality formula

sat

‣ translate P to relational logic
‣ combine result with M
‣ solve combined constraints

kodkod

F(P, M)



MemSAT overview

3

finitization
parameters

M

P model(F(P, M))

mincore(F(P, M))

annotated java 
program with one 
or more assertions

set of constraints 
in relational logic

minimal unsatisfiable  
core of the legality formula

model (solution) of 
the legality formula

sat

unsat

‣ translate P to relational logic
‣ combine result with M
‣ solve combined constraints

kodkod

F(P, M)



Specifying a litmus test

4

x = 0, y = 0x = 0, y = 0

r1 = x   r2 = y

y = 1   x = 1

r1==r2==1?r1==r2==1?

public class Test0 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
y = 1;
assert r1==1;

}

@thread 
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

‣ control flow
‣ synchronize
‣ method calls
‣ field and array accesses
‣ assertions
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Witness of legality (model)

8

a00: start

a01: write(x, 0)

a02: write(y, 0)

a03: end

a10: start

a11: read(x, 0)

a12: write(y, 1)

a13: end

a20: start

a21: read(y, 0)

a22: write(x, 1)

a23: end

W1 hb1

C1

E1

x = 0, y = 0x = 0, y = 0

r1 = x   r2 = y

y = 1   x = 1

r1==r2==1?r1==r2==1? JMM

witness:  an execution of the 
program that satisfies both the 
assertions and the memory 
model constraints.

C2

E2

a00: start

a01: write(x, 0)

a02: write(y, 0)

a03: end

a10: start

a11: read(x, 0)

a12: write(y, 1)

a13: end

a20: start

a21: read(y, 0)

a22: write(x, 1)

a23: end

W2 hb2

E

a00: start

a01: write(x, 0)

a02: write(y, 0)

a03: end

a10: start

a11: read(x, 1)

a12: write(y, 1)

a13: end

a20: start

a21: read(y, 1)

a22: write(x, 1)

a23: end

W

hb



Proof of illegality (minimal core)

9

SC

minimal core:  an unsatisfiable 
subset of the program and 
memory model constraints that 
becomes satisfiable if one of its 
members is removed

x = 0, y = 0x = 0, y = 0

r1 = x   r2 = y

y = 1   x = 1

r1==1 && r2==1?r1==1 && r2==1?

V[a01] = 0
V[a02] = 0

V[W[a11]] = 1
V[W[a21]] = 1

∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
∀ k: A ∩ Read | ¬ ord[k, W[k]]

1.  ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2.  ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3.  ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4.  ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]

5.  ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6.  ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7.  ∀ k: A ∩ Read, j: A ∩ Write | 

¬ ( l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k] )



Proof of illegality (minimal core)

9

SC

minimal core:  an unsatisfiable 
subset of the program and 
memory model constraints that 
becomes satisfiable if one of its 
members is removed

x = 0, y = 0x = 0, y = 0

r1 = x   r2 = y

y = 1   x = 1

r1==1 && r2==1?r1==1 && r2==1?

V[a01] = 0
V[a02] = 0

V[W[a11]] = 1
V[W[a21]] = 1

∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
∀ k: A ∩ Read | ¬ ord[k, W[k]]

aij represents the action (if 
any) performed by the jth 
statement of the ith thread

1.  ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2.  ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3.  ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4.  ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]

5.  ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6.  ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7.  ∀ k: A ∩ Read, j: A ∩ Write | 

¬ ( l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k] )



Proof of illegality (minimal core)

9

SC

minimal core:  an unsatisfiable 
subset of the program and 
memory model constraints that 
becomes satisfiable if one of its 
members is removed

x = 0, y = 0x = 0, y = 0

r1 = x   r2 = y

y = 1   x = 1

r1==1 && r2==1?r1==1 && r2==1?

V[a01] = 0
V[a02] = 0

V[W[a11]] = 1
V[W[a21]] = 1

∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
∀ k: A ∩ Read | ¬ ord[k, W[k]]

1.  ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2.  ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3.  ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4.  ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]

5.  ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6.  ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7.  ∀ k: A ∩ Read, j: A ∩ Write | 

¬ ( l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k] )



Proof of illegality (minimal core)

9

SC

minimal core:  an unsatisfiable 
subset of the program and 
memory model constraints that 
becomes satisfiable if one of its 
members is removed

x = 0, y = 0x = 0, y = 0

r1 = x   r2 = y

y = 1   x = 1

r1==1 && r2==1?r1==1 && r2==1?

V[a01] = 0
V[a02] = 0

V[W[a11]] = 1
V[W[a21]] = 1

∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]
∀ k: A ∩ Read | ¬ ord[k, W[k]]

1.  ∀ i, j: A | i ≠ j ⇒ ord[i, j] ∨ ord[j, i]
2.  ∀ i, j: A | ord[i, j] ⇒ ¬ord[j, i]
3.  ∀ i, j, k: A | (ord[i, j] ∧ ord[j, k]) ⇒ ord[i, k]

4.  ∀ i, j: A | (t[i] = t[j] ∧ co+[i, j]) ⇒ ord[i, j]

5.  ∀ i, j: A | (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j]
6.  ∀ k: A ∩ Read | ¬ ord[k, W[k]]
7.  ∀ k: A ∩ Read, j: A ∩ Write | 

¬ ( l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k] )



Proof of illegality (minimal core)

9

SC

minimal core:  an unsatisfiable 
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x = 1, ✄
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✄
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public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread 
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread 
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

Preprocessing

11

  

I(P)
finitize P and 
convert it to an 
intermediate form
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public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread 
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread 
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

Preprocessing

11

  

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start



public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread 
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread 
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

Preprocessing

11

  

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

control flow

thread order



public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread 
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread 
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

Preprocessing

11

  

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true



public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread 
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

public class Test1 {
static int x = 0;
static int y = 0;

@thread
public static void thread1() {

final int r1 = x;
if (r1 != 0)

y = r1;
else

y = 1;
assert r1==1;

}

@thread 
public static void thread2() {

final int r2 = y;
x = 1;
assert r2==1;

}
}

Preprocessing

11

  

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}



Translation

12

  

translate I(P) to a 
relational 
representation

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

R(P)



s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

Translation

12

  

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}



s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

Translation

12

  

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

maps reads, writes, locks, 
and unlocks to relations 
representing locations that 
are accessed



s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

Translation

12

  

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

maps reads, writes, locks, 
and unlocks to relations 
representing locations that 
are accessed

relational constants 
that represent fields:  
x = {<x>} and y = 
{<y>}



s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

Translation

12

  

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

maps writes and 
asserts to relational 
encodings of the values 
written or asserted



s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

Translation

12

  

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

maps writes and 
asserts to relational 
encodings of the values 
written or asserted

relational variable 
that acts as a 
placeholder for the 
value read into r1



s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

Translation

12

  

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

maps statements to 
formulas that 
encode their guards



s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

Translation

12

  

00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}



00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

F(P, M)
construct the 
legality formula 
for R(P) and M 

Constraint assembly

13

  

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤



00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly

13

  

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤



00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly

13

  

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

The witness execution E 
respects the sequential 
semantics of P



00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly

13

  

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

The witness execution E 
respects the sequential 
semantics of P

E executes and 
satisfies the 
assertions in P



00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly

13

  

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

The witness execution E 
respects the sequential 
semantics of P

Each speculative 
execution Ei respects 
the sequential 
semantics of P

E executes and 
satisfies the 
assertions in P



00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly

13

  

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

The witness execution E 
respects the sequential 
semantics of P

E and all Ei respect the 
memory model constraints

Each speculative 
execution Ei respects 
the sequential 
semantics of P

E executes and 
satisfies the 
assertions in P



00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly

13

  

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤



F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly:  Fα(R(P), E)

14

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors



F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly:  Fα(R(P), E)

14

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors
00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

relational variable aij 
represents the action 
performed if E executes 
the statement ij



F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly:  Fα(R(P), E)

14

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors
00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a21]]

V[W[a11]]



F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly:  Fα(R(P), E)

14

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a21]]

V[W[a11]]V[W[a11]]



F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly:  F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]] (|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]] 

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]



F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly:  F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧ 

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]] 

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]



F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly:  F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧ 

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

‣ 0 or 1 action performed

‣ action performed iff the 
guard is true

‣ no other statement 
performs the same action

‣ action location is valid

‣ action value is valid

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]] 

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]



F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly:  F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧ 

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

‣ 0 or 1 action performed

‣ action performed iff the 
guard is true

‣ no other statement 
performs the same action

‣ action location is valid

‣ action value is valid

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]] 

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

V[W[a11]]



F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly:  F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧ 

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

‣ action performed iff the 
guard is true

‣ no other statement 
performs the same action

‣ action location is valid

‣ action value is valid

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]] 

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

V[W[a11]]



F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly:  F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧ 

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

‣ no other statement 
performs the same action

‣ action location is valid

‣ action value is valid

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]] 

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

V[W[a11]]



F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly:  F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧ 

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

‣ action location is valid

‣ action value is valid

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]] 

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

V[W[a11]]



F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly:  F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧ 

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

‣ action value is valid

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]] 

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

V[W[a11]]



F(R(P), E) ∧ 

Fα(R(P), E) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

Constraint assembly:  F(R(P), E)

15

s Loc Val Guard
00 ⊤
01 x Bits(0) ⊤
02 y Bits(0) ⊤
03 ⊤
10 ⊤
11 x ⊤
12 ⊤
13 y r1 r1≠Bits(0)
14 y Bits(1) r1=Bits(0)
15 r1=Bits(1) ⊤
16 ⊤
20 ⊤
21 y ⊤
22 x Bits(1) ⊤
23 r2=Bits(1) ⊤
24 ⊤

a00
a01
a02
a03
a10
a11

a13
a14

a16
a20
a21
a22

a24

V[W[a11]]

⋀s∈P F(s, R(P), E) ∧ 

A = a00 ∪…∪ a24 ∧

V[W[a11]]=Bits(1) ∧ 

V[W[a21]]=Bits(1) ∧

⋀1≤i≤k F(R(P), Ei) ∧

M(E, E1, …, Ek)

(|a13| = 1 ⇔
 V[W[a11]] ≠ Bits(0)) ∧
(a13 ∩ a00) = ∅ ∧…∧
(a13 ∩ a24) = ∅ ∧

V[a13] = V[W[a11]] 

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
l maps writes to written values

m maps locks/unlocks to monitors

|a13| ≤ 1 ∧

l[a13] = y ∧

00 start
01 write(x, 0)
02 write(y, 0)
03 end
10 start
11 r1=read(x)
12 branch(r1!=0)
13 write(y, r1)
14 write(y, 1)
15 assert(r1==1)
16 end
20 start
21 r2=read(y)
22 write(x, 1)
23 assert(r2==1)
24 end

V[W[a21]]

V[W[a11]]



00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

Bounds assembly

16

  

F(P, M)

compute a set of 
bounds on the 
search space

B(P, M)



00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

Bounds assembly

16

  

F(P, M) {…} ⊆ A ⊆ {…}

{…} ⊆ V ⊆ {…}

{…} ⊆ W ⊆ {…}

{…} ⊆ l ⊆ {…}

{…} ⊆ m ⊆ {…}

-8, 1, 2, 4, x, y, 
a00, a01, a02, a03,
a10, a11, a13, a16,
a20, a21, a22, a24



00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

Bounds assembly:  universe

17

  

F(P, M)

-8, 1, 2, 4, x, y, 
a00, a01, a02, a03,
a10, a11, a13, a16,
a20, a21, a22, a24

finite universe of 
symbolic values from 
which the model, if 
any, is drawn

{…} ⊆ A ⊆ {…}

{…} ⊆ V ⊆ {…}

{…} ⊆ W ⊆ {…}

{…} ⊆ l ⊆ {…}

{…} ⊆ m ⊆ {…}



00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
T F

10 start

s guard
13 r1!=0
14 r1==0
* true

s maySee
11 {01, 22}
21 {02, 13, 14}

Bounds assembly:  universe

17

  

F(P, M)

-8, 1, 2, 4, x, y, 
a00, a01, a02, a03,
a10, a11, a13, a16,
a20, a21, a22, a24

finite universe of 
symbolic values from 
which the model, if 
any, is drawn

primitives fields

{…} ⊆ A ⊆ {…}

{…} ⊆ V ⊆ {…}

{…} ⊆ W ⊆ {…}

{…} ⊆ l ⊆ {…}

{…} ⊆ m ⊆ {…}



00 start

01 write(x, 0)

02 write(y, 0)

03 end

21 r2=read(y)

22 write(x, 1)

24 end

20 start

23 assert(r2==1)

11 r1=read(x)
12 branch(r1!=0)

13 write(y, r1)

16 end

15 assert(r1==1)

14 write(y, 1)
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JMM test

Original JMM 
‣ validates 17 & 18 (Sevcik’08 ✘)
‣ violates 19 & 20 (Aspinall’07 ✔)

Revised JMM 
‣ overconstrained as given; fixed it
‣ now validates all tests (Aspinall’07 ✔)



Conclusion

Practical checker for axiomatic specifications of memory models

‣ first tool to directly handle the current JMM
‣ first tool to provide minimal cores

Prior work (highlights)

‣ CheckFence hardcodes the memory model
‣ Nemos accepts simple axiomatic specs but no cores
‣ JMM checkers (e.g. OpMM) use operational approximations

Future work

‣ extend MemSAT to handle hardware memory models
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