Mensat

checking axiomatic specifications of memory models

Emina Torlak · Mandana Vaziri · Julian Dolby

MIT SAT/SMT Summer School · June 16, 2011

Introduction

memory model

- contract between programmer and programming environment
- specifies which writes can be seen by a read

x = 0, y = 0		
rI = x	r2 = y	
y = 1	x = 1	
rl==r2==l?		

Introduction

memory model

- contract between programmer and programming environment
- specifies which writes can be seen by a read
- described (in)formally by a set of axioms and litmus tests

Introduction

memory model

- contract between programmer and programming environment
- specifies which writes can be seen by a read
- described (in)formally by a set of axioms and litmus tests
- hard to design and reason about

Specifying a litmus test

$$x = 0, y = 0$$

$$rI = x$$

$$y = I$$

$$r2 = y$$

$$x = I$$

- method calls
- field and array accesses
- assertions

@thread

}

```
public static void thread1() {
    final int r1 = x;
    y = 1;
    assert r1==1;
}
```

```
@thread
public static void thread2() {
    final int r2 = y;
    x = 1;
    assert r2==1;
}
```


first order logic (\forall , \exists , \land , \lor , \neg) relational algebra (., \cup , \cap , /, \times , \subseteq) bitvector arithmetic (+, -, *, /,)

▶ co, control flow

• to, thread order

first order logic (\forall , \exists , \land , \lor , \neg) relational algebra (., \cup , \cap , /, ×, \subseteq) bitvector arithmetic (+, -, *, /,)

- interleaved semantics -

all statements appear to execute in a total order that agrees with the program text

- 1. Execution order is total,
- 2. antisymmetric, and
- 3. transitive.
- 4. It respects the control flow and
- 5. thread order.
- 6. Reads cannot see out of order writes.
- 7. No write interferes between a read and the write seen by that read.

- interleaved semantics -

all statements appear to execute in a total order that agrees with the program text

- 1. \forall i, j: A | i \neq j \Rightarrow ord[i, j] \lor ord[j, i]
- 2. antisymmetric, and
- 3. transitive.
- 4. It respects the control flow and
- 5. thread order.
- 6. Reads cannot see out of order writes.
- 7. No write interferes between a read and the write seen by that read.

Execution order is total,

- interleaved semantics -

all statements appear to execute in a total order that agrees with the program text

- 1. \forall i, j: A | i \neq j \Rightarrow ord[i, j] \lor ord[j, i]
- 2. \forall i, j: A | ord[i, j] $\Rightarrow \neg$ ord[j, i]
- 3. transitive.
- 4. It respects the control flow and
- 5. thread order.
- 6. Reads cannot see out of order writes.
- 7. No write interferes between a read and the write seen by that read.

Execution order is total, antisymmetric, and

- interleaved semantics -

all statements appear to execute in a total order that agrees with the program text

- 1. \forall i, j: A | i \neq j \Rightarrow ord[i, j] \lor ord[j, i]
- 2. \forall i, j: A | ord[i, j] $\Rightarrow \neg$ ord[j, i]
- 3. \forall i, j, k: A | (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]
- 4. It respects the control flow and
- 5. thread order.
- 6. Reads cannot see out of order writes.
- 7. No write interferes between a read and the write seen by that read.

Execution order is total, antisymmetric, and transitive.

- interleaved semantics -

all statements appear to execute in a total order that agrees with the program text

- 1. \forall i, j: A | i \neq j \Rightarrow ord[i, j] \lor ord[j, i]
- 2. \forall i, j: A | ord[i, j] $\Rightarrow \neg$ ord[j, i]
- 3. \forall i, j, k: A | (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]
- 4. \forall i, j: A | (t[i] = t[j] \land co⁺[i, j]) \Rightarrow ord[i, j]
- 5. thread order.
- 6. Reads cannot see out of order writes.
- 7. No write interferes between a read and the write seen by that read.

Execution order is total, antisymmetric, and transitive. It respects the control flow and

- interleaved semantics -

all statements appear to execute in a total order that agrees with the program text

- 1. \forall i, j: A | i \neq j \Rightarrow ord[i, j] \lor ord[j, i]
- 2. \forall i, j: A | ord[i, j] $\Rightarrow \neg$ ord[j, i]
- 3. \forall i, j, k: A | (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]
- 4. \forall i, j: A | (t[i] = t[j] \land co⁺[i, j]) \Rightarrow ord[i, j]
- 5. \forall i, j: A | (t[i] \neq t[j] \land to⁺[t[i], t[j]]) \Rightarrow ord[i, j]
- 6. Reads cannot see out of order writes.
- 7. No write interferes between a read and the write seen by that read.

Execution order is total, antisymmetric, and transitive. It respects the control flow and thread order.

- interleaved semantics -

all statements appear to execute in a total order that agrees with the program text

- 1. \forall i, j: A | i \neq j \Rightarrow ord[i, j] \lor ord[j, i]
- 2. \forall i, j: A | ord[i, j] $\Rightarrow \neg$ ord[j, i]
- 3. \forall i, j, k: A | (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]
- 4. \forall i, j: A | (t[i] = t[j] \land co⁺[i, j]) \Rightarrow ord[i, j]
- 5. \forall i, j: A | (t[i] \neq t[j] \land to⁺[t[i], t[j]]) \Rightarrow ord[i, j]
- 6. \forall k: A \cap Read $|\neg$ ord[k, W[k]]
- 7. No write interferes between a read and the write seen by that read.

- Execution order is total, antisymmetric, and
- transitive.
- It respects the control flow and
- thread order.
- Reads cannot see out of order writes.

- interleaved semantics

all statements appear to execute in a total order that agrees with the program text

- 1. \forall i, j: A | i \neq j \Rightarrow ord[i, j] \lor ord[j, i]
- 2. \forall i, j: A | ord[i, j] $\Rightarrow \neg$ ord[j, i]
- 3. \forall i, j, k: A | (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]
- 4. \forall i, j: A | (t[i] = t[j] \land co⁺[i, j]) \Rightarrow ord[i, j]
- 5. \forall i, j: A | (t[i] \neq t[j] \land to⁺[t[i], t[j]]) \Rightarrow ord[i, j]
- 6. \forall k: A \cap Read $|\neg$ ord[k, W[k]]
- 7. ∀ k: A ∩ Read, j: A ∩ Write | ¬ (I[k] = I[i] ∧ ord[W[k], i] ∧ ord[i, k])

- Execution order is total,
- antisymmetric, and
- transitive.
- It respects the control flow and
- thread order.
- Reads cannot see out of order writes.
- No write interferes between a read and the write seen by that read.

Example: Java memory model

- committing semantics

an execution is legal if it can be derived by committing and executing actions in a sequence of speculative executions

- 1. \forall i: [1..k] | $C_i \subseteq A_i$
- 2. ∀ i: [1..k], r: C_i ∩ Read | (hb[W[r], r] ⇔ hb_i[W[r], r]) ∧ ¬ hb_i[r, W[r]]
- 3. \forall i: $[1..k] | C_i \triangleleft V_i = C_i \triangleleft V$
- **4.** \forall i: [1..k] | $C_{i-1} \triangleleft W_i = C_{i-1} \triangleleft W$
- 5. \forall i: [1..k], r: (A_i \ C_i) \cap Read | hb_i[W_i[r], r]
- 6. \forall i: [1..k], r: (C_i \ C_{i-1}) \cap Read | W_i[r] \subseteq C_{i-1}
- 7. ∀ i: [1..k], y: C_i, x: A_i | (y ⊆ Special ∧ hb[x, y]) ⇒ x ⊆ C_{i-1}

E ₁ -∿	\rightarrow E ₂ $^{\sim}$	∽ E _k -∿	→ E
$A_1, W_1, V_1,$	$A_2,W_2,V_2,$	A _k , W _k , V _k ,	A, W, V,
l ₁ , m ₁ ,	l ₂ , m ₂ ,	l _k , m _k ,	l, m,
po 1, so 1,	po 2, so 2,	po _k , so _k ,	po, so,
sw ₁ , hb ₁	sw ₂ , hb ₂	sw _k , hb _k	sw, hb
– committing semantics

an execution is legal if it can be derived by committing and executing actions in a sequence of speculative executions

- 1. \forall i: [1..k] | $C_i \subseteq A_i$
- 2. ∀ i: [1..k], r: C_i ∩ Read | (hb[W[r], r] ⇔ hb_i[W[r], r]) ∧ ¬ hb_i[r, W[r]]
- 3. \forall i: $[1..k] | C_i \triangleleft V_i = C_i \triangleleft V$
- **4.** \forall **i**: $[1..k] | C_{i-1} \triangleleft W_i = C_{i-1} \triangleleft W$
- 5. \forall i: [1..k], r: (A_i \ C_i) \cap Read | hb_i[W_i[r], r]
- 6. \forall i: [1..k], r: (C_i \ C_{i-1}) \cap Read | W_i[r] \subseteq C_{i-1}
- 7. ∀ i: [1..k], y: C_i , x: A_i | (y ⊆ Special ∧ hb[x, y]) ⇒ x ⊆ C_{i-1}

initial execution: reads can only see writes that happen-before them

E ₁ -∿	\rightarrow E ₂ \neg	∿≻ E _k -∿	<pre></pre>
$A_1, W_1, V_1,$	$A_2,W_2,V_2,$	A _k , W _k , V _k ,	A, W, V,
l ₁ , m ₁ ,	l ₂ , m ₂ ,	l _k , m _k ,	l, m,
po 1, so 1,	po 2, so 2,	po _k , so _k ,	po, so,
sw 1, hb 1	sw ₂ , hb ₂	sw _k , hb _k	sw, hb

– committing semantics

an execution is legal if it can be derived by committing and executing actions in a sequence of speculative executions

- 1. \forall i: [1..k] | $C_i \subseteq A_i$
- 2. ∀ i: [1..k], r: C_i ∩ Read | (hb[W[r], r] ⇔ hb_i[W[r], r]) ∧ ¬ hb_i[r, W[r]]
- 3. \forall i: $[1..k] | C_i \triangleleft V_i = C_i \triangleleft V$
- **4.** \forall **i**: $[1..k] | C_{i-1} \triangleleft W_i = C_{i-1} \triangleleft W$
- 5. \forall i: [1..k], r: (A_i \ C_i) \cap Read | hb_i[W_i[r], r]
- 6. \forall i: [1..k], r: (C_i \ C_{i-1}) \cap Read | W_i[r] \subseteq C_{i-1}
- 7. ∀ i: [1..k], y: C_i, x: A_i | (y ⊆ Special ∧ hb[x, y]) ⇒ x ⊆ C_{i-1}

initial execution: reads can only see writes that happen-before them

E ₁ -∿	\leftrightarrow E ₂ \neg	↔ E _k -∾	→ E
$A_1, W_1, V_1,$	$A_2,W_2,V_2,$	$A_k, W_k, V_k,$	A, W, V,
l ₁ , m ₁ ,	l ₂ , m ₂ ,	l _k , m _k ,	l, m,
po 1, so 1,	po 2, so 2,	po _k , so _k ,	po, so,
sw 1, hb 1	sw ₂ , hb ₂	sw _k , hb _k	sw, hb

committing semantics

an execution is legal if it can be derived by committing and executing actions in a sequence of speculative executions

- 1. ∀ i: [1..k] | C_i ⊆ A_i
- 2. \forall i: [1..k], r: $C_i \cap \text{Read} \mid (\text{hb}[W[r], r] \Leftrightarrow$ $hb_i[W[r], r]) \land \neg hb_i[r, W[r]]$
- 3. \forall i: $[1..k] \mid C_i \triangleleft V_i = C_i \triangleleft V$
- **4.** \forall **i**: $[1..k] | C_{i-1} \triangleleft W_i = C_{i-1} \triangleleft W$
- 5. \forall i: [1..k], r: (A_i \ C_i) \cap Read | hb_i[W_i[r], r]
- 6. \forall i: [1..k], r: (C_i \ C_{i-1}) \cap Read | W_i[r] \subseteq C_{i-1}
- 7. \forall i: [1..k], y: C_i, x: A_i | (y \subseteq Special \land $hb[x, y] \Rightarrow x \subseteq C_{i-1}$

С

⊑ 1 -∿	∧→ ⊑2 … ~√	···· ⊏ k ⁻ ··	
$A_1, W_1, V_1,$	$A_2, W_2, V_2,$	A _k , W _k , V _k ,	A, W, V
l ₁ , m ₁ ,	I ₂ , m ₂ ,	l _k , m _k ,	l, m,
po 1, so 1,	po 2, so 2,	po _k , so _k ,	po, so
sw ₁ , hb ₁	sw ₂ , hb ₂	sw _k , hb _k	sw, hb

С

- committing semantics

- 1. \forall i: [1..k] | $C_i \subseteq A_i$
- 2. ∀ i: [1..k], r: C_i ∩ Read | (hb[W[r], r] ⇔ hb_i[W[r], r]) ∧ ¬ hb_i[r, W[r]]
- 3. \forall i: $[1..k] | C_i \triangleleft V_i = C_i \triangleleft V$
- **4.** \forall **i**: $[1..k] | C_{i-1} \triangleleft W_i = C_{i-1} \triangleleft W$
- 5. \forall i: [1..k], r: (A_i \ C_i) \cap Read | hb_i[W_i[r], r]
- 6. \forall i: [1..k], r: (C_i \ C_{i-1}) \cap Read | W_i[r] \subseteq C_{i-1}
- 7. ∀ i: [1..k], y: C_i, x: A_i | (y ⊆ Special ∧ hb[x, y]) ⇒ x ⊆ C_{i-1}

E 1 - \	∧→ Ľ 2…⊸	^→ E k	-~~>	E .
$\mathbf{A}_1, \mathbf{W}_1, \mathbf{V}_1,$	$A_2,W_2,V_2,$	A _k , W _k ,	V _k , A	, W, V,

I ₁ , m ₁ ,	l ₂ , m ₂ ,	l _k , m _k ,	I , m,
po 1, so 1,	po 2, so 2,	po _k , so _k ,	po, so,
sw ₁ . hb ₁	sw ₂ , hb ₂	sw _k , hb _k	sw. hb

– committing semantics

- 1. \forall i: [1..k] | $C_i \subseteq A_i$
- 2. ∀ i: [1..k], r: C_i ∩ Read | (hb[W[r], r] ⇔ hb_i[W[r], r]) ∧ ¬ hb_i[r, W[r]]
- 3. \forall i: $[1..k] | C_i \triangleleft V_i = C_i \triangleleft V$
- **4.** \forall **i**: $[1..k] | C_{i-1} \triangleleft W_i = C_{i-1} \triangleleft W$
- 5. \forall i: [1..k], r: (A_i \ C_i) \cap Read | hb_i[W_i[r], r]
- 6. \forall i: [1..k], r: (C_i \ C_{i-1}) ∩ Read | W_i[r] ⊆ C_{i-1}
- 7. ∀ i: [1..k], y: C_i , x: A_i | (y ⊆ Special ∧ hb[x, y]) ⇒ x ⊆ C_{i-1}

- committing semantics

- 1. \forall i: [1..k] | $C_i \subseteq A_i$
- 2. ∀ i: [1..k], r: C_i ∩ Read | (hb[W[r], r] ⇔ hb_i[W[r], r]) ∧ ¬ hb_i[r, W[r]]
- 3. \forall i: $[1..k] | C_i \triangleleft V_i = C_i \triangleleft V$
- **4.** \forall **i**: $[1..k] | C_{i-1} \triangleleft W_i = C_{i-1} \triangleleft W$
- 5. \forall i: [1..k], r: (A_i \ C_i) \cap Read | hb_i[W_i[r], r]
- 6. \forall i: [1..k], r: (C_i \ C_{i-1}) ∩ Read | W_i[r] ⊆ C_{i-1}
- 7. ∀ i: [1..k], y: C_i, x: A_i | (y ⊆ Special ∧ hb[x, y]) ⇒ x ⊆ C_{i-1}

- committing semantics

- 1. \forall i: [1..k] | $C_i \subseteq A_i$
- 2. ∀ i: [1..k], r: C_i ∩ Read | (hb[W[r], r] ⇔ hb_i[W[r], r]) ∧ ¬ hb_i[r, W[r]]
- 3. \forall i: $[1..k] | C_i \triangleleft V_i = C_i \triangleleft V$
- **4.** \forall **i**: $[1..k] | C_{i-1} \triangleleft W_i = C_{i-1} \triangleleft W$
- 5. \forall i: [1..k], r: (A_i \ C_i) \cap Read | hb_i[W_i[r], r]
- 6. \forall i: [1..k], r: (C_i \ C_{i-1}) \cap Read | W_i[r] \subseteq C_{i-1}
- 7. ∀ i: [1..k], y: C_i , x: A_i | (y ⊆ Special ∧ hb[x, y]) ⇒ x ⊆ C_{i-1}

E 1 -√	\rightarrow E ₂ \sim	∿≻… E _k -∿∿	→ E
$A_1, W_1, V_1,$	$A_2,W_2,V_2,$	$A_k, W_k, V_k,$	A, W, V,
l ₁ , m ₁ ,	l ₂ , m ₂ ,	l _k , m _k ,	l, m,
po 1, so 1,	po 2, so 2,	po _k , so _k ,	po, so,
sw 1, hb 1	sw ₂ , hb ₂	sw _k , hb _k	sw, hb

Witness of legality (model)

witness: an execution of the program that satisfies both the assertions and the memory model constraints.

1. $\forall i, j: A \mid i \neq j \Rightarrow ord[i, j] \lor ord[j, i]$ **SC** 2. $\forall i, j: A \mid ord[i, j] \Rightarrow \neg ord[j, i]$ 3. $\forall i, j, k: A \mid (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]$ 4. $\forall i, j: A \mid (t[i] = t[j] \land co^+[i, j]) \Rightarrow ord[i, j]$ 5. $\forall i, j: A \mid (t[i] \neq t[j] \land to^+[t[i], t[j]]) \Rightarrow ord[i, j]$ 6. $\forall k: A \cap Read \mid \neg ord[k, W[k]]$ 7. $\forall k: A \cap Read, j: A \cap Write \mid \neg (I[k] = I[j] \land ord[W[k], j] \land ord[j, k])$ $V[a_{01}] = 0$ $V[a_{02}] = 0$ $V[W[a_{11}]] = 1$ $V[W[a_{21}]] = 1$ $\forall i, j: A \mid i \neq j \Rightarrow ord[i, j] \lor ord[j, i]$ $\forall i, j, k: A \mid (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]$ $\forall i, j: A \mid (t[i] = t[j] \land co^{+}[i, j]) \Rightarrow ord[i, j]$ $\forall k: A \cap Read \mid \neg ord[k, W[k]]$

× = 0,	y = 0
rl = x	r2 = y
y = 1	x = 1
rl==1 && r2==1?	

1. $\forall i, j: A \mid i \neq j \Rightarrow ord[i, j] \lor ord[j, i]$ **SC** 2. $\forall i, j: A \mid ord[i, j] \Rightarrow \neg ord[j, i]$ 3. $\forall i, j, k: A \mid (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]$ 4. $\forall i, j: A \mid (t[i] = t[j] \land co^+[i, j]) \Rightarrow ord[i, j]$ 5. $\forall i, j: A \mid (t[i] \neq t[j] \land to^+[t[i], t[j]]) \Rightarrow ord[i, j]$ 6. $\forall k: A \cap Read \mid \neg ord[k, W[k]]$ 7. $\forall k: A \cap Read, j: A \cap Write \mid \neg (I[k] = I[j] \land ord[W[k], j] \land ord[j, k])$ $V[a_{01}] = 0$ $V[a_{02}] = 0$ a_{ij} represents the action (if any) performed by the jth statement of the ith thread

 $V[W[a_{11}]] = 1$ $V[W[a_{21}]] = 1$

 $\forall i, j: A \mid i \neq j \Rightarrow ord[i, j] \lor ord[j, i]$ $\forall i, j, k: A \mid (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]$ $\forall i, j: A \mid (t[i] = t[j] \land co^+[i, j]) \Rightarrow ord[i, j]$ $\forall k: A ∩ Read \mid \neg ord[k, W[k]]$

1. $\forall i, j: A \mid i \neq j \Rightarrow ord[i, j] \lor ord[j, i]$ **SC** 2. $\forall i, j: A \mid ord[i, j] \Rightarrow \neg ord[j, i]$ 3. $\forall i, j, k: A \mid (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]$ 4. $\forall i, j: A \mid (t[i] = t[j] \land co^+[i, j]) \Rightarrow ord[i, j]$ 5. $\forall i, j: A \mid (t[i] \neq t[j] \land to^+[t[i], t[j]]) \Rightarrow ord[i, j]$ 6. $\forall k: A \cap Read \mid \neg ord[k, W[k]]$ 7. $\forall k: A \cap Read, j: A \cap Write \mid \neg (I[k] = I[j] \land ord[W[k], j] \land ord[j, k])$ $V[a_{01}] = 0$ $V[a_{02}] = 0$ $V[W[a_{11}]] = 1$ $V[W[a_{21}]] = 1$

 $\forall i, j: A \mid i \neq j \Rightarrow ord[i, j] \lor ord[j, i]$ $\forall i, j, k: A \mid (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]$ $\forall i, j: A \mid (t[i] = t[j] \land co^+[i, j]) \Rightarrow ord[i, j]$ $\forall k: A \cap Read \mid \neg ord[k, W[k]]$

1.	$\forall i, j: A \mid i \neq j \Rightarrow ord[i, j] \lor ord[j, i] \qquad \textbf{SC}$
2.	∀ i, j: A ord[i, j] ⇒ ¬ord[j, i]
3.	$\forall i, j, k: A \mid (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]$
4.	$\forall i, j: A \mid (t[i] = t[j] \land co^+[i, j]) \Rightarrow ord[i, j]$
5.	$\forall i, j: A \mid (t[i] \neq t[j] \land to^{+}[t[i], t[j]]) \Rightarrow ord[i, j]$
6.	∀ k: A ∩ Read ¬ ord[k, W[k]]
7.	∀ k: A ∩ Read, j: A ∩ Write
	¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k])

$V[a_{01}] = 0$
$V[a_{02}] = 0$
$V[W[a_{11}]] = 1$
$V[W[a_{21}]] = 1$
$\forall i, j: A \mid i \neq j \Rightarrow ord[i, j] \lor ord[j, i]$
\forall i, j, k: A I (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]
$\forall i, j: A \mid (t[i] = t[j] \land co^+[i, j]) \Rightarrow ord[i, j]$
\forall k: A \cap Read I \neg ord[k, W[k]]

x = 1, y = 0 $r = x$ $r2 = y$ $y = 1$ $r1 ==1$ & r2 = 1 $r1 ==1$ & r2 = 1?	$V[a_{01}] = 0$ $V[a_{02}] = 0$ $V[W[a_{11}]] = 1$ $V[W[a_{21}]] = 1$ $\forall i, j: A \mid i \neq j \Rightarrow ord[i, j] \lor ord[j, i]$
1. \forall i, j: A i \neq j \Rightarrow ord[i, j] \lor ord[j, i] SC	\forall i, j, k: A (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k] \forall i, i: A (t[i] = t[i] \land co ⁺ [i, i]) \Rightarrow ord[i, i]
2. \forall i, j: A ord[i, j] $\Rightarrow \neg$ ord[j, l] 3. \forall i, j, k: A (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]	∀ k: A ∩ Read I ¬ ord[k, W[k]]
 4. ∀ I, J: A (t[I] = t[J] ∧ CO⁺[I, J]) ⇒ Ord[I, J] 5. ∀ i, j: A (t[i] ≠ t[j] ∧ to⁺[t[i], t[j]]) ⇒ Ord[i, j] 6. ∀ k: A ∩ Read ¬ ord[k, W[k]] 7. ∀ k: A ∩ Read, j: A ∩ Write ¬ (I[k] = I[j] ∧ Ord[W[k], j] ∧ Ord[j, k]) 	minimal core: an unsatisfiable subset of the program and memory model constraints that becomes satisfiable if one of its

members is removed

x = 0, y = 0a01: write(x, 0) $r = x$ $r2 = y$ $y = $ $x = $ $r2==1?$ a11: read(x, 0)a12: write(y, 1)a21: read(y, 1)a22: write(x, 1)	$V[a_{01}] = 0$ $V[a_{02}] = 0$ $V[W[a_{11}]] = 1$ $V[W[a_{21}]] = 1$ $\forall i, j: A \mid i \neq j \Rightarrow ord[i, j] \lor ord[j, i]$
1. $\forall i, j: A \mid i \neq j \Rightarrow ord[i, j] \lor ord[j, i]$ SC 2. $\forall i, j: A \mid ord[i, j] \Rightarrow \neg ord[j, i]$ 3. $\forall i, j, k: A \mid (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]$	$\forall i, j, k: A \mid (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]$ $\forall i, j: A \mid (t[i] = t[j] \land co^+[i, j]) \Rightarrow ord[i, j]$ $\forall k: A \cap Read \mid \neg ord[k, W[k]]$
 4. ∀ i, j: A (l[i] = l[j] ∧ co⁺[i, j]) ⇒ ord[i, j] 5. ∀ i, j: A (t[i] ≠ t[j] ∧ to⁺[t[i], t[j]]) ⇒ ord[i, j] 6. ∀ k: A ∩ Read ¬ ord[k, W[k]] 7. ∀ k: A ∩ Read, j: A ∩ Write ¬ (l[k] = l[j] ∧ ord[W[k], j] ∧ ord[j, k]) 	minimal core: an unsatisfiable subset of the program and memory model constraints that becomes satisfiable if one of its

members is removed

x = 0, y = 0a01: write(x, 0) $r = x$ $r2 = y$ $y = 1$ $x = 1$ $r == 1$ && $r2 == 1$?	$V[a_{01}] = 0$ $V[a_{02}] = 0$ $V[W[a_{11}]] = 1$ $V[W[a_{21}]] = 1$ $\forall i, j: A \mid i \neq j \Rightarrow ord[i, j] \lor ord[j, i]$
1. $\forall i, j: A \mid i \neq j \Rightarrow ord[i, j] \lor ord[j, i]$ SC 2. $\forall i, j: A \mid ord[i, j] \Rightarrow \neg ord[j, i]$ 3. $\forall i, j, k: A \mid (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]$	$\forall i, j, k: A \mid (ord[i, j] \land ord[j, k]) \Rightarrow ord[i, k]$ $\forall i, j: A \mid (t[i] = t[j] \land co^+[i, j]) \Rightarrow ord[i, j]$ $\forall k: A \cap Read \mid \neg ord[k, W[k]]$
 5. ∀ i, j: A (t[i] ≠ t[j] ∧ to+[t[i], t[j]]) ⇒ ord[i, j] 6. ∀ k: A ∩ Read ¬ ord[k, W[k]] 7. ∀ k: A ∩ Read, j: A ∩ Write ¬ (I[k] = I[j] ∧ ord[W[k], j] ∧ ord[j, k]) 	minimal core: an unsatisfiable subset of the program and memory model constraints that becomes satisfiable if one of its

members is removed


```
public class Test1 {
    static int x = 0;
    static int y = 0;
```

```
@thread
public static void thread1() {
    final int r1 = x;
    if (r1 != 0)
        y = r1;
    else
        y = 1;
    assert r1==1;
}
```

```
@thread
public static void thread2() {
    final int r2 = y;
    x = 1;
    assert r2==1;
}
```

}

finitize P and convert it to an intermediate form

I(P)

```
public class Test1 {
  static int x = 0;
  static int y = 0;
  @thread
  public static void thread1() {
     final int r1 = x;
      if (r1 != 0)
         y = r1;
      else
         y = 1;
      assert r1 == 1;
  @thread
  public static void thread2() {
     final int r^2 = y;
```

```
x = 1;
assert r2==1;
```



```
public class Test1 {
  static int x = 0;
  static int y = 0;
  @thread
  public static void thread1() {
     final int r1 = x;
      if (r1 != 0)
         y = r1;
      else
         y = 1;
      assert r1 == 1;
  @thread
  public static void thread2() {
     final int r^2 = y;
      x = 1;
```

assert r2==1;

}


```
public class Test1 {
  static int x = 0;
  static int y = 0;
  @thread
  public static void thread1() {
     final int r1 = x;
      if (r1 != 0)
         y = r1;
      else
         y = 1;
      assert r1 == 1;
  @thread
  public static void thread2() {
     final int r^2 = y;
      x = 1;
      assert r2==1;
```

}


```
public class Test1 {
  static int x = 0;
  static int y = 0;
  @thread
  public static void thread1() {
      final int r1 = x;
      if (r1 != 0)
         y = r1;
      else
         y = 1;
      assert r1 == 1;
  ]
  @thread
  public static void thread2() {
      final int r^2 = y;
      x = 1;
```

```
assert r2==1;
```

}

S	Loc	Val	Guard
00			
01			
02			
03			
10			
11			
12			
13			
14			
15			
16			
20			
21			
22			
23			
24			

maps reads, writes, locks, and unlocks to relations representing locations that are accessed

S	Loc	Val	Guard
00			
01	x		
02	y		
03			
10			
11	x		
12			
13	y		
14	y		
15			
16			
20			
21	y y		
22	X		
23			
24			

maps reads, writes, locks, and unlocks to relations representing locations that are accessed

maps writes and asserts to relational encodings of the values written or asserted

S	Loc	Val	Guard
00			
01	X	Bits(0)	
02	У	Bits(0)	
03			
10			
11	X		
12			
13	У	r1	
14	У	Bits(1)	
15		r1 =Bits(1)	
16			
20			
21	У		
22	x	Bits(1)	
23		r2 =Bits(1)	
24			

maps writes and asserts to relational encodings of the values written or asserted

maps statements to formulas that encode their guards

S	Loc	Val	Guard
00			Т
01	x	Bits(0)	Т
02	y	Bits(0)	Т
03			Т
10			Т
11	x		Т
12			Т
13	y	r1	<i>r1</i> ≠Bits(0)
14	y	Bits(1)	r1 =Bits(0)
15		<i>r1</i> =Bits(1)	Т
16			Т
20			Т
21	y		Т
22	x	Bits(1)	Т
23		r2 =Bits(1)	Т
24			Т

Constraint assembly

Constraint assembly

 $\begin{array}{l} F(R(P), E) \land \\ F_{\alpha}(R(P), E) \land \\ \land \\ \land_{1 \leq i \leq k} F(R(P), E_i) \land \\ M(E, E_1, \dots, E_k) \end{array}$

The witness execution E respects the sequential semantics of P

 $\begin{array}{l} F(R(P), E) \land \\ F_{\alpha}(R(P), E) \land \\ \land_{1 \leq i \leq k} F(R(P), E_i) \land \\ M(E, E_1, \dots, E_k) \end{array}$

 $F(R(P), E) \land$ $F_{\alpha}(R(P), E) \land$ $\land_{1 \le i \le k} F(R(P), E_i) \land$ $M(E, E_1, \dots, E_k)$

S	Loc	Val	Guard
00			Т
01	X	Bits(0)	Т
02	У	Bits(0)	Т
03			Т
10			Т
11	x		Т
12			Т
13	У	r1	<i>r1</i> ≠Bits(0)
14	y	Bits(1)	r1 =Bits(0)
15		r1 =Bits(1)	Т
16			Т
20			Т
21	У		Т
22	x	Bits(1)	Т
23		r2 =Bits(1)	Т
24			Т

- A set of all executed actions
- W maps reads to seen writes
- V maps writes to written values
- / maps writes to written values
- *m* maps locks/unlocks to monitors

F(R(P), E) $F_{\alpha}(R(P), E) \land$ $\land_{1 \le i \le k} F(R(P), E_i) \land$ $M(E, E_1, \dots, E_k)$

	S	Loc	Val	Guard	
00 start				Т	a 00
01 write(x, 0)		X	Bits(0)	Т	a 01
02 write(y, 0)		У	Bits(0)	Т	a 02
03 end				Т	a 03
10 start				Т	a 10
11 r1=read(x)		X		Т	a 11
12 branch(r1!	=0)			Т	
13 write(y, r1)		У	r1	<i>r1</i> ≠Bits(0)	a 13
14 write(y, 1)		У	Bits(1)	r1 =Bits(0)	a 14
15 assert(r1=	=1)		<i>r1</i> =Bits(1)	Т	
16 end				Т	a 16
20 start				Т	a 20
21 r2=read(y)		У		Т	a 21
22 write(x, 1)		X	Bits(1)	Т	a 22
23 assert(r2=	=1)		r2 =Bits(1)	Т	
24 end				Т	a 24

- A set of all executed actions
- W maps reads to seen writes
- V maps writes to written values
- / maps writes to written values
- *m* maps locks/unlocks to monitors

 $F(R(P), E) \land$ $F_{\alpha}(R(P), E) \land$ $\land_{1 \leq i \leq k} F(R(P), E_i) \land$

 $M(E, E_1, ..., E_k)$

relational variable a_{ij} represents the action performed if E executes the statement ij

	S	Loc	Val	Guard	
00 start				Т	a 00
01 write(x,	0)	X	Bits(0)	Т	a 01
02 write(y, 0	D)	У	Bits(0)	Т	a 02
03 end				Т	a 03
10 start			V[[//[a11]]	Т	a 10
11 r1=read	(X)	X	• [•• [ɑ / /]]	Т	a 11
12 branch(r	1!=0)			Т	
13 write(y, I	r1)	У	r1	r1 ≠Bits(0)	a 13
14 write(y, ⁻	1)	У	Bits(1)	r1 =Bits(0)	a 14
15 assert(r1	l==1)		r1 =Bits(1)	Т	
16 end				Т	a 16
20 start				Т	a 20
21 r2=read	(y)	У		Т	a 21
22 write(x,	1)	X	Bits(1)	Т	a 22
23 assert(r2	2==1)		r2 =Bits(1)	Т	
24 end				Т	a 24
		<i>V</i> [И	/[a ₂₁]]		

- A set of all executed actions
- W maps reads to seen writes
- V maps writes to written values
- / maps writes to written values
- *m* maps locks/unlocks to monitors

F(R(P), E) $F_{\alpha}(R(P), E) \land$ $\land_{1 \le i \le k} F(R(P), E_i) \land$ $M(E, E_1, \dots, E_k)$

 $F(R(P), E) \land$ $V[W[a_{11}]]=Bits(1) \land$ $V[W[a_{21}]]=Bits(1) \land$ $\land_{1 \le i \le k} F(R(P), E_i) \land$ $M(E, E_1, ..., E_k)$

	S	Loc	Val	Guard	
00 start				Т	a 00
01 write(x, 0)	X	Bits(0)	Т	a 01
02 write(y, 0)	У	Bits(0)	Т	a 02
03 end				Т	a 03
10 start			V[W[a11]]	Т	a 10
11 r1=read()	x)	X	• [•• [ɑ / /]]	Т	a 11
12 branch(r	l!=0)			Т	
13 write(y, r	1)	У	r1	r1 ≠Bits(0)	a 13
14 write(y, 1)	У	Bits(1)	r1 =Bits(0)	a 14
15 assert(r1	==1)		r1 =Bits(1)	Т	
16 end				Т	a 16
20 start				Т	a 20
21 r2=read(y)	У		Т	a 21
22 write(x, 1)	X	Bits(1)	Т	a 22
23 assert(r2	==1)		r2 =Bits(1)	Т	
24 end				Т	a ₂₄
		<i>V</i> [И	/[a ₂₁]]		

- A set of all executed actions
- W maps reads to seen writes
- V maps writes to written values
- / maps writes to written values
- m maps locks/unlocks to monitors

 $F(R(P), E) \land$ $V[W[a_{11}]] = Bits(1) \land$ $V[W[a_{21}]] = Bits(1) \land$ $\land_{1 \le i \le k} F(R(P), E_i) \land$ $M(E, E_1, \dots, E_k)$

	S	Loc	Val	Guard	
00 start				Т	a 00
01 write(x,	0)	X	Bits(0)	Т	a 01
02 write(y, 0	D)	У	Bits(0)	Т	a 02
03 end				Т	a 03
10 start			V[W[a11]]	Т	a 10
11 r1=read	(X)	X	v [v v [a / /]]	Т	a 11
12 branch(r	1!=0)			Т	
13 write(y, I	r 1)	У	r1	r1 ≠Bits(0)	a 13
14 write(y, ⁻	1)	У	Bits(1)	r1 =Bits(0)	a 14
15 assert(r1	l==1)		r1 =Bits(1)	Т	
16 end				Т	a 16
20 start				Т	a 20
21 r2=read	(y)	У		Т	a 21
22 write(x,	1)	X	Bits(1)	Т	a 22
23 assert(r2	2==1)		r2 =Bits(1)	Т	
24 end				Т	a ₂₄
		<i>V</i> [И	/[a ₂₁]]		

- A set of all executed actions
- W maps reads to seen writes
- V maps writes to written values
- / maps writes to written values
- *m* maps locks/unlocks to monitors

 $\bigwedge_{s \in P} F(s, R(P), E) \land$ $A = a_{00} \cup \ldots \cup a_{24} \land$ $\bigvee[W[a_{11}]] = Bits(1) \land$ $\bigvee[W[a_{21}]] = Bits(1) \land$ $\bigwedge_{1 \leq i \leq k} F(R(P), E_i) \land$ $M(E, E_1, \ldots, E_k)$

	S	Loc	Val	Guard	
00 start				Т	a_{00}
01 write(x,	0)	X	Bits(0)	Т	a 01
02 write(y, ())	У	Bits(0)	Т	a 02
03 end				Т	a 03
10 start			V[[/[a11]]	Т	a 10
11 r1=read	(X)	X	v [vv[a//]]	Т	a 11
12 branch(r	1!=0)			Т	
13 write(y, ı	1)	У	r1	r1 ≠Bits(0)	a 13
14 write(y, 1	I)	У	Bits(1)	r1 =Bits(0)	a 14
15 assert(r1	==1)		<i>r1</i> =Bits(1)	Т	
16 end				Т	a 16
20 start				Т	a 20
21 r2=read	(y)	У		Т	a 21
22 write(x, ⁻	1)	X	Bits(1)	Т	a 22
23 assert(r2	2==1)		r2 =Bits(1)	Т	
24 end				Т	a 24
		<i>V</i> [И	/[a ₂₁]]		

- A set of all executed actions
- W maps reads to seen writes
- V maps writes to written values
- / maps writes to written values
- *m* maps locks/unlocks to monitors
- → 0 or 1 action performed
- action performed iff the guard is true
- no other statement performs the same action
- action location is valid
- action value is valid

S	Loc	Val	Guard	
00 start			Т	a 00
01 write(x, 0)	Х	Bits(0)	\top	a 01
02 write(y, 0)	У	Bits(0)	\top	a 02
03 end			Т	a 03
10 start		\/[\/[a ₁₁]]	T	a 10
11 r1=read(x)	X	v [v v [a / /]]	Т	a 11
12 branch(r1!=0)			Т	
13 write(y, r1)	У	r1	r1 ≠Bits(0)	a 13
14 write(y, 1)	У	Bits(1)	r1 =Bits(0)	a 14
15 assert(r1==1)		<i>r1</i> =Bits(1)	\top	
16 end			\top	a 16
20 start			\top	a 20
21 r2=read(y)	У		\top	a ₂₁
22 write(x, 1)	X	Bits(1)	\top	a 22
23 assert(r2==1)		r2 =Bits(1)	\top	
24 end			Т	a 24
	V[N	/[a ₂₁]]		

- A set of all executed actions
- W maps reads to seen writes
- V maps writes to written values
- / maps writes to written values
- *m* maps locks/unlocks to monitors

→ 0 or 1 action performed

- action performed iff the guard is true
- no other statement performs the same action
- Action location is valid
- action value is valid

 $|\mathbf{a}_{13}| \leq \mathbf{1} \wedge$

guard is true

no other statement

Action location is valid

Action value is valid

action performed iff the

S	Loc	Val	Guard	
00 start			Т	a 00
01 write(x, 0)	Х	Bits(0)	\top	a 01
02 write(y, 0)	У	Bits(0)	\top	a 02
03 end			Т	a 03
10 start		V[[/[a11]]	T	a 10
11 r1=read(x)	X		Т	a 11
12 branch(r1!=0)			Т	
13 write(y, r1)	У	r1	r1 ≠Bits(0)	a 13
14 write(y, 1)	У	Bits(1)	r1 =Bits(0)	a 14
15 assert(r1==1)		r1 =Bits(1)	\top	
16 end			\top	a 16
20 start			\top	a 20
21 r2=read(y)	У		\top	a ₂₁
22 write(x, 1)	X	Bits(1)	\top	a 22
23 assert(r2==1)		r2 =Bits(1)	\top	
24 end			Т	a 24
	VГИ	/[a21]]		
	- L · ·			

- set of all executed actions Α
- maps reads to seen writes W
- maps writes to written values V
- maps writes to written values
- maps locks/unlocks to monitors m

 $\wedge_{s\in P} F(s, R(P), E) \wedge$ $A = a_{00} \cup ... \cup a_{24} \land$ $V[W[a_{11}]] = Bits(1) \land$ performs the same action *V*[*W*[*a*₂₁]]=Bits(1) ∧ $\wedge_{1 \leq i \leq k} F(R(P), E_i) \wedge$ $M(E, E_1, ..., E_k)$

 $|\mathbf{a}_{13}| \leq \mathbf{1} \wedge$

(|a₁₃| = 1 ⇔

no other statement

action value is valid

S	Loc	Val	Guard	
00 start			\top	a 00
01 write(x, 0)	X	Bits(0)	Т	a 01
02 write(y, 0)	У	Bits(0)	Т	a 02
03 end			Т	a 03
10 start		V[[//[a11]]	Т	a 10
11 r1=read(x)	X		Т	a ₁₁
12 branch(r1!=0)			Т	
13 write(y, r1)	У	r1	r1 ≠Bits(0)	a 13
14 write(y, 1)	У	Bits(1)	r1 =Bits(0)	a 14
15 assert(r1==1)		r1 =Bits(1)	Т	
16 end			Т	a 16
20 start			Т	a 20
21 r2=read(y)	У		Т	a ₂₁
22 write(x, 1)	X	Bits(1)	Т	a 22
23 assert(r2==1)		r2 =Bits(1)	\top	
24 end			Т	a 24
	VГИ	/[a21]]		

- set of all executed actions Α
- maps reads to seen writes W
- maps writes to written values V
- maps writes to written values
- maps locks/unlocks to monitors m

 $\wedge_{s\in P} F(s, R(P), E) \wedge$ $A = a_{00} \cup \ldots \cup a_{24} \land$ V[W[a₁₁]] ≠ Bits(0)) ∧ $V[W[a_{11}]] = Bits(1) \land$ performs the same action *V*[*W*[*a*₂₁]]=Bits(1) ∧ Action location is valid $\wedge_{1 \leq i \leq k} F(R(P), E_i) \wedge$ $M(E, E_1, ..., E_k)$

 $|\mathbf{a}_{13}| \leq \mathbf{1} \wedge$

(|a₁₃| = 1 ⇔

 $(\mathbf{a}_{13} \cap \mathbf{a}_{00}) = \emptyset \land \ldots \land$

 $(\mathbf{a}_{13} \cap \mathbf{a}_{24}) = \emptyset \land$

action value is valid

S	Loc	Val	Guard	
00 start			T	a 00
01 write(x, 0)	Х	Bits(0)	\top	a 01
02 write(y, 0)	У	Bits(0)	\top	a 02
03 end			Т	a 03
10 start		V[W[a11]]	Т	a 10
11 r1=read(x)	X		Т	a 11
12 branch(r1!=0)			Т	
13 write(y, r1)	У	r1	r1 ≠Bits(0)	a 13
14 write(y, 1)	У	Bits(1)	r1 =Bits(0)	a 14
15 assert(r1==1)		r1 =Bits(1)	\top	
16 end			\top	a 16
20 start			\top	a 20
21 r2=read(y)	У		\top	a 21
22 write(x, 1)	X	Bits(1)	\top	a 22
23 assert(r2==1)		r2 =Bits(1)	\top	
24 end			Т	a 24
	VГИ	/[a21]]		

- set of all executed actions Α
- maps reads to seen writes W
- maps writes to written values V
- maps writes to written values
- maps locks/unlocks to monitors m

 $\wedge_{s\in P} F(s, R(P), E) \wedge$ $A = a_{00} \cup \ldots \cup a_{24} \land$ V[W[a₁₁]] ≠ Bits(0)) ∧ $V[W[a_{11}]] = Bits(1) \land$ *V*[*W*[*a*₂₁]]=Bits(1) ∧ Action location is valid $\wedge_{1 \leq i \leq k} F(R(P), E_i) \wedge$ $M(E, E_1, ..., E_k)$

 $|\mathbf{a}_{13}| \leq \mathbf{1} \wedge$

(|a₁₃| = 1 ⇔

 $I[a_{13}] = y \land$

 $(\mathbf{a}_{13} \cap \mathbf{a}_{24}) = \emptyset \land$

Action value is valid

S	Loc	Val	Guard	
00 start			Т	a 00
01 write(x, 0)	Х	Bits(0)	\top	a 01
02 write(y, 0)	У	Bits(0)	\top	a 02
03 end			Т	a 03
10 start		V[[/[a11]]	Т	a 10
11 r1=read(x)	X	v [v v [a / /]]	Т	a 11
12 branch(r1!=0)			Т	
13 write(y, r1)	У	r1	r1 ≠Bits(0)	a 13
14 write(y, 1)	У	Bits(1)	r1 =Bits(0)	a 14
15 assert(r1==1)		r1 =Bits(1)	\top	
16 end			\top	a 16
20 start			\top	a 20
21 r2=read(y)	У		\top	a ₂₁
22 write(x, 1)	Х	Bits(1)	\top	a 22
23 assert(r2==1)		r2 =Bits(1)	\top	
24 end			Т	a ₂₄
	VГИ	/[a21]]		
	- L ·			

- set of all executed actions Α
- maps reads to seen writes W
- maps writes to written values V
- maps writes to written values
- maps locks/unlocks to monitors m

 $\wedge_{s\in P} F(s, R(P), E) \wedge$ $A = a_{00} \cup \ldots \cup a_{24} \land$ V[W[a₁₁]] ≠ Bits(0)) ∧ $(\mathbf{a}_{13} \cap \mathbf{a}_{00}) = \emptyset \land \ldots \land$ $V[W[a_{11}]] = Bits(1) \land$ *V*[*W*[*a*₂₁]]=Bits(1) ∧ $\wedge_{1 \leq i \leq k} F(R(P), E_i) \wedge$ $M(E, E_1, ..., E_k)$

S	Loc	Val	Guard	
00 start			Т	a 00
01 write(x, 0)	Х	Bits(0)	\top	a 01
02 write(y, 0)	У	Bits(0)	\top	a 02
03 end			Т	a 03
10 start		V[[/[a++]]]	Т	a 10
11 r1=read(x)	X	v [v v [a / /]]	Т	a 11
12 branch(r1!=0)			Т	
13 write(y, r1)	У	r1	r1 ≠Bits(0)	a 13
14 write(y, 1)	У	Bits(1)	r1 =Bits(0)	a 14
15 assert(r1==1)		r1 =Bits(1)	\top	
16 end			\top	a 16
20 start			\top	a 20
21 r2=read(y)	У		\top	a 21
22 write(x, 1)	Х	Bits(1)	\top	a 22
23 assert(r2==1)		r2 =Bits(1)	\top	
24 end			Т	a ₂₄
	V[N	/[a ₂₁]]		

A W V I m	set of all executed actions maps reads to seen writes maps writes to written values maps writes to written values maps locks/unlocks to monitors
a ₁₃ ≤ 1 ∧	$\wedge_{s\in P} F(s, R(P), E) \land$
(a ₁₃ = 1 ⇔ V[W[a ₁₁]] ≠ Bits(0)) ∧	$A = a_{00} \cup \cup a_{24}$
$(\mathbf{a}_{13} \cap \mathbf{a}_{00}) = \emptyset \land \dots \land$	<i>V</i> [<i>W</i> [<i>a</i> ₁₁]]=Bits(1)
$(a_{13} \cap a_{24}) = \emptyset \land$	$\sqrt{1}\sqrt{1}$
I[a ₁₃] = y ∧	$v[vv[a_{21}]]=DitS(1)$
$V[a_{13}] = V[W[a_{11}]]$	$\wedge_{1 \leq i \leq k} F(R(P), E_i) \wedge$

M(E, E₁, ..., E_k)

 \wedge

) <

) ^

Bounds assembly

Bounds assembly

Bounds assembly: universe

finite universe of symbolic values from which the model, if any, is drawn -8, 1, 2, 4, x, y, a00, a01, a02, a03, a10, a11, a13, a16, a20, a21, a22, a24

 $\{\ldots\} \subseteq A \subseteq \{\ldots\}$ $\{\ldots\} \subseteq V \subseteq \{\ldots\}$ $\{\ldots\} \subseteq W \subseteq \{\ldots\}$ $\{\ldots\} \subseteq I \subseteq \{\ldots\}$

 $\{\ldots\} \subseteq m \subseteq \{\ldots\}$

Bounds assembly: universe

Bounds assembly: universe

-8, 1, 2, 4, x, y, a00, a01, a02, a03, a10, a11, a13, a16, a20, a21, a22, a24

 $\{\ldots\} \subseteq A \subseteq \{\ldots\}$ $\{\ldots\} \subseteq V \subseteq \{\ldots\}$ er
alue $\{\ldots\} \subseteq W \subseteq \{\ldots\}$ n that
M) $\{\ldots\} \subseteq I \subseteq \{\ldots\}$

 $\{\ldots\}\subseteq m\subseteq\{\ldots\}$

-8, 1, 2, 4, x, y, a00, a01, a02, a03, a10, a11, a13, a16, a20, a21, a22, a24

 $\{\ldots\}\subseteq A\subseteq \{\ldots\}$

 $\{\ldots\}\subseteq V\subseteq \{\ldots\}$

 $\{\ldots\}\subseteq W\subseteq \{\ldots\}$

 $\{\ldots\} \subseteq I \subseteq \{\ldots\}$

 $\{\ldots\}\subseteq m\subseteq \{\ldots\}$

-8, 1, 2, 4, x, y, a00, a01, a02, a03, a10, a11, a13, a16, a20, a21, a22, a24

 $\{\ldots\}\subseteq V\subseteq\{\ldots\}$

upper and lower bound on the value of each relation that appears in F(P, M) {...} ⊆ W ⊆ {...}

 $\{\ldots\} \subseteq m \subseteq \{\ldots\}$

-8, 1, 2, 4, x, y, a00, a01, a02, a03, a10, a11, a13, a16, a20, a21, a22, a24 <a00>, <a01>, <a02>, **(**<**a**00>, <**a**01>, <**a**02>, $<a03>, <a10>, <a11>,
<math>\leq A \leq <cond <a10>, <a11>,
<math><a16>, <a20>, <cond <a11>, <cond <a11>, <a11>,$ <a21>, <a22>, <a24> <a21>, <a22>, <a24> $\{\ldots\} \subseteq V \subseteq \{\ldots\}$ upper and lower $\{\ldots\} \subseteq W \subseteq \{\ldots\}$ bound on the value of each relation that appears in F(P, M) $\{\ldots\} \subseteq / \subseteq \{\ldots\}$ $\{\ldots\} \subseteq m \subseteq \{\ldots\}$

 $\{\ldots\} \subseteq m \subseteq \{\ldots\}$

 $\{\ldots\} \subseteq m \subseteq \{\ldots\}$

Results (highlights)

MemSAT performance on JMM causality tests

Conclusion

Practical checker for axiomatic specifications of memory models

- first tool to directly handle the current JMM
- first tool to provide minimal cores

Prior work (highlights)

- CheckFence hardcodes the memory model
- Nemos accepts simple axiomatic specs but no cores
- JMM checkers (e.g. OpMM) use operational approximations

Future work

• extend MemSAT to handle hardware memory models