Men $_{\text {SAT }}$

 checking axiomatic

 checking axiomatic specifications of specifications of memory models

 memory models}

Emina Torlak • Mandana Vazirí • Julian Dolby

MIT SAT/SMT Summer School • June 16, 2011

Introduction

memory model

- contract between programmer and programming environment
- specifies which writes can be seen by a read

Introduction

memory model

- contract between programmer and programming environment
- specifies which writes can be seen by a read
- described (in)formally by a set of axioms and litmus tests

Introduction

memory model

- contract between programmer and programming environment
- specifies which writes can be seen by a read
- described (in)formally by a set of axioms and litmus tests
- hard to design and reason about

MemSAT overview

MemSAT overview

annotated java
program with one
or more assertions

MemSAT overview

annotated java
program with one
or more assertions

MemSAT overview

MemSAT overview

MemSAT overview

MemSAT overview

Specifying a litmus test

$x=0, y=0$		control flow synchronize method calls	
$r \\|=x$	$r 2=y$	field and array accesses assertions	
$y=1$	$x=1$		

```
public class Test0 \{
    static int \(x=0\);
    static int \(y=0\);
    @thread
    public static void thread1) \{
        final int \(\mathrm{r} 1=\mathrm{x}\);
        \(y=1\);
        assert \(\mathrm{r} 1==1\);
    \}
```

 @thread
 public static void thread2) \{
 final int \(\mathrm{r} 2=\mathrm{y}\);
 \(x=1\);
 assert \(\mathrm{r} 2==1\);
 \}
 \}

Specifying a memory model

Specifying a memory model

Specifying a memory model

relational constants capture

 static properties of a program- co, control flow
- to, thread order

first order logic ($\forall, \exists, \wedge, \vee, \neg)$ relational algebra (., $\cup, \cap, /, \times, \subseteq)$ bitvector arithmetic (+, -, *, /,)

Specifying a memory model

Specifying a memory model

Specifying a memory model

Specifying a memory model

first order logic $(\forall, \exists, \wedge, \vee, \neg)$ relational algebra (., $\cup, n, /, x, \subseteq)$ bitvector arithmetic (+, -, *, /,)
relational variables capture runtime properties of a program

- A, set of all executed actions
- W, maps reads to seen writes
- V, maps writes to written values
- I, maps reads/writes to locations
- m, maps locks/unlocks to monitors

Specifying a memory model

first order logic $(\forall, \exists, \wedge, \vee, \neg)$ relational algebra (., $\cup, n, /, x, \subseteq)$ bitvector arithmetic (+, -, *, /,)
relational variables capture runtime properties of a program

- A, set of all executed actions
- W, maps reads to seen writes
- V, maps writes to written values
- I, maps reads/writes to locations
- m, maps locks/unlocks to monitors

Specifying a memory model

first order logic $(\forall, \exists, \wedge, \vee, \neg)$ relational algebra (., $\cup, n, /, x, \subseteq)$ bitvector arithmetic (+, -, *, /,)
relational variables capture runtime properties of a program

- A, set of all executed actions
- W, maps reads to seen writes
- V, maps writes to written values
- I, maps reads/writes to locations
- m, maps locks/unlocks to monitors

Specifying a memory model

first order logic $(\forall, \exists, \wedge, \vee, \neg)$ relational algebra (., $\cup, n, /, x, \subseteq)$ bitvector arithmetic (+, -, *, /,)
relational variables capture runtime properties of a program

- A, set of all executed actions
- W, maps reads to seen writes
- V, maps writes to written values
- I, maps reads/writes to locations
- m, maps locks/unlocks to monitors

Specifying a memory model

first order logic $(\forall, \exists, \wedge, \vee, \neg)$ relational algebra (., $\cup, n, /, x, \subseteq)$ bitvector arithmetic (+, -, *, /,)
relational variables capture runtime properties of a program

- $A=\{\langle\mathbf{a 0 0}\rangle,\langle\mathbf{a} 01\rangle, \ldots,\langle\mathbf{a} 23\rangle\}$
- W, maps reads to seen writes
- V, maps writes to written values
- I, maps reads/writes to locations
- m, maps locks/unlocks to monitors

Specifying a memory model

first order logic $(\forall, \exists, \wedge, \vee, \neg)$ relational algebra (., $\cup, n, /, x, \subseteq)$ bitvector arithmetic (+, -, *, /,)
relational variables capture runtime properties of a program

- $A=\{\langle\mathbf{a 0 0}\rangle,\langle\mathrm{a} 01\rangle, \ldots,\langle\mathrm{a} 23\rangle\}$
- $\mathrm{W}=\{\langle\mathrm{a} 11, \mathrm{a} 01\rangle,\langle\mathrm{a} 21, \mathrm{a} 12\rangle\}$
- V, maps writes to written values
- I, maps reads/writes to locations
- m, maps locks/unlocks to monitors

Specifying a memory model

first order logic ($\forall, \exists, \wedge, \vee, \neg)$ relational algebra (., $\cup, n, /, x, \subseteq)$ bitvector arithmetic (+, -, *, /,)
relational variables capture runtime properties of a program

- $A=\{\langle\mathrm{a} 00\rangle,\langle\mathrm{a} 01\rangle, \ldots,\langle\mathrm{a} 23\rangle\}$
- $\mathrm{W}=\{\langle\mathrm{a} 11, \mathrm{a} 01\rangle,\langle\mathrm{a} 21, \mathrm{a} 12\rangle\}$
- $\mathrm{V}=\{\langle\mathbf{a 0 1}, \mathbf{0}\rangle,\langle\mathrm{a} 02, \mathbf{0}\rangle,\langle\mathrm{a} 12,1\rangle,\langle\mathrm{a} 22,1\rangle\}$
- I, maps reads/writes to locations
- m, maps locks/unlocks to monitors

Specifying a memory model

first order logic ($\forall, \exists, \wedge, \vee, \neg)$ relational algebra (., $\cup, n, /, x, \subseteq)$ bitvector arithmetic (+, -, *, /,)
relational variables capture runtime properties of a program

- $A=\{\langle\mathrm{a} 00\rangle,\langle\mathrm{a} 01\rangle, \ldots,\langle\mathrm{a} 23\rangle\}$
- $\mathrm{W}=\{\langle\mathrm{a} 11, \mathrm{a} 01\rangle,\langle\mathrm{a} 21, \mathrm{a} 12\rangle\}$
- $\mathrm{V}=\{\langle\mathbf{a} 01, \mathbf{0}\rangle,\langle\mathrm{a} 02, \mathbf{0}\rangle,\langle\mathrm{a} 12,1\rangle,\langle\mathrm{a} 22,1\rangle\}$
- I = $\{\langle\mathbf{a 0 1}, \mathbf{x}\rangle,\langle\mathbf{a 0 2}, \mathbf{y}\rangle, \ldots,\langle\mathrm{a} 22, \mathrm{x}\rangle\}$
- m, maps locks/unlocks to monitors

Specifying a memory model

first order logic ($\forall, \exists, \wedge, \vee, \neg)$ relational algebra (., $\cup, n, /, x, \subseteq)$ bitvector arithmetic (+, -, *, /,)
relational variables capture runtime properties of a program

- $\mathrm{A}=\{\langle\mathrm{a} 00\rangle,\langle\mathrm{a} 01\rangle, \ldots,\langle\mathrm{a} 23\rangle\}$
- $W=\{\langle a 11, a 01\rangle,\langle a 21, a 12\rangle\}$
- $\mathrm{V}=\{\langle\mathbf{a} 01, \mathbf{0}\rangle,\langle\mathrm{a} 02, \mathbf{0}\rangle,\langle\mathrm{a} 12,1\rangle,\langle\mathrm{a} 22,1\rangle\}$
- I = $\{\langle\mathbf{a 0 1}, \mathbf{x}\rangle,\langle\mathbf{a 0 2}, \mathbf{y}\rangle, \ldots,\langle\mathbf{a 2 2}, \mathbf{x}\rangle\}$
- $m=\{ \}$

Example: sequential consistency

interleaved semantics
all statements appear to execute in a total order that agrees with the program text

1. Execution order is total,
2. antisymmetric, and
3. transitive.
4. It respects the control flow and
5. thread order.
6. Reads cannot see out of order writes.
7. No write interferes between a read and the write seen by that read.

Example: sequential consistency

interleaved semantics
all statements appear to execute in a total order that agrees with the program text

1. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \mathrm{i} \neq \mathrm{j} \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}] \vee \operatorname{ord}[\mathrm{j}, \mathrm{i}]$

Execution order is total,
2. antisymmetric, and
3. transitive.
4. It respects the control flow and
5. thread order.
6. Reads cannot see out of order writes.
7. No write interferes between a read and the write seen by that read.

Example: sequential consistency

interleaved semantics
all statements appear to execute in a total order that agrees with the program text

1. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \mathrm{i} \neq \mathrm{j} \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}] \vee \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
2. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \operatorname{ord}[\mathrm{i}, \mathrm{j}] \Rightarrow \neg \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
3. transitive.
4. It respects the control flow and
5. thread order.
6. Reads cannot see out of order writes.
7. No write interferes between a read and the write seen by that read.

Execution order is total, antisymmetric, and

Example: sequential consistency

interleaved semantics
all statements appear to execute in a total order that agrees with the program text

1. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \mathrm{i} \neq \mathrm{j} \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}] \vee \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
2. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \operatorname{ord}[\mathrm{i}, \mathrm{j}] \Rightarrow \neg \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
3. $\forall \mathrm{i}, \mathrm{j}, \mathrm{k}: \mathrm{A} \mid(\operatorname{ord}[\mathrm{i}, \mathrm{j}] \wedge \operatorname{ord}[\mathrm{j}, \mathrm{k}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{k}]$
4. It respects the control flow and
5. thread order.
6. Reads cannot see out of order writes.
7. No write interferes between a read and the write seen by that read.

Execution order is total, antisymmetric, and transitive.

Example: sequential consistency

interleaved semantics
all statements appear to execute in a total order that agrees with the program text

1. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \mathrm{i} \neq \mathrm{j} \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}] \vee \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
2. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \operatorname{ord}[\mathrm{i}, \mathrm{j}] \Rightarrow \neg \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
3. $\forall \mathrm{i}, \mathrm{j}, \mathrm{k}: \mathrm{A} \mid(\operatorname{ord}[\mathrm{i}, \mathrm{j}] \wedge \operatorname{ord}[\mathrm{j}, \mathrm{k}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{k}]$
4. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(\mathrm{t}[\mathrm{i}]=\mathrm{t}[\mathrm{j}] \wedge \mathrm{co}+[\mathrm{i}, \mathrm{j}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
5. thread order.
6. Reads cannot see out of order writes.
7. No write interferes between a read and the write seen by that read.

Execution order is total, antisymmetric, and transitive.

It respects the control flow and

Example: sequential consistency

interleaved semantics
all statements appear to execute in a total order that agrees with the program text

1. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \mathrm{i} \neq \mathrm{j} \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}] \vee \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
2. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \operatorname{ord}[\mathrm{i}, \mathrm{j}] \Rightarrow \neg \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
3. $\forall \mathrm{i}, \mathrm{j}, \mathrm{k}: \mathrm{A} \mid(\operatorname{ord}[\mathrm{i}, \mathrm{j}] \wedge \operatorname{ord}[\mathrm{j}, \mathrm{k}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{k}]$
4. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(\mathrm{t}[\mathrm{i}]=\mathrm{t}[\mathrm{j}] \wedge \operatorname{co}+[i, j]) \Rightarrow \operatorname{ord}[i, j]$
5. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(\mathrm{t}[\mathrm{i}] \neq \mathrm{t}[\mathrm{j}] \wedge$ to $+[\mathrm{t}[\mathrm{i}], \mathrm{t}[\mathrm{j}]]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
6. Reads cannot see out of order writes.
7. No write interferes between a read and the write seen by that read.

Execution order is total, antisymmetric, and transitive.
It respects the control flow and thread order.

Example: sequential consistency

interleaved semantics
all statements appear to execute in a total order that agrees with the program text

1. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \mathrm{i} \neq \mathrm{j} \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}] \vee \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
2. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \operatorname{ord}[\mathrm{i}, \mathrm{j}] \Rightarrow \neg \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
3. $\forall \mathrm{i}, \mathrm{j}, \mathrm{k}: \mathrm{A} \mid(\operatorname{ord}[\mathrm{i}, \mathrm{j}] \wedge \operatorname{ord}[\mathrm{j}, \mathrm{k}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{k}]$
4. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid\left(\mathrm{t}[\mathrm{i}]=\mathrm{t}[\mathrm{j}] \wedge \mathrm{co}^{+}[\mathrm{i}, \mathrm{j}]\right) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
5. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(\mathrm{t}[\mathrm{i}] \neq \mathrm{t}[\mathrm{j}] \wedge$ to $+[\mathrm{t}[\mathrm{i}], \mathrm{t}[\mathrm{j}]]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
6. $\forall \mathrm{k}: \mathrm{A} \cap \operatorname{Read} \mid \neg \operatorname{ord}[k, W[k]]$
7. No write interferes between a read and the write seen by that read.

Execution order is total, antisymmetric, and transitive.
It respects the control flow and thread order.
Reads cannot see out of order writes.

Example: sequential consistency

interleaved semantics
all statements appear to execute in a total order that agrees with the program text

1. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \mathrm{i} \neq \mathrm{j} \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}] \vee \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
2. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \operatorname{Ord}[\mathrm{i}, \mathrm{j}] \Rightarrow \neg \operatorname{Ord}[\mathrm{j}, \mathrm{i}]$
3. $\forall \mathrm{i}, \mathrm{j}, \mathrm{k}: \mathrm{A} \mid(\operatorname{ord}[\mathrm{i}, \mathrm{j}] \wedge \operatorname{ord}[\mathrm{j}, \mathrm{k}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{k}]$
4. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid\left(\mathrm{t}[\mathrm{i}]=\mathrm{t}[\mathrm{j}] \wedge \mathrm{co}^{+}[\mathrm{i}, \mathrm{j}]\right) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
5. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(\mathrm{t}[\mathrm{i}] \neq \mathrm{t}[\mathrm{j}] \wedge$ to $+[\mathrm{t}[\mathrm{i}], \mathrm{t}[\mathrm{j}]]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
6. $\forall k: A \cap \operatorname{Read} \mid \neg \operatorname{ord}[k, W[k]]$
7. $\forall k: A \cap$ Read, $j: A \cap W r i t e \mid$
$\neg(I[k]=\mid[j] \wedge \operatorname{ord}[W[k], j] \wedge \operatorname{ord}[j, k])$

Execution order is total, antisymmetric, and transitive.
It respects the control flow and thread order.
Reads cannot see out of order writes.
No write interferes between a read and the write seen by that read.

Example: Java memory model

committing semantics
an execution is legal if it can be derived by committing and executing actions in a sequence of speculative executions

1. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \subseteq A_{i}$
2. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}: \mathrm{C}_{\mathrm{i}} \cap \operatorname{Read} \mid(\mathrm{hb}[\mathrm{W}[r], r] \Leftrightarrow$ $\left.h b_{i}[W[r], r]\right) \wedge \neg h b_{i}[r, W[r]]$
3. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \triangleleft V_{i}=C_{i} \triangleleft \vee$
4. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}$
5. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{A}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}}\right) \cap \operatorname{Read} \mid \mathrm{hb}_{\mathrm{i}}\left[\mathrm{W}_{\mathrm{i}}[r], r\right]$
6. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{C}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}-1}\right) \cap \operatorname{Read} \mid \mathrm{W}_{\mathrm{i}}[r] \subseteq \mathrm{C}_{\mathrm{i}-1}$
7. \forall i: $[1 . . k], y: C_{i}, x: A_{i} \mid(y \subseteq$ Special \wedge $\mathrm{hb}[\mathrm{x}, \mathrm{y}]) \Rightarrow \mathrm{x} \subseteq \mathrm{C}_{\mathrm{i}-1}$

Example: Java memory model

committing semantics
an execution is legal if it can be derived by committing and executing actions in a sequence of speculative executions

1. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \subseteq A_{i}$
2. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}: \mathrm{C}_{\mathrm{i}} \cap \operatorname{Read} \mid(\mathrm{hb}[\mathrm{W}[r], r] \Leftrightarrow$ $\left.h_{b}[W[r], r]\right) \wedge \neg h b_{i}[r, W[r]]$
3. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \triangleleft \mathrm{V}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}} \triangleleft \vee$
4. \forall i: $[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}$
5. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{A}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}}\right) \cap \operatorname{Read} \mid \mathrm{hb}_{\mathrm{i}}\left[\mathrm{W}_{\mathrm{i}}[r], r\right]$
6. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{C}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}-1}\right) \cap \operatorname{Read} \mid \mathrm{W}_{\mathrm{i}}[r] \subseteq \mathrm{C}_{\mathrm{i}-1}$
7. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{y}: \mathrm{C}_{\mathrm{i}}, \mathrm{x}: \mathrm{A}_{\mathrm{i}} \mid(\mathrm{y} \subseteq$ Special \wedge $\mathrm{hb}[\mathrm{x}, \mathrm{y}]) \Rightarrow \mathrm{x} \subseteq \mathrm{C}_{\mathrm{i}-1}$
initial execution: reads
can only see writes that happen-before them

Example: Java memory model

committing semantics
an execution is legal if it can be derived by committing and executing actions in a sequence of speculative executions

1. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \subseteq A_{i}$
2. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}: \mathrm{C}_{\mathrm{i}} \cap \operatorname{Read} \mid(\mathrm{hb}[\mathrm{W}[r], r] \Leftrightarrow$ $\left.h_{b}[W[r], r]\right) \wedge \neg h b_{i}[r, W[r]]$
3. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \triangleleft \mathrm{V}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}} \triangleleft \vee$
4. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}$
5. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{A}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}}\right) \cap \operatorname{Read} \mid \mathrm{hb}_{\mathrm{i}}\left[\mathrm{W}_{\mathrm{i}}[r], r\right]$
6. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{C}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}-1}\right) \cap \operatorname{Read} \mid \mathrm{W}_{\mathrm{i}}[r] \subseteq \mathrm{C}_{\mathrm{i}-1}$
7. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{y}: \mathrm{C}_{\mathrm{i}}, \mathrm{x}: \mathrm{A}_{\mathrm{i}} \mid(\mathrm{y} \subseteq$ Special \wedge $\mathrm{hb}[\mathrm{x}, \mathrm{y}]) \Rightarrow \mathrm{x} \subseteq \mathrm{C}_{\mathrm{i}-1}$
initial execution: reads
can only see writes that happen-before them

Example: Java memory model

committing semantics
an execution is legal if it can be derived by committing and executing actions in a sequence of speculative executions

1. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \subseteq A_{i}$
2. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}: \mathrm{C}_{\mathrm{i}} \cap \operatorname{Read} \mid(\mathrm{hb}[\mathrm{W}[r], r] \Leftrightarrow$ $\left.h_{b i}[W[r], r]\right) \wedge \neg h b_{i}[r, W[r]]$
3. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \triangleleft \mathrm{V}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}} \triangleleft \vee$
4. \forall i: $[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}$
5. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{A}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}}\right) \cap \operatorname{Read} \mid \mathrm{hb}_{\mathrm{i}}\left[\mathrm{W}_{\mathrm{i}}[r], r\right]$
6. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{C}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}-1}\right) \cap \operatorname{Read} \mid \mathrm{W}_{\mathrm{i}}[r] \subseteq \mathrm{C}_{\mathrm{i}-1}$
7. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{y}: \mathrm{C}_{\mathrm{i}}, \mathrm{x}: \mathrm{A}_{\mathrm{i}} \mid(\mathrm{y} \subseteq$ Special \wedge $\mathrm{hb}[\mathrm{x}, \mathrm{y}]) \Rightarrow \mathrm{x} \subseteq \mathrm{C}_{\mathrm{i}-1}$
$\mathrm{i}^{\text {th }}$ execution: committed reads can see committed writes; other reads must see writes that happenbefore them

$$
\begin{aligned}
& \left.E_{1} \leadsto E_{2} \ldots \not\right)^{\ldots} E_{k} \leadsto E^{n} \\
& A_{1}, W_{1}, \mathbf{V}_{1}, \quad A_{2}, W_{2}, \mathbf{V}_{2}, \quad A_{k}, W_{k}, V_{k}, \quad A, W, V_{,} \\
& \mathrm{I}_{1}, \mathrm{~m}_{1}, \quad \mathrm{I}_{2}, \mathrm{~m}_{2}, \quad \quad \mathrm{I}_{\mathrm{k},} \mathrm{~m}_{\mathrm{k},} \quad \quad \mathrm{I}, \mathrm{~m} \text {, } \\
& \mathbf{p O}_{1}, \mathrm{SO}_{1}, \quad \mathrm{pO}_{2}, \mathrm{SO}_{2}, \quad \mathrm{PO}_{\mathrm{k}}, \mathrm{SO}_{\mathrm{k}} \quad \mathrm{po}, \mathrm{SO}, \\
& \mathbf{s w}_{1}, \mathrm{hb}_{1} \quad \mathbf{s w}_{2}, \mathrm{hb}_{2} \quad \mathrm{sw}_{\mathrm{k}}, \mathrm{hb}_{\mathrm{k}} \quad \mathrm{sw}, \mathrm{hb}
\end{aligned}
$$

Example: Java memory model

committing semantics
an execution is legal if it can be derived by committing and executing actions in a sequence of speculative executions

1. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \subseteq A_{i}$
2. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}: \mathrm{C}_{\mathrm{i}} \cap \operatorname{Read} \mid(\mathrm{hb}[\mathrm{W}[r], r] \Leftrightarrow$ $\left.h_{b}[W[r], r]\right) \wedge \neg h b_{i}[r, W[r]]$
3. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \triangleleft \mathrm{V}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}} \triangleleft \vee$
4. \forall i: $[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}$
5. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{A}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}}\right) \cap \operatorname{Read} \mid \mathrm{hb}_{\mathrm{i}}\left[\mathrm{W}_{\mathrm{i}}[r], r\right]$
6. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{C}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}-1}\right) \cap \operatorname{Read} \mid \mathrm{W}_{\mathrm{i}}[r] \subseteq \mathrm{C}_{\mathrm{i}-1}$
7. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{y}: \mathrm{C}_{\mathrm{i}}, \mathrm{x}: \mathrm{A}_{\mathrm{i}} \mid(\mathrm{y} \subseteq$ Special \wedge $\mathrm{hb}[\mathrm{x}, \mathrm{y}]) \Rightarrow \mathrm{x} \subseteq \mathrm{C}_{\mathrm{i}-1}$
$\mathrm{i}^{\text {th }}$ execution: committed reads can see committed writes; other reads must see writes that happenbefore them

A

$$
\begin{aligned}
& E_{1} \xrightarrow{w} E_{2} \ldots \rightsquigarrow E_{k} \xrightarrow{w} \\
& A_{1}, W_{1}, \mathbf{V}_{1}, \quad A_{2}, W_{2}, \mathbf{V}_{2}, \quad A_{k}, W_{k}, V_{k}, \quad A, W, V_{,} \\
& \mathrm{I}_{1}, \mathrm{~m}_{1}, \quad \mathrm{I}_{2}, \mathrm{~m}_{2}, \quad \quad \mathrm{I}_{\mathrm{k},} \mathrm{~m}_{\mathrm{k},} \quad \quad \mathrm{I}, \mathrm{~m} \text {, } \\
& \mathbf{p O}_{1}, \mathrm{SO}_{1}, \quad \mathrm{pO}_{2}, \mathrm{SO}_{2}, \quad \mathrm{PO}_{\mathrm{k}}, \mathrm{SO}_{\mathrm{k}} \quad \mathrm{po}, \mathrm{SO}, \\
& \mathbf{s w}_{1}, \mathrm{hb}_{1} \quad \mathbf{s w}_{2}, \mathrm{hb}_{2} \quad \mathrm{sw}_{\mathrm{k}}, \mathrm{hb}_{\mathrm{k}} \quad \mathrm{sw}, \mathrm{hb}
\end{aligned}
$$

Example: Java memory model

committing semantics
an execution is legal if it can be derived by committing and executing actions in a sequence of speculative executions

1. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \subseteq A_{i}$
2. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}: \mathrm{C}_{\mathrm{i}} \cap \operatorname{Read} \mid(\mathrm{hb}[\mathrm{W}[r], r] \Leftrightarrow$ hbi[W[r], r]) $\wedge \neg h b_{i}[r, W[r]]$
3. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \triangleleft \mathrm{V}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}} \triangleleft \vee$
4. \forall i: $[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}$
5. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{A}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}}\right) \cap \operatorname{Read} \mid \mathrm{hb}_{\mathrm{i}}\left[\mathrm{W}_{\mathrm{i}}[r], r\right]$
6. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{C}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}-1}\right) \cap \operatorname{Read} \mid \mathrm{W}_{\mathrm{i}}[r] \subseteq \mathrm{C}_{\mathrm{i}-1}$
7. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{y}: \mathrm{C}_{\mathrm{i}}, \mathrm{x}: \mathrm{A}_{\mathrm{i}} \mid(\mathrm{y} \subseteq$ Special \wedge $\mathrm{hb}[\mathrm{x}, \mathrm{y}]) \Rightarrow \mathrm{x} \subseteq \mathrm{C}_{\mathrm{i}-1}$
$\mathrm{i}^{\text {th }}$ execution: committed reads can see committed writes; other reads must see writes that happenbefore them

$$
\begin{aligned}
& E_{1} \xrightarrow{w} E_{2} \ldots \leadsto E_{k} \xrightarrow{w} \\
& A_{1}, W_{1}, \mathbf{V}_{1}, \quad A_{2}, W_{2}, \mathbf{V}_{2}, \quad A_{k}, W_{k}, V_{k}, \quad A, W, V, \\
& \mathrm{I}_{1}, \mathrm{~m}_{1}, \quad \mathrm{I}_{2}, \mathrm{~m}_{2}, \quad \mathrm{I}_{\mathrm{k}}, \mathrm{~m}_{\mathrm{k}}, \quad \quad \mathrm{I}, \mathrm{~m} \text {, } \\
& \mathrm{pO}_{1}, \mathrm{SO}_{1}, \quad \mathrm{pO}_{2}, \mathrm{SO}_{2}, \quad \mathrm{pO}_{\mathrm{k}}, \mathrm{SO}_{\mathrm{k}}, \quad \mathrm{po}, \mathrm{sO}, \\
& \mathrm{sw}_{1}, \mathrm{hb}_{1} \quad \mathrm{sw}_{2}, \mathrm{hb}_{2} \quad \mathrm{sw}_{\mathrm{k}}, \mathrm{hb}_{\mathrm{k}} \quad \mathrm{sw}, \mathrm{hb}
\end{aligned}
$$

Example: Java memory model

committing semantics
an execution is legal if it can be derived by committing and executing actions in a sequence of speculative executions

1. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \subseteq A_{i}$
2. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}: \mathrm{C}_{\mathrm{i}} \cap \operatorname{Read} \mid(\mathrm{hb}[\mathrm{W}[r], r] \Leftrightarrow$ hbi[W[r], r]) $\wedge \neg h b_{i}[r, W[r]]$
3. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \triangleleft \mathrm{V}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}} \triangleleft \vee$
4. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}$
5. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{A}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}}\right) \cap \operatorname{Read} \mid \mathrm{hb}_{\mathrm{i}}\left[\mathrm{W}_{\mathrm{i}}[r], r\right]$
6. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{C}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}-1}\right) \cap \operatorname{Read} \mid \mathrm{W}_{\mathrm{i}}[r] \subseteq \mathrm{C}_{\mathrm{i}-1}$
7. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{y}: \mathrm{C}_{\mathrm{i}}, \mathrm{x}: \mathrm{A}_{\mathrm{i}} \mid(\mathrm{y} \subseteq$ Special \wedge $\mathrm{hb}[\mathrm{x}, \mathrm{y}]) \Rightarrow \mathrm{x} \subseteq \mathrm{C}_{\mathrm{i}-1}$
$\mathrm{i}^{\text {th }}$ execution: committed reads can see committed writes; other reads must see writes that happenbefore them

$$
\begin{aligned}
& E_{1} \leadsto E_{2} \ldots \leadsto E_{k} \rightarrow E_{k} \\
& A_{1}, W_{1}, \mathbf{V}_{1}, \quad A_{2}, W_{2}, \mathbf{V}_{2}, \quad A_{k}, W_{k}, V_{k}, \quad A, W, V, \\
& I_{1}, m_{1}, \quad \quad I_{2,} m_{2}, \quad \quad l_{k}, m_{k}, \quad \|_{,} m_{\text {, }} \\
& \mathrm{pO}_{1}, \mathrm{SO}_{1}, \quad \mathrm{pO}_{2}, \mathbf{S O}_{2}, \quad \mathrm{pO}_{\mathrm{k}}, \mathbf{S O}_{\mathrm{k}}, \quad \mathrm{po}, \mathrm{sO}, \\
& \mathrm{sw}_{1}, \mathrm{hb}_{1} \quad \mathrm{sw}_{2}, \mathrm{hb}_{2} \quad \mathrm{sw}_{\mathrm{k}}, \mathrm{hb}_{\mathrm{k}} \quad \mathrm{sw}, \mathrm{hb}
\end{aligned}
$$

Example: Java memory model

committing semantics
an execution is legal if it can be derived by committing and executing actions in a sequence of speculative executions

1. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \subseteq A_{i}$
2. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}: \mathrm{C}_{\mathrm{i}} \cap \operatorname{Read} \mid(\mathrm{hb}[\mathrm{W}[r], r] \Leftrightarrow$ $\left.h b_{i}[W[r], r]\right) \wedge \neg h b_{i}[r, W[r]]$
3. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}} \triangleleft \mathrm{V}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}} \triangleleft \vee$
4. $\forall \mathrm{i}:[1 . . \mathrm{k}] \mid \mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}-1} \triangleleft \mathrm{~W}$
5. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{A}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}}\right) \cap \operatorname{Read} \mid \mathrm{hb}_{\mathrm{i}}\left[\mathrm{W}_{\mathrm{i}}[r], r\right]$
6. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{r}:\left(\mathrm{C}_{\mathrm{i}} \backslash \mathrm{C}_{\mathrm{i}-1}\right) \cap \operatorname{Read} \mid \mathrm{W}_{\mathrm{i}}[r] \subseteq \mathrm{C}_{\mathrm{i}-1}$
7. $\forall \mathrm{i}:[1 . . \mathrm{k}], \mathrm{y}: \mathrm{C}_{\mathrm{i}}, \mathrm{x}: \mathrm{A}_{\mathrm{i}} \mid(\mathrm{y} \subseteq$ Special \wedge $\mathrm{hb}[\mathrm{x}, \mathrm{y}]) \Rightarrow \mathrm{x} \subseteq \mathrm{C}_{\mathrm{i}-1}$

Witness of legality (model)

\[

\]

witness: an execution of the program that satisfies both the assertions and the memory model constraints.

Proof of illegality (minimal core)

$x=0, y=0$	
$r \mid=x$	$r 2=y$
$y=1$	$x=1$
$r \mid==1 \& \& r 2==1 ?$	

1. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \mathrm{i} \neq \mathrm{j} \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}] \vee \operatorname{ord}[\mathrm{j}, \mathrm{i}] \quad$ SC
2. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \operatorname{ord}[\mathrm{i}, \mathrm{j}] \Rightarrow \neg \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
3. $\forall \mathrm{i}, \mathrm{j}, \mathrm{k}: \mathrm{A} \mid(\operatorname{ord}[\mathrm{i}, \mathrm{j}] \wedge \operatorname{ord}[\mathrm{i}, \mathrm{k}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{k}]$
4. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(\mathrm{t}[\mathrm{i}]=t[\mathrm{j}] \wedge \operatorname{co}[[i, j]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
5. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(\mathrm{t}[\mathrm{i}] \neq \mathrm{t}[\mathrm{j}] \wedge$ to $+[[[\mathrm{i}], \mathrm{t}[\mathrm{j}] \mathrm{]}) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
6. $\forall \mathrm{k}: \mathrm{A} \cap \operatorname{Read} \mid \neg \operatorname{ord}[\mathrm{k}, \mathrm{W}[\mathrm{k}]]$
7. $\forall \mathrm{k}: \mathrm{A} \cap$ Read, $\mathrm{j}: \mathrm{A} \cap$ Write |

$$
\neg(|[k]=|[j] \wedge \operatorname{ord}[W[k], j] \wedge \operatorname{ord}[j, k])
$$

$$
\begin{aligned}
& V\left[a_{001}\right]=0 \\
& v\left[a_{02}\right]=0 \\
& v\left[W\left[a_{11}\right]\right]=1 \\
& v\left[W\left[a_{21}\right]\right]=1 \\
& \forall i, j: A l i \neq j \Rightarrow \operatorname{ord}[i, j] \vee \operatorname{ord}[j, i] \\
& \forall i, j, k: A I(\operatorname{ord}[i, j] \wedge \operatorname{ord}[i, k]) \Rightarrow \operatorname{ord}[i, k] \\
& \forall i, j: A I\left(t[i]=t[j] \wedge c^{+}[i, j]\right) \Rightarrow \operatorname{ord}[i, j] \\
& \forall k: A \cap \operatorname{Read} I \neg \operatorname{ord}[k, W[k]]
\end{aligned}
$$

minimal core: an unsatisfiable subset of the program and memory model constraints that becomes satisfiable if one of its members is removed

Proof of illegality (minimal core)

$x=0, y=0$	
$\mathrm{rl}=\mathrm{x}$	r2 $=\mathrm{y}$
$y=1$	$x=1$
$r \mid==1 \& \& r 2==1$?	

1. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \mathrm{i} \neq \mathrm{j} \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}] \vee \operatorname{ord}[\mathrm{j}, \mathrm{i}] \quad$ SC
2. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \operatorname{ord}[\mathrm{i}, \mathrm{j}] \Rightarrow \neg \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
3. $\forall \mathrm{i}, \mathrm{j}, \mathrm{k}: \mathrm{A} \mid(\operatorname{ord}[\mathrm{i}, \mathrm{j}] \wedge \operatorname{ord}[\mathrm{i}, \mathrm{k}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{k}]$
4. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(t[\mathrm{i}]=\mathrm{t}[\mathrm{j}] \wedge \operatorname{co}+[\mathrm{i}, \mathrm{j}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
5. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(t[\mathrm{i}] \neq \mathrm{t}[\mathrm{j}] \wedge$ to $+[[[\mathrm{i}], \mathrm{t}[\mathrm{j}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
6. $\forall \mathrm{k}: \mathrm{A} \cap \operatorname{Read} \mid \neg \operatorname{ord}[\mathrm{k}, \mathrm{W}[\mathrm{k}]]$
7. $\forall \mathrm{k}: \mathrm{A} \cap$ Read, $\mathrm{j}: \mathrm{A} \cap$ Write |

$$
\neg(|[k]=|[j] \wedge \operatorname{ord}[W[k], j] \wedge \operatorname{ord}[j, k])
$$

$$
\begin{aligned}
& \mathrm{V}\left[\mathrm{a}_{01}\right]=\mathbf{0} \quad \mathrm{a}_{\mathrm{ij}} \text { represents the action (if } \\
& V\left[a_{02}\right]=\mathbf{0} \\
& V\left[W\left[a_{11}\right]\right]=1 \\
& V\left[W\left[a_{21}\right]\right]=1 \\
& \forall \mathrm{i}, \mathrm{j}: \mathrm{Ali} \neq \mathrm{j} \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}] \vee \operatorname{ord}[\mathrm{j}, \mathrm{i}] \\
& \forall \mathrm{i}, \mathrm{j}, \mathrm{k}: \mathrm{Al}(\operatorname{ord}[\mathrm{i}, \mathrm{j}] \wedge \operatorname{ord}[\mathrm{j}, \mathrm{k}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{k}] \\
& \forall \mathrm{i}, \mathrm{j}: \mathrm{Al}\left(\mathrm{t}[\mathrm{i}]=\mathrm{t}[\mathrm{j}] \wedge \mathrm{co}^{+}[\mathrm{i}, \mathrm{j}]\right) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}] \\
& \forall \mathrm{k} \text { : } \mathrm{A} \cap \operatorname{Read} \mathrm{I} \neg \operatorname{ord}[\mathrm{k}, \mathrm{~W}[\mathrm{k}]]
\end{aligned}
$$

minimal core: an unsatisfiable subset of the program and memory model constraints that becomes satisfiable if one of its members is removed

Proof of illegality (minimal core)

$x=0, y=0$	
$r l=x$	$r 2=y$
$y=1$	$x=1$
$r l==1 \& \& 2==1 ?$	

1. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \mathrm{i} \neq \mathrm{j} \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}] \vee \operatorname{ord}[\mathrm{j}, \mathrm{i}] \quad$ SC
2. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \operatorname{ord}[\mathrm{i}, \mathrm{j}] \Rightarrow \neg \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
3. $\forall \mathrm{i}, \mathrm{j}, \mathrm{k}: \mathrm{A} \mid(\operatorname{ord}[\mathrm{i}, \mathrm{j}] \wedge \operatorname{ord}[\mathrm{i}, \mathrm{k}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{k}]$
4. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid([\mathrm{i}]=\mathrm{t}[\mathrm{j}] \wedge \operatorname{co}[\mathrm{i}, \mathrm{j}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
5. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(\mathrm{t}[\mathrm{i}] \neq \mathrm{t}[\mathrm{j}] \wedge$ to $+[[[\mathrm{i}], \mathrm{t}[\mathrm{j}] \mathrm{]}) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
6. $\forall \mathrm{k}: \mathrm{A} \cap \operatorname{Read} \mid \neg \operatorname{ord}[\mathrm{k}, \mathrm{W}[\mathrm{k}]]$
7. $\forall \mathrm{k}: \mathrm{A} \cap$ Read, $\mathrm{j}: \mathrm{A} \cap$ Write |
$\neg([[k]=\mid[j] \wedge \operatorname{ord}[W[k], j] \wedge \operatorname{ord}[j, k])$

$$
\begin{aligned}
& V\left[a_{01}\right]=0 \\
& V\left[a_{02}\right]=0 \\
& V\left[W\left[a_{11}\right]\right]=1 \\
& V\left[W\left[a_{21}\right]\right]=1 \\
& \forall i, j: A I i \neq j \Rightarrow \operatorname{ord}[i, j] \vee \operatorname{ord}[j, i] \\
& \forall i, j, k: A I(\operatorname{ord}[i, j] \wedge \operatorname{ord}[j, k]) \Rightarrow \operatorname{ord}[i, k] \\
& \forall i, j: A I(t[i]=t[j] \wedge \operatorname{co}+[i, j]) \Rightarrow \operatorname{ord}[i, j] \\
& \forall k: A \cap \operatorname{Read} I \neg \operatorname{ord}[k, W[k]]
\end{aligned}
$$

minimal core: an unsatisfiable subset of the program and memory model constraints that becomes satisfiable if one of its members is removed

Proof of illegality (minimal core)

$x=0, y=0$	
$r l=x$	$r 2=y$
$y=1$	$x=1$
$r l==1 \& \& 2==1 ?$	

$$
\begin{aligned}
& V\left[a_{001}\right]=0 \\
& V\left[a_{02}\right]=0 \\
& V\left[W\left[a_{11}\right]\right]=1 \\
& V\left[W\left[a_{21}\right]\right]=1 \\
& \forall i, j: A I i \neq j \Rightarrow \operatorname{ord}[i, j] \vee \operatorname{ord}[j, i] \\
& \forall i, j, k: A I(\operatorname{ord}[i, j] \wedge \operatorname{ord}[i, k]) \Rightarrow \operatorname{ord}[i, k] \\
& \forall i, j: A I\left(t[i]=t[j] \wedge c^{+}[i, j]\right) \Rightarrow \operatorname{ord}[i, j] \\
& \forall k: A \cap \operatorname{Read} I \neg \operatorname{ord}[k, W[k]]
\end{aligned}
$$

2. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \operatorname{ord}[\mathrm{i}, \mathrm{j}] \Rightarrow \neg \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
3. $\forall \mathrm{i}, \mathrm{j}, \mathrm{k}: \mathrm{A} \mid(\operatorname{ord}[\mathrm{i}, \mathrm{j}] \wedge \operatorname{ord}[\mathrm{j}, \mathrm{k}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{k}]$
4. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(\mathrm{t}[\mathrm{i}]=t[j] \wedge \operatorname{co}+[i, j]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
5. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(\mathrm{t}[\mathrm{i}] \neq \mathrm{t}[\mathrm{j}] \wedge$ to $[\mathrm{t}[\mathrm{i}], \mathrm{t}[\mathrm{j}]]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
6. $\forall k: A \cap \operatorname{Read} \mid \neg \operatorname{ord}[k, W[k]]$
7. $\forall \mathrm{k}: \mathrm{A} \cap$ Read, $\mathrm{j}: \mathrm{A} \cap$ Write |

$$
\neg(|[k]=|[j] \wedge \operatorname{ord}[W[k], j] \wedge \operatorname{ord}[j, k])
$$

minimal core: an unsatisfiable subset of the program and memory model constraints that becomes satisfiable if one of its members is removed

Proof of illegality (minimal core)

$x=1, y=0$	
$r \mid=x$	$r 2=y$
$y=1$	$x=1$
$r \mid==1 \& \& r 2==1 ?$	

a01: write $(x, 1)$
a02: write $(y, 0)$
a11: $\operatorname{read}(x, 1)$
a12: write $(y, 1)$
a21: read $(\mathbf{y}, 1)$
a22: write($\mathrm{x}, 1$)

1. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \mathrm{i} \neq \mathrm{j} \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}] \vee \operatorname{ord}[\mathrm{j}, \mathrm{i}] \quad$ SC
2. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \operatorname{ord}[\mathrm{i}, \mathrm{j}] \Rightarrow \operatorname{ard}[\mathrm{j}, \mathrm{i}]$
3. $\forall \mathrm{i}, \mathrm{j}, \mathrm{k}: \mathrm{A} \mid(\operatorname{ord}[\mathrm{i}, \mathrm{j}] \wedge \operatorname{ord}[\mathrm{j}, \mathrm{k}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{k}]$
4. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid([[\mathrm{i}]=\mathrm{t}[\mathrm{j}] \wedge \cot [\mathrm{i}, \mathrm{j}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
5. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(\mathrm{t}[\mathrm{i}] \neq \mathrm{t}[\mathrm{j}] \wedge$ to $+[[[\mathrm{i}], \mathrm{t}[\mathrm{j}] \mathrm{]}) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
6. $\forall \mathrm{k}: \mathrm{A} \cap \operatorname{Read} \mid \neg \operatorname{ord}[\mathrm{k}, \mathrm{W}[\mathrm{k}]]$
7. $\forall \mathrm{k}: \mathrm{A} \cap$ Read, $\mathrm{j}: \mathrm{A} \cap$ Write |

$$
\neg(|[\mathrm{k}]=|[\mathrm{j}] \wedge \operatorname{ord}[W[\mathrm{k}], \mathrm{j}] \wedge \operatorname{ord}[\mathrm{j}, \mathrm{k}])
$$

$V\left[a_{01}\right]=0$
$V\left[a_{02}\right]=0$
$V\left[W\left[a_{11}\right]\right]=1$
$V\left[W\left[a_{21}\right]\right]=1$
$\forall i, j: A I i \neq j \Rightarrow \operatorname{ord}[i, j] \vee \operatorname{ord}[j, i]$

$\forall i, j, k: A I(\operatorname{ord}[i, j] \wedge \operatorname{ord}[j, k]) \Rightarrow \operatorname{ord}[i, k]$

$\forall i, j: A I(t[i]=t[j] \wedge \cot [i, j]) \Rightarrow \operatorname{ord}[i, j]$

$\forall k: A \cap \operatorname{Read} I \neg \operatorname{ord}[k, W[k]]$
minimal core: an unsatisfiable subset of the program and memory model constraints that becomes satisfiable if one of its members is removed

Proof of illegality (minimal core)

$x=0, y=0$	
$r I=x$	$r 2=y$
$y=1$	$x=1$
	$r 2==1 ?$

a01: write($\mathrm{x}, \mathrm{0}$)
a02: write $(\mathrm{y}, 0$)
a11: read(x, 0)
a12: write $(y, 1)$
a21: read $(\mathbf{y}, 1)$
a22: write($\mathrm{x}, 1$)

1. $\forall i, j: A \mid i \neq j \Rightarrow \operatorname{ord}[i, j] \vee \operatorname{ord}[j, i]$

SC
2. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \operatorname{ord}[\mathrm{i}, \mathrm{j}] \Rightarrow \neg \operatorname{ord}[\mathrm{j}, \mathrm{i}]$
3. $\forall \mathrm{i}, \mathrm{j}, \mathrm{k}: \mathrm{A} \mid(\operatorname{ord}[\mathrm{i}, \mathrm{j}] \wedge \operatorname{ord}[\mathrm{j}, \mathrm{k}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{k}]$
4. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid([\mathrm{i}]=t[j] \wedge \operatorname{co}+[i, j]) \Rightarrow \operatorname{ord}[i, j]$
5. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(\mathrm{t}[\mathrm{i}] \neq \mathrm{t}[\mathrm{j}] \wedge$ to $+[\mathrm{t}[\mathrm{i}], \mathrm{t}[\mathrm{j}]]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
6. $\forall k: A \cap \operatorname{Read} \mid \neg \operatorname{ord}[k, W[k]]$
7. $\forall \mathrm{k}: \mathrm{A} \cap$ Read, $\mathrm{j}: \mathrm{A} \cap$ Write |

$$
\neg(|[\mathrm{k}]=|[\mathrm{j}] \wedge \operatorname{ord}[\mathrm{W}[\mathrm{k}], \mathrm{j}] \wedge \operatorname{ord}[\mathrm{j}, \mathrm{k}])
$$

$$
\begin{aligned}
& V\left[a_{01}\right]=\mathbf{0} \\
& V\left[a_{02}\right]=0 \\
& V\left[W\left[a_{11}\right]\right]=1 \\
& V\left[W\left[a_{21}\right]\right]=1 \\
& \forall i, j: A I i \neq j \Rightarrow \operatorname{ord}[i, j] \vee \operatorname{ord}[j, i] \\
& \forall i, j, k: A I(\operatorname{ord}[i, j] \wedge \operatorname{ord}[j, k]) \Rightarrow \operatorname{ord}[i, k] \\
& \forall i, j: A I(t[i]=t[j] \wedge \operatorname{co}+[i, j]) \Rightarrow \operatorname{ord}[i, j] \\
& \forall k: A \cap \operatorname{Read} I \neg \operatorname{ord}[k, W[k]]
\end{aligned}
$$

minimal core: an unsatisfiable subset of the program and memory model constraints that becomes satisfiable if one of its members is removed

Proof of illegality (minimal core)

$x=0, y=0$	
$r \mid=x$	$r 2=y$
$y=1$	$x=1$
$r \mid==1 \& \& r 2==1 ?$	

a01: write($\mathrm{x}, 0$)
a02: write (y, 0)
a12: write $(y, 1)$
a21: read(y, 1)
a22: write($\mathrm{x}, 1$)
a11: $\operatorname{read}(x, 1)$

1. $\forall i, j: A \mid i \neq j \Rightarrow \operatorname{ord}[i, j] \vee \operatorname{ord}[j, i]$

SC
2. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid \operatorname{ord}[\mathrm{i}, \mathrm{j}] \Rightarrow \operatorname{ard}[\mathrm{j}, \mathrm{i}]$
3. $\forall \mathrm{i}, \mathrm{j}, \mathrm{k}: \mathrm{A} \mid(\operatorname{ord}[\mathrm{i}, \mathrm{j}] \wedge \operatorname{ord}[\mathrm{j}, \mathrm{k}]) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{k}]$
5. $\forall \mathrm{i}, \mathrm{j}: \mathrm{A} \mid(\mathrm{t}[\mathrm{i}] \neq \mathrm{t}[\mathrm{j}] \wedge \mathrm{to}+[[[\mathrm{i}], \mathrm{t}[\mathrm{j}] \mathrm{]}) \Rightarrow \operatorname{ord}[\mathrm{i}, \mathrm{j}]$
6. $\forall \mathrm{k}: \mathrm{A} \cap \operatorname{Read} \mid \neg \operatorname{ord}[\mathrm{k}, \mathrm{W}[\mathrm{k}]]$
7. $\forall \mathrm{k}: \mathrm{A} \cap$ Read, $\mathrm{j}: \mathrm{A} \cap$ Write |

$$
\neg(|[\mathrm{k}]=|[\mathrm{j}] \wedge \operatorname{ord}[\mathrm{W}[\mathrm{k}], \mathrm{j}] \wedge \operatorname{ord}[\mathrm{j}, \mathrm{k}])
$$

$$
\begin{aligned}
& V\left[a_{01}\right]=0 \\
& V\left[a_{02}\right]=0 \\
& V\left[W\left[a_{11}\right]\right]=1 \\
& V\left[W\left[a_{21}\right]\right]=1 \\
& \forall i, j: A I i \neq j \Rightarrow \operatorname{ord}[i, j] \vee \operatorname{ord}[j, i] \\
& \forall i, j, k: A I(\operatorname{ord}[i, j] \wedge \operatorname{ord}[j, k]) \Rightarrow \operatorname{ord}[i, k] \\
& \forall i, j: A I(t[i]=t[j] \wedge \cot [i, j]) \Rightarrow \operatorname{ord}[i, j] \\
& \forall k: A \cap \operatorname{Read} I \neg \operatorname{ord}[k, W[k]]
\end{aligned}
$$

minimal core: an unsatisfiable subset of the program and memory model constraints that becomes satisfiable if one of its members is removed

Approach

Approach

Approach

Approach

Approach

Approach

Preprocessing

```
public class Test1 {
    static int }x=0
    static int y = 0;
```

@thread
public static void thread1) \{
final int $r 1=x$;
if $(r 1!=\mathbf{0})$
$y=r 1$;
else
$y=1 ;$
assert $\mathrm{r} 1==1$;
\}

@thread

public static void thread2) \{
final int $r 2=y$;
$\mathrm{x}=1$;
assert $r 2==1$;
\}
\}
finitize P and
convert it to an
intermediate form
(P)

Preprocessing

```
public class Test1 {
    static int }x=0
    static int y = 0;
    @thread
    public static void thread1) {
        final int r1 = x;
        if (r1!= 0)
            y = r1;
        else
            y = 1;
        assert r1==1;
    }
    @thread
    public static void thread2) {
        final int r2 = y;
        x=1;
        assert r2==1;
    }
}
```


Preprocessing

public class Test1 \{
static int $x=0$;
static int $\mathrm{y}=0$;
@thread
public static void thread1) \{
final int $r 1=x$;
if $(r 1!=\mathbf{0})$
$y=r 1$;
else
$y=1 ;$
assert $\mathrm{r} 1==1$;
\}

@thread

public static void thread2) \{
final int $r 2=y$;
$\mathrm{x}=1$;
assert $\mathrm{r} 2==1$;
\}
\}

Preprocessing

```
public class Test1 \{
    static int \(x=0\);
    static int \(y=0\);
    @thread
    public static void thread1) \{
        final int \(r 1=x\);
        if \((r 1!=\mathbf{0})\)
            \(y=r 1\);
        else
            \(y=1 ;\)
        assert \(\mathrm{r} 1==1\);
    \}
    @thread
    public static void thread2) \{
        final int \(r 2=y\);
        \(\mathrm{x}=1\);
        assert \(\mathrm{r} 2==1\);
    \}
\}
```

\mathbf{s}	guard
13	$r 1!=0$
14	$r 1==0$
$*$	true

Preprocessing

```
public class Test1 \{
    static int \(x=0\);
    static int \(y=0\);
    @thread
    public static void thread1) \{
        final int \(r 1=x\);
        if \((r 1!=\mathbf{0})\)
            \(y=r 1\);
        else
            \(y=1 ;\)
        assert \(\mathrm{r} 1==1\);
    \}
    @thread
    public static void thread2) \{
        final int \(\mathrm{r} 2=\mathrm{y}\);
        \(x=1\);
        assert r2==1;
    \}
\}
```


Translation

Translation

s	Loc	Val	Guard
00			
01			
02			
03			
10			
11			
12			
13			
14			
15			
16			
20			
21			
22			
23			
24			

Translation

maps reads, writes, locks, and unlocks to relations representing locations that are accessed

s	Loc	Val	Guard
00			
01	x		
02	y		
03			
10			
11	x		
12			
13	y		
14	y		
15			
16			
20			
21	y		
22	x		
23			
24			

Translation

maps reads, writes, locks, and unlocks to relations representing locations that are accessed

Translation

\mathbf{s}	guard	00 start
13	$r 1!=0$	\downarrow
14	$r 1==0$	01 write $(x, 0)$
$*$	true	\downarrow
\mathbf{s}	maySee	02 write $(y, 0)$
11	$\{01,22\}$	\downarrow
21	$\{02,13,14\}$	03 end

> maps writes and asserts to relational encodings of the values written or asserted

s	Loc	Val	Guard
00			
01	x	$\operatorname{Bits}(0)$	
02	y	$\operatorname{Bits}(0)$	
03			
10			
11	x		
12			
13	y	$r 1$	
14	y	$\operatorname{Bits}(1)$	
15		$r 1=\operatorname{Bits}(1)$	
16			
20			
21	y		$\operatorname{Bits}(1)$
22	x	$r 2=\operatorname{Bits}(1)$	
23			
24			

Translation

maps writes and asserts to relational encodings of the values written or asserted

s	Loc	Val	Guard
00			
01	x	Bits(0)	
02	y	Bits(0)	
03			
relational variable that acts as a placeholder for the value read into $r 1$			
		Bits(1)	
15		$r 1=\operatorname{Bits}(1)$	
16			
20			
21	y		
22	x	Bits(1)	
23		r2=Bits(1)	
24			

Translation

maps statements to formulas that encode their guards

s	Loc	Val	Guard
00			T
01	x	$\operatorname{Bits}(0)$	T
02	y	$\operatorname{Bits}(0)$	T
03			T
10			T
11	x		T
12			T
13	y	$\boldsymbol{r 1}$	$r 1 \neq \operatorname{Bits}(0)$
14	y	$\operatorname{Bits}(1)$	$\boldsymbol{r 1}=\operatorname{Bits}(0)$
15		$r 1=\operatorname{Bits}(1)$	T
16			T
20			T
21	y		T
22	x	$\operatorname{Bits}(1)$	T
23		$r 2=\operatorname{Bits}(1)$	T
24			T

Translation

Constraint assembly

s	Loc	Val	Guard
$\mathbf{0 0}$			T
$\mathbf{0 1}$	x	$\operatorname{Bits}(0)$	T
$\mathbf{0 2}$	y	$\operatorname{Bits}(0)$	T
$\mathbf{0 3}$			T
$\mathbf{1 0}$			T
$\mathbf{1 1}$	x		T
$\mathbf{1 2}$			T
$\mathbf{1 3}$	y	$\boldsymbol{r 1}$	$\boldsymbol{r 1}=\operatorname{Bits}(0)$
$\mathbf{1 4}$	y	$\operatorname{Bits}(1)$	$\boldsymbol{r 1}=\operatorname{Bits}(0)$
$\mathbf{1 5}$		$\boldsymbol{r 1}=\operatorname{Bits}(1)$	T
$\mathbf{1 6}$			T
$\mathbf{2 0}$			T
$\mathbf{2 1}$	y		T
$\mathbf{2 2}$	x	$\operatorname{Bits}(1)$	T
$\mathbf{2 3}$		r2=Bits(1)	T
$\mathbf{2 4}$			T

construct the legality formula for $R(P)$ and M

F(P, M)

Constraint assembly

\mathbf{s}	Loc	Val	Guard
$\mathbf{0 0}$			T
$\mathbf{0 1}$	x	$\operatorname{Bits}(0)$	T
$\mathbf{0 2}$	y	$\operatorname{Bits}(0)$	T
$\mathbf{0 3}$			T
$\mathbf{1 0}$			T
$\mathbf{1 1}$	x		T
$\mathbf{1 2}$			T
$\mathbf{1 3}$	y	$\boldsymbol{r 1}$	$\boldsymbol{r 1}=\operatorname{Bits}(0)$
$\mathbf{1 4}$	y	$\operatorname{Bits}(1)$	$\boldsymbol{r 1}=\operatorname{Bits}(0)$
$\mathbf{1 5}$		$\boldsymbol{r 1}=\operatorname{Bits}(1)$	T
$\mathbf{1 6}$			T
$\mathbf{2 0}$			T
$\mathbf{2 1}$	y		T
$\mathbf{2 2}$	x	$\operatorname{Bits}(1)$	T
$\mathbf{2 3}$		r2=Bits(1)	T
$\mathbf{2 4}$			T

$F(R(P), E) \wedge$
$F_{\alpha}(\mathbf{R}(P), E) \wedge$
$\wedge_{1 \text { isik }} F\left(R(P), E_{i}\right) \wedge$
$M\left(E, E_{1}, \ldots, E_{k}\right)$

Constraint assembly

s	Loc	Val	Guard
$\mathbf{0 0}$			T
$\mathbf{0 1}$	x	$\operatorname{Bits}(0)$	T
$\mathbf{0 2}$	y	$\operatorname{Bits}(0)$	T
$\mathbf{0 3}$			T
$\mathbf{1 0}$			T
$\mathbf{1 1}$	x		T
$\mathbf{1 2}$			T
$\mathbf{1 3}$	y	$\boldsymbol{r 1}$	$\boldsymbol{r 1}=\operatorname{Bits}(0)$
$\mathbf{1 4}$	y	$\operatorname{Bits}(1)$	$\boldsymbol{r 1}=\operatorname{Bits}(0)$
$\mathbf{1 5}$		$\boldsymbol{r 1}=\operatorname{Bits}(1)$	T
$\mathbf{1 6}$			T
$\mathbf{2 0}$			T
$\mathbf{2 1}$	y		T
$\mathbf{2 2}$	x	$\operatorname{Bits}(1)$	T
$\mathbf{2 3}$		r2=Bits(1)	T
$\mathbf{2 4}$			T

The witness execution E
respects the sequential
semantics of P

$F(R(P), E) \wedge$
$F_{\alpha}(R(P), E) \wedge$
$\wedge_{1 \leq i \leq k} F\left(R(P), E_{i}\right) \wedge$
$M\left(E, E_{1}, \ldots, E_{k}\right)$

Constraint assembly

s	Loc	Val	Guard
00			T
01	x	Bits(0)	T
02	y	Bits(0)	T
03			T
10			T
11	x		T
12			T
13	y	$r 1$	$\boldsymbol{r 1}=$ Bits(0)
14	y	Bits(1)	$\boldsymbol{r 1}=\operatorname{Bits}(0)$
15		$\boldsymbol{r 1}=\mathrm{Bits}(1)$	T
16			T
20			T
21	y		T
22	x	Bits(1)	T
23		$\mathbf{r 2}=\mathrm{Bits}(1)$	T
24			T

E executes and
satisfies the assertions in P

The witness execution E respects the sequential semantics of P
$F(R(P), E) \wedge$ $\mathrm{F}_{\alpha}(\mathbf{R}(\mathrm{P}), \mathrm{E}) \wedge$ $\left.\wedge_{1 \text { isk }} \mathbf{F (R (P)}, E_{i}\right) \wedge$ $M\left(E, E_{1}, \ldots, E_{k}\right)$

Constraint assembly

s	Loc	Val	Guard
00			T
01	x	Bits(0)	T
02	y	Bits(0)	T
03			T
10			T
11	x		T
12			T
13	y	$r 1$	$\boldsymbol{r 1}=$ Bits(0)
14	y	Bits(1)	$\boldsymbol{r 1}=\operatorname{Bits}(0)$
15		$\boldsymbol{r 1}=\mathrm{Bits}(1)$	T
16			T
20			T
21	y		T
22	x	Bits(1)	T
23		$\mathbf{r 2}=\mathrm{Bits}(1)$	T
24			T

E executes and satisfies the assertions in P

Each speculative execution E_{i} respects the sequential semantics of P

The witness execution E respects the sequential semantics of P
$F(R(P), E) \wedge$ $F_{\alpha}(\mathbf{R}(\mathbf{P}), E) \wedge$ $\left.\wedge_{1 \text { isk }} \mathbf{F (R (P)}, E_{i}\right) \wedge$ $M\left(E, E_{1}, \ldots, E_{k}\right)$

Constraint assembly

s	Loc	Val	Guard
00			T
01	x	Bits(0)	T
02	y	Bits(0)	T
03			T
10			T
11	x		T
12			T
13	y	$r 1$	$r 1 \neq \operatorname{Bits}(0)$
14	y	Bits(1)	$\boldsymbol{r 1}=\operatorname{Bits}(0)$
15		$\boldsymbol{r 1}=\mathrm{Bits}(1)$	T
16			T
20			T
21	y		T
22	x	Bits(1)	T
23		$\boldsymbol{r} 2=\operatorname{Bits}(1)$	T
24			T

The witness execution E respects the sequential semantics of P

E executes and satisfies the assertions in P

Each speculative execution E_{i} respects the sequential semantics of P
$M\left(E, E_{1}, \ldots, E_{k}\right)$
E and all E_{i} respect the memory model constraints

Constraint assembly

\mathbf{s}	Loc	Val	Guard
$\mathbf{0 0}$			T
$\mathbf{0 1}$	x	$\operatorname{Bits}(0)$	T
$\mathbf{0 2}$	y	$\operatorname{Bits}(0)$	T
$\mathbf{0 3}$			T
$\mathbf{1 0}$			T
$\mathbf{1 1}$	x		T
$\mathbf{1 2}$			T
$\mathbf{1 3}$	y	$\boldsymbol{r 1}$	$\boldsymbol{r 1}=\operatorname{Bits}(0)$
$\mathbf{1 4}$	y	$\operatorname{Bits}(1)$	$\boldsymbol{r 1}=\operatorname{Bits}(0)$
$\mathbf{1 5}$		$\boldsymbol{r 1}=\operatorname{Bits}(1)$	T
$\mathbf{1 6}$			T
$\mathbf{2 0}$			T
$\mathbf{2 1}$	y		T
$\mathbf{2 2}$	x	$\operatorname{Bits}(1)$	T
$\mathbf{2 3}$		$\boldsymbol{r 2 = B i t s}(1)$	T
$\mathbf{2 4}$			T

$\mathrm{F}(\mathrm{R}(\mathrm{P}), \mathrm{E}) \wedge$ $F_{\alpha}(\mathbf{R}(P), E)$

$\wedge_{1 \text { isisk }} \mathrm{F}\left(\mathrm{R}(\mathrm{P}), \mathrm{E}_{\mathrm{i}}\right) \wedge$ $M\left(E, E_{1}, \ldots, E_{k}\right)$

Constraint assembly: $\mathrm{F}_{\alpha}(\mathrm{R}(\mathrm{P}), \mathrm{E})$

\mathbf{s}	Loc	Val	Guard
$\mathbf{0 0}$			T
$\mathbf{0 1}$	x	$\operatorname{Bits}(0)$	T
$\mathbf{0 2}$	y	$\operatorname{Bits}(0)$	T
$\mathbf{0 3}$			T
$\mathbf{1 0}$			T
$\mathbf{1 1}$	x		T
$\mathbf{1 2}$			T
$\mathbf{1 3}$	y	$\boldsymbol{r 1}$	$\boldsymbol{r 1}=\operatorname{Bits}(0)$
$\mathbf{1 4}$	y	$\operatorname{Bits}(1)$	$\boldsymbol{r 1}=\operatorname{Bits}(0)$
$\mathbf{1 5}$		$\boldsymbol{r 1}=\operatorname{Bits}(1)$	T
$\mathbf{1 6}$			T
$\mathbf{2 0}$			T
21	y		T
$\mathbf{2 2}$	x	$\operatorname{Bits}(1)$	T
$\mathbf{2 3}$		$\boldsymbol{r 2}=\operatorname{Bits}(1)$	T
$\mathbf{2 4}$			T

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
maps writes to written values
m maps locks/unlocks to monitors

$\mathrm{F}(\mathrm{R}(\mathrm{P}), \mathrm{E})$

$\mathbf{F}_{\alpha}(\mathbf{R}(\mathbf{P}), \mathrm{E})$
$\wedge_{1 \text { sisk }} \mathrm{F}\left(\mathrm{R}(\mathrm{P}), \mathrm{E}_{\mathrm{i}}\right) \wedge$
$M\left(E, E_{1}, \ldots, E_{k}\right)$

Constraint assembly: $\mathrm{F}_{\alpha}(\mathrm{R}(\mathrm{P}), \mathrm{E})$

S	Loc	Val	Guard	
00 start			T	a 00
01 write($\mathrm{x}, 0$)	x	Bits(0)	T	a_{01}
02 write($\mathrm{y}, 0$)	y	Bits(0)	T	a_{02}
03 end			T	a_{03}
10 start			T	a_{10}
11 r1=read(x)	x		T	a_{11}
12 branch(r1!=0)			T	
13 write(y, r1)	y	r1	$\boldsymbol{r 1}=$ Bits(0)	a_{13}
14 write(y, 1)	y	Bits(1)	$\boldsymbol{r 1}=\operatorname{Bits}(0)$	a_{14}
15 assert(r1==1)		$\boldsymbol{r 1}=\mathrm{Bits}(1)$	T	
16 end			T	a_{16}
20 start			T	a_{20}
21 r2=read(y)	y		T	a_{21}
22 write(x, 1)	x	Bits(1)	T	a_{22}
23 assert(r2==1)		$\boldsymbol{r} 2=\operatorname{Bits}(1)$	T	
24 end			T	a_{24}

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
maps writes to written values
m maps locks/unlocks to monitors
relational variable $a_{i j}$ represents the action performed if E executes the statement ij

$\mathrm{F}(\mathrm{R}(\mathrm{P}), \mathrm{E})$

$\mathbf{F}_{\alpha}(\mathbf{R}(\mathbf{P}), \mathbf{E})$

$\wedge_{1 \text { isisk }} \mathrm{F}\left(\mathrm{R}(\mathrm{P}), \mathrm{E}_{\mathrm{i}}\right) \wedge$

Constraint assembly: $\mathrm{F}_{\alpha}(\mathrm{R}(\mathrm{P}), \mathrm{E})$

S	Loc	Val	Guard	
00 start			T	a00
01 write(x, 0)	x	Bits(0)	T	a_{01}
02 write(y, 0)	y	Bits(0)	T	a_{02}
03 end			T	a_{03}
10 start		V[W[a11]	T	a_{10}
11 r1=read(x)	x	[V[a11]	T	a_{11}
12 branch(r1!=0)			T	
13 write(y, r1)	y	$r 1$	$r 1 \neq$ Bits(0)	a_{13}
14 write(y, 1)	y	Bits(1)	$\boldsymbol{r 1}=\operatorname{Bits}(0)$	a_{14}
15 assert(r1==1)		$\boldsymbol{r 1}=$ Bits(1)	T	
16 end			T	a_{16}
20 start			T	a_{20}
21 r2=read(y)	y		T	a_{21}
22 write(x, 1)	x	Bits(1)	T	a_{22}
23 assert(r2==1)		$\boldsymbol{r} 2=\operatorname{Bits}(1)$	T	
24 end			T	a_{24}
		[a21]]		

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
maps writes to written values
m maps locks/unlocks to monitors

F(R(P), E)

$\mathbf{F}_{\alpha}(\mathbf{R}(\mathbf{P}), \mathbf{E})$

$\wedge_{1 \leq i \leq k} F\left(R(P), E_{i}\right) \wedge$
M(E, $\left.E_{1}, \ldots, E_{k}\right)$

Constraint assembly: $\mathrm{F}_{\alpha}(\mathrm{R}(\mathrm{P}), \mathrm{E})$

s	Loc	Val	Guard		
00 start	xy	Bits(0) Bits(0)		aoo	
01 write(x, 0)			T	a_{01}	
02 write(y, 0)			T	202	
03 end			T	аоз	
10 start		$V\left[W\left[a_{11}\right]\right]$	-	a 10	
12 branch(r1!=0)			T	a_{11}	
			r1 r1 ${ }^{\text {r }}$		
13 write(y, r1)					a_{13}
14 write($\mathrm{y}, 1$)	y		$r 1=\operatorname{Bits}(0)$	a_{14}	
$15 \text { assert(r1==1) }$	y		T		
16 end		$\boldsymbol{r 1}=\operatorname{Bits}(1)$	T	${ }^{16}$	
			T	a_{20}	
21 r2=read (y)			T	a_{21}	
$23 \text { assert(r2==1) }$		Bits(1)	T	a_{22}	
		$\boldsymbol{r 2}=$ Bits(1)	T		
$24 \text { end }$			T	a_{24}	
	$V\left[W\left[a_{21}\right]\right]$				

$F(\mathrm{R}(\mathrm{P}), \mathrm{E}) \wedge$
$V\left[W\left[a_{11}\right]\right]=\operatorname{Bits}(1) \wedge$
$V\left[W\left[a_{21}\right]\right]=\operatorname{Bits}(1) \wedge$
$\wedge_{1 \leq i \leq k} \mathrm{~F}\left(\mathrm{R}(\mathrm{P}), \mathrm{E}_{\mathrm{i}}\right) \wedge$
$\operatorname{M}\left(\mathrm{E}_{1}, \mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{k}}\right)$

Constraint assembly: F(R(P), E)

S	Loc	Val	Guard	
00 start			T	a00
01 write(x, 0)	x	Bits(0)	T	a_{01}
02 write(y, 0)	y	Bits(0)	T	a_{02}
03 end			T	a_{03}
10 start		V[W[a11]	T	a_{10}
11 r1=read(x)	x	W[a11]	T	a_{11}
12 branch(r1!=0)			T	
13 write(y, r1)	y	$r 1$	$\boldsymbol{r 1}=$ Bits(0)	a_{13}
14 write($\mathrm{y}, 1$)	y	Bits(1)	$\boldsymbol{r 1}=\operatorname{Bits}(0)$	a_{14}
15 assert(r1==1)		$\boldsymbol{r 1}=$ Bits(1)	T	
16 end			T	a_{16}
20 start			T	a_{20}
21 r2=read(y)	y		T	a_{21}
22 write(x, 1)	x	Bits(1)	T	a_{22}
23 assert(r2==1)		$\boldsymbol{r} \mathbf{2}=\mathrm{Bits}(1)$	T	
24 end			T	a_{24}
		[a21]]		

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
maps writes to written values
m maps locks/unlocks to monitors

F(R(P), E)

$V\left[W\left[a_{11}\right]\right]=B i t s(1) \wedge$ $V\left[W\left[a_{2} 1\right]\right]=\operatorname{Bits}(1) \wedge$ $\wedge_{1 \text { isisk }} \mathrm{F}\left(\mathrm{R}(\mathrm{P}), \mathrm{E}_{\mathrm{i}}\right) \wedge$ M(E, E1, ..., Ek)

Constraint assembly: F(R(P), E)

S	Loc	Val	Guard	
00 start			T	aoo
01 write(x, 0)	x	Bits(0)	T	a_{01}
02 write(y, 0)	y	Bits(0)	T	a02
03 end			T	a03
10 start		VW[a11]	T	a_{10}
11 r1=read(x)	x	[W[a11]	T	a_{11}
12 branch(r1!=0)			T	
13 write(y, r1)	y	$r 1$	$\boldsymbol{r 1}=\mathrm{Bits}(0)$	a_{13}
14 write (y, 1)	y	Bits(1)	$\boldsymbol{r 1}=\operatorname{Bits}(0)$	a_{14}
15 assert(r1==1)		$\boldsymbol{r 1}=\operatorname{Bits}(1)$	T	
16 end			T	a_{16}
20 start			T	a_{20}
21 r2=read(y)	y		T	a_{21}
22 write($\mathrm{x}, 1$)	x	Bits(1)	T	a_{22}
23 assert(r2==1)		$r 2=\operatorname{Bits}(1)$	T	
24 end			T	a_{24}
		$\left.\left[a_{21}\right]\right]$		

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
maps writes to written values
m maps locks/unlocks to monitors
$\wedge_{s \in P} \mathrm{~F}(\mathbf{s}, \mathbf{R}(\mathrm{P}), \mathrm{E}) \wedge$
$A=a_{00} \cup \ldots \cup a_{24}$
$V\left[W\left[a_{11}\right]\right]=B i t s(1) \wedge$
$V\left[W\left[a_{21}\right]\right]=B i t s(1) \wedge$
$\wedge_{1 \leq i \leq k} \mathrm{~F}\left(\mathrm{R}(\mathrm{P}), \mathrm{E}_{\mathrm{i}}\right) \wedge$
M(E, $\left.E_{1}, \ldots, E_{k}\right)$

Constraint assembly: F(R(P), E)

Constraint assembly: F(R(P), E)

- 0 or 1 action performed
- action performed iff the guard is true
- no other statement performs the same action - action location is valid
- action value is valid
$\wedge_{s \in P} F(s, R(P), E) \wedge$
$A=a_{00} \cup \ldots \cup a_{24}$
$V\left[W\left[a_{11}\right]\right]=B i t s(1) \wedge$ $V\left[W\left[a_{21}\right]\right]=B i t s(1) \wedge$ $\wedge_{1 \text { isisk }} \mathrm{F}\left(\mathrm{R}(\mathrm{P}), \mathrm{E}_{\mathrm{i}}\right) \wedge$ M(E, $\left.E_{1}, \ldots, E_{k}\right)$

Constraint assembly: F(R(P), E)

$$
\left|a_{13}\right| \leq 1 \wedge
$$

- action performed iff the guard is true
- no other statement performs the same action - action location is valid - action value is valid
$\wedge_{s \in P} \mathrm{~F}(\mathrm{~s}, \mathrm{R}(\mathrm{P}), \mathrm{E}) \wedge$
$A=a_{00} \cup \ldots \cup a_{24}$
$V\left[W\left[a_{11}\right]\right]=B i t s(1) \wedge$ $V\left[W\left[a_{21}\right]\right]=B i t s(1) \wedge$ $\wedge_{1 \leq i \leq k} F\left(R(P), E_{i}\right) \wedge$ M(E, $\left.E_{1}, \ldots, E_{k}\right)$

Constraint assembly: F(R(P), E)

s	Loc	Val	Guard	
00 start			T	200
01 write($\mathrm{x}, \mathrm{C})$	x	Bits(0)	T	a 01
02 write(y, 0)	y	Bits(0)	T	202
03 end			T	аоз
10 start		V[W[a ${ }_{11}$]	${ }^{\top}$	a10
$11 \mathrm{r} 1=\mathrm{read}(\mathrm{x})$		[W[a11]]	T	a_{11}
12 branch($(\mathrm{rl}$! $=0$)			\bigcirc	
13 write(y, r1)	y	$r 1$	$\boldsymbol{r 1}=\mathrm{Bits}(0)$	a_{13}
14 write(y, 1)	y	Bits(1)	$r 1=B i t s(0)$	a_{14}
15 assert(r1 ==1)		$r 1=$ Bits(1)	T T	
16 end			T	a_{16}
20 start			T	a_{20}
21 r2=read(y)	y		T	a_{21}
22 write(x, 1)	x	Bits(1)	T	a_{22}
23 assert(r2==1)		r2=Bits(1)	T	
24 end			T	a_{24}

A set of all executed actions
W maps reads to seen writes
\checkmark maps writes to written values
maps writes to written values
$\left|a_{13}\right| \leq 1 \wedge$
$\left(\left|a_{13}\right|=1 \Leftrightarrow\right.$
$\left.\mathrm{V}\left[\mathrm{W}\left[\mathrm{a}_{11}\right]\right]=\operatorname{Bits}(\mathbf{0})\right) \wedge$

- no other statement performs the same action - action location is valid
- action value is valid
$\wedge_{s \in P} \mathrm{~F}(\mathrm{~s}, \mathrm{R}(\mathrm{P}), \mathrm{E}) \wedge$
$A=a_{00} \cup \ldots \cup a_{24}$
$V\left[W\left[a_{11}\right]\right]=B i t s(1) \wedge$
$V\left[W\left[a_{21}\right]\right]=B i t s(1) \wedge$
$\wedge_{1 \leq i \leq k} F\left(R(P), E_{i}\right) \wedge$
M(E, $\left.\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{k}}\right)$

Constraint assembly: F(R(P), E)

$$
\begin{aligned}
& \left|a_{13}\right| \leq 1 \wedge \\
& \left(\left|a_{13}\right|=1 \Leftrightarrow\right. \\
& \left.V\left[W\left[a_{11}\right]\right] \neq \operatorname{Bits}(0)\right) \wedge \\
& \left(a_{13} \cap a_{00}\right)=\varnothing \wedge \ldots \wedge \\
& \left(a_{13} \cap a_{24}\right)=\varnothing \wedge \\
& \text {, action location is valid } \\
& \text {, action value is valid }
\end{aligned}
$$

$\wedge_{s \in P} \mathrm{~F}(\mathbf{s}, \mathbf{R}(\mathrm{P}), \mathrm{E}) \wedge$
$A=a_{00} \cup \ldots \cup a_{24}$
$V[W[a 11]]=B i t s(1) \wedge$
$V\left[W\left[a_{21}\right]\right]=B i t s(1) \wedge$
$\wedge_{1 \leq i \leq k} F\left(R(P), E_{i}\right) \wedge$
M(E, $\left.E_{1}, \ldots, E_{k}\right)$

Constraint assembly: F(R(P), E)

A set of all executed actions
W maps reads to seen writes
V maps writes to written values
maps writes to written values
$\left|a_{13}\right| \leq 1 \wedge$
$\left(\left|a_{13}\right|=1 \Leftrightarrow\right.$
$\left.V\left[W\left[a_{11}\right]\right] \neq \operatorname{Bits}(0)\right) \wedge$
$\left(\mathbf{a}_{13} \cap \mathbf{a}_{00}\right)=\varnothing \wedge \ldots \wedge$
$\left(\mathbf{a}_{13} \cap \mathbf{a}_{24}\right)=\varnothing \wedge$
$\mathrm{I}\left[\mathrm{a}_{13}\right]=\mathrm{y} \wedge$

- action value is valid
$\wedge_{s \in P} \mathrm{~F}(\mathrm{~s}, \mathrm{R}(\mathrm{P}), \mathrm{E}) \wedge$
$A=a_{00} \cup \ldots \cup a_{24}$
$V\left[W\left[a_{11}\right]\right]=B i t s(1) \wedge$
$V\left[W\left[a_{21}\right]\right]=B i t s(1) \wedge$
$\wedge_{1 \leq i \leq k} F\left(R(P), E_{i}\right) \wedge$
M(E, $\left.E_{1}, \ldots, E_{k}\right)$

Constraint assembly: F(R(P), E)

A set of all executed actions
W maps reads to seen writes
\checkmark maps writes to written values
maps writes to written values

$$
\begin{aligned}
& \left|a_{13}\right| \leq \mathbf{1} \wedge \\
& \left(\left|a_{13}\right|=1 \Leftrightarrow\right. \\
& \left.V\left[W\left[a_{11}\right]\right] \neq \operatorname{Bits}(0)\right) \wedge \\
& \left(a_{13} \cap a_{00}\right)=\varnothing \wedge \ldots \wedge \\
& \left(a_{13} \cap a_{24}\right)=\varnothing \wedge \\
& I\left[a_{13}\right]=\mathbf{y} \wedge \\
& V\left[a_{13}\right]=V\left[W\left[a_{11}\right]\right]
\end{aligned}
$$

$\wedge_{s \in P} \mathrm{~F}(\mathrm{~s}, \mathrm{R}(\mathrm{P}), \mathrm{E}) \wedge$
$A=a_{00} \cup \ldots \cup a_{24}$
$V[W[a 11]]=B i t s(1) \wedge$
$V\left[W\left[a_{21}\right]\right]=B i t s(1) \wedge$ $\wedge_{1 \text { isisk }} \mathrm{F}\left(\mathrm{R}(\mathrm{P}), \mathrm{E}_{\mathrm{i}}\right) \wedge$

M(E, $\left.E_{1}, \ldots, E_{k}\right)$

Bounds assembly

s	guard	00 start
13	r1! $=0$	\downarrow
14	$\mathrm{r} 1==0$	01 write($\mathrm{x}, 0$)
*	true	\downarrow
s	maySee	02 write(y, 0)
11	\{01, 22\}	¢ ${ }^{\text {end }}$
21	\{02, 13, 14\}	-

compute a set of bounds on the search space

$B(P, M)$

Bounds assembly

s	guard	00 start
13	r1! $=0$	\downarrow
14	$\mathrm{r} 1==0$	01 write($\mathrm{x}, \mathrm{0}$)
*	true	\downarrow
s	maySee	02 write(y, 0)
11	\{01, 22\}	03 end
21	\{02, 13, 14\}	O3

$$
\begin{gathered}
\begin{array}{c}
-8,1,2,4, x, y, \\
\text { a00, a01, a02, a03, } \\
\text { a10, a11, a13, a16, } \\
\text { a20, a21, a22, a24 }
\end{array} \\
\{\ldots\} \subseteq A \subseteq\{\ldots\} \\
\{\ldots\} \subseteq V \subseteq\{\ldots\} \\
\{\ldots\} \subseteq W \subseteq\{\ldots\} \\
\{\ldots\} \subseteq I \subseteq\{\ldots\} \\
\{\ldots\} \subseteq m \subseteq\{\ldots\}
\end{gathered}
$$

Bounds assembly: universe

finite universe of symbolic values from which the model, if any, is drawn

$$
\begin{aligned}
& \{\ldots\} \subseteq A \subseteq\{\ldots\} \\
& \{\ldots\} \subseteq V \subseteq\{\ldots\} \\
& \{\ldots\} \subseteq W \subseteq\{\ldots\} \\
& \{\ldots\} \subseteq I \subseteq\{\ldots\} \\
& \{\ldots\} \subseteq m \subseteq\{\ldots\}
\end{aligned}
$$

Bounds assembly: universe

\mathbf{s}	guard
13	$r 1!=0$
14	$r 1==0$
$*$	true
\mathbf{s}	maySee
11	$\{01,22\}$
21	$\{02,13,14\}$

primitives
fields
finite universe of symbolic values from which the model, if any, is drawn

$$
\begin{aligned}
& -8,1,2,4, x, y, \\
& \text { a00, a01, a02, a03, } \\
& \text { a10, a11, a13, a16, } \\
& \text { a20, a21, a22, a24 }
\end{aligned}
$$

$$
\{\ldots\} \subseteq A \subseteq\{\ldots\}
$$

$$
\{\ldots\} \subseteq V \subseteq\{\ldots\}
$$

$$
\{\ldots\} \subseteq W \subseteq\{\ldots\}
$$

$$
\{\ldots\} \subseteq I \subseteq\{\ldots\}
$$

$$
\{\ldots\} \subseteq m \subseteq\{\ldots\}
$$

Bounds assembly: universe

\mathbf{s}	guard
13	$r 1!=0$
14	$r 1==0$
$*$	true
\mathbf{s}	maySee
11	$\{01,22\}$
21	$\{02,13,14\}$

primitives
fields
finite universe of symbolic values from which the model, if any, is drawn

actions

$$
\begin{aligned}
& \{\ldots\} \subseteq A \subseteq\{\ldots\} \\
& \{\ldots\} \subseteq V \subseteq\{\ldots\} \\
& \{\ldots\} \subseteq W \subseteq\{\ldots\} \\
& \{\ldots\} \subseteq I \subseteq\{\ldots\} \\
& \{\ldots\} \subseteq m \subseteq\{\ldots\}
\end{aligned}
$$

Bounds assembly: lower/upper bounds

s	guard
13	$r 1!=0$
14	$r 1==0$
$*$	true
s	maySee
11	$\{01,22\}$
21	$\{02,13,14\}$

Bounds assembly: lower/upper bounds

s	guard
13	$r 1!=0$
14	$r 1==0$
$*$	true
s	maySee
11	$\{01,22\}$
21	$\{02,13,14\}$

upper and lower bound on the value of each relation that appears in $\mathrm{F}(\mathrm{P}, \mathrm{M})$

Bounds assembly: lower/upper bounds

s	guard
13	$r 1!=0$
14	$r 1==0$
$*$	true
s	maySee
11	$\{01,22\}$
21	$\{02,13,14\}$

upper and lower bound on the value of each relation that appears in $\mathrm{F}(\mathrm{P}, \mathrm{M})$
$-8,1,2,4, x, y$, a00, a01, a02, a03, a10, a11, a13, a16, a20, a21, a22, a24
$\{\ldots\} \subseteq A \subseteq\left\{\begin{array}{l}<a 00>,<a 01>,<a 02>, \\ <a 03>,<a 10>,<a 11>, \\ <a 13>,<a 16>,<a 20>, \\ <a 21>,<a 22>,<a 24>\end{array}\right\}$
$\{. ..\} \subseteq V \subseteq\{. .$.
$\{. ..\} \subseteq W \subseteq\{. .$.
$\{..\} \subseteq I \subseteq\{. .$.
$\{. ..\} \subseteq m \subseteq\{. .$.

Bounds assembly: lower/upper bounds

\mathbf{s}	guard
$\mathbf{1 3}$	$\mathrm{r} 1!=0$
$\mathbf{1 4}$	$\mathrm{r} 1==0$
$\boldsymbol{*}$	true
\mathbf{s}	maySee
11	$\{01,22\}$
21	$\{02,13,14\}$

$$
\{\ldots\} \subseteq V \subseteq\{\ldots\}
$$

upper and lower bound on the value of each relation that appears in $\mathrm{F}(\mathrm{P}, \mathrm{M})$

$$
\{\ldots\} \subseteq I \subseteq\{\ldots\}
$$

Bounds assembly: lower/upper bounds

\mathbf{s}	guard
13	$\mathrm{r} 1!=0$
14	$\mathrm{r} 1==0$
$\mathbf{*}$	true
\mathbf{s}	maySee
11	$\{01,22\}$
21	$\{02,13,14\}$

$$
-8,1,2,4, x, y
$$ a00, a01, a02, a03, a10, a11, a13, a16, a20, a21, a22, a24

upper and lower bound on the value of each relation that appears in $\mathrm{F}(\mathrm{P}, \mathrm{M})$

$$
\{. .\} \subseteq W \subseteq\left\{\begin{array}{l}
<\mathrm{a} 11, \mathrm{a} 01>, \\
<\mathrm{a} 11, \mathrm{a} 22>, \\
<\mathrm{a} 21, \mathrm{a} 02>, \\
<\mathrm{a} 21, \mathrm{a} 13>
\end{array}\right\}
$$

$$
\{\ldots\} \subseteq I \subseteq\{\ldots\}
$$

Bounds assembly: lower/upper bounds

\mathbf{s}	guard
13	$\mathrm{r} 1!=0$
14	$\mathrm{r} 1==0$
$\mathbf{*}$	true
\mathbf{s}	maySee
11	$\{01,22\}$
21	$\{02,13,14\}$

Results (highlights)

MemSAT performance on JMM causality tests

Conclusion

Practical checker for axiomatic specifications of memory models

- first tool to directly handle the current JMM
- first tool to provide minimal cores

Prior work (highlights)

- CheckFence hardcodes the memory model
- Nemos accepts simple axiomatic specs but no cores
- JMM checkers (e.g. OpMM) use operational approximations

Future work

- extend MemSAT to handle hardware memory models

