
MemSAT: Checking Axiomatic
Specifications of Memory Models

Emina Torlak Mandana Vaziri Julian Dolby
IBM T. J. Watson Research Center, Hawthorne, NY, USA

{etorlak, mvaziri, dolby}@us.ibm.com

Abstract
Memory models are hard to reason about due to their complexity,
which stems from the need to strike a balance between ease-of-
programming and allowing compiler and hardware optimizations.
In this paper, we present an automated tool, MEMSAT, that helps
in debugging and reasoning about memory models. Given an ax-
iomatic specification of a memory model and a multi-threaded test
program containing assertions, MEMSAT outputs a trace of the
program in which both the assertions and the memory model ax-
ioms are satisfied, if one can be found. The tool is fully automatic
and is based on a SAT solver. If it cannot find a trace, it outputs
a minimal subset of the memory model and program constraints
that are unsatisfiable. We used MEMSAT to check several existing
memory models against their published test cases, including the
current Java Memory Model by Manson et al. and a revised version
of it by Sevcik and Aspinall. We found subtle discrepancies be-
tween what was expected and the actual results of test programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Formal Methods, Model
Checking; D.1.3 [Programming Techniques]: Concurrent Pro-
gramming; F.3.1 [Logics and Meaning of Programs]: Specifying
and Verifying and Reasoning about Programs—Assertions, Me-
chanical Verification

General Terms Algorithms, Design, Languages, Verification

Keywords Memory Models, Axiomatic Specifications, Bounded
Model Checking, SAT

1. Introduction
In a multi-threaded shared-memory system, a memory (consis-
tency) model specifies how concurrent accesses to shared mem-
ory are permitted to behave. In particular, a memory model deter-
mines which writes to a given location any read of that location
may observe. The most intuitive memory model is sequential con-
sistency [16], which requires simply that all accesses appear to exe-
cute one at a time, respecting the program order of each thread. But
this simplicity comes at a price: the strict ordering requirements im-
posed by sequential consistency disallow many compiler and hard-
ware optimizations that reorder instructions. As a result, most sys-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

tems exhibit relaxed memory models (e.g., [1, 19]), which enable
common instruction optimizations by stipulating weaker, and more
complex, ordering rules. To make such rules accessible to program-
mers, formal specifications of memory models are usually supple-
mented with small programs, called litmus tests, that illustrate how
the rules work.

Litmus tests elucidate a memory model insofar as they are con-
sistent with its formal specification. Many automated techniques
have therefore been developed for checking litmus tests and other
micro-benchmarks against relaxed memory models. Tools based on
model checking [7, 31], constraint solving [4, 11, 33], and cus-
tom search [24] have been successfully applied to axiomatic spec-
ifications of hardware memory models, such as the Intel Itanium
and x86-CC Model, and to operational approximations of the Java
Memory Model (JMM) [19]. But the JMM itself, which is given
axiomatically, has so far eluded automatic checking despite a rec-
ognized need for it [3]. The large state space induced by the model’s
committing semantics has often been cited as prohibitive for model
checking [2].

This paper presents MEMSAT, the first automated tool for de-
bugging and reasoning about memory models that can handle the
full axiomatic specification of the JMM. MEMSAT takes as input
a memory model described by a set of constraints and a litmus test
containing assertions. It then searches for a trace of the program
in which both the assertions and the memory model constraints are
satisfied. Assertions provide a convenient means of encoding the
expected outcome of a litmus test, in that they express whether the
computation of a given value at a given program point is permitted
by the memory model. Constraints provide a natural means of ex-
pressing memory models. As argued in prior work [34], axiomatic
specifications are easier to write and to understand than operational
specifications, since they naturally decompose into the constituent
rules of a memory model. Operational specifications, on the other
hand, tend to be monolithic and coupled to specific data structures.

MEMSAT is fully automatic, requiring no user guidance, and
is based on the Kodkod constraint solver [28], which works by
reduction to SAT. The test program is translated into constraints
that are assembled with the constraints describing the memory
model. We then employ an optimization based on Kodkod’s ability
to complete a partial model to reduce the search space. If the
combined result is satisfiable, our tool outputs a concrete execution
of the program, called a witness, that is permitted by the memory
model. Otherwise, it outputs a minimal subset of the constraints
that are collectively unsatisfiable, called a minimal unsatisfiable
core. Either a witness or a minimal core can help in debugging the
test program or the memory model: a witness provides a concrete
trace of memory operations that the user can examine as to whether
it is intended, and a core shows which constraints—i.e., which rules
in the memory model—prevent the assertions in the program from
being satisfied.

We used MEMSAT to check several existing memory models
against their published test cases. We considered the Java Memory
Model by Manson et al. [19] and a revised version of it by Sevcik
and Aspinall [25]. We also studied five well-known memory mod-
els with existing axiomatic descriptions [34], including processor
and causal consistency. For the JMM, our experiments confirmed
that two causality test cases [6] did not behave as expected for the
original model and that the revised version fixes these. We also
discovered that the original JMM [19] correctly allows two other
causality test cases that Aspinall and Sevcik report as forbidden [3].
For the other models, we found several discrepancies between the
expected and actual results of tests.

Our case studies indicate that MEMSAT can be used to quickly
and easily run litmus tests against different memory models. For
litmus tests that contain no loops, the result of MEMSAT is sound
and complete, meaning that there are no spurious witnesses, and if
a witness exists, it is found. Otherwise, MEMSAT uses an under-
approximation, and may miss witnesses, so it is sound but not
complete. In practice, however, we have found that most litmus
tests for memory models at the programming language level do not
contain loops.

2. Overview
MEMSAT is designed as an extensible framework for specifying,
testing and debugging memory models. It takes as inputs a multi-
threaded test program with one or more assertions; a specification
of a memory model in relational logic [14]; and a set of code fini-
tization parameters, such as the number of times to unwind loops
and the length of bitvectors used to represent integers. The test pro-
gram is then finitized (by unwinding loops and bounding recur-
sive method calls) and translated to relational logic. The resulting
constraints are combined with the memory model constraints and
checked with a SAT-based constraint solver. If the combined con-
straints are satisfiable, the program is said to be legal with respect
to the memory model, and the output of the tool is a concrete wit-
ness of legality, expressed in terms of the relations constrained by
the memory model. Otherwise, the program is said to be illegal,
and the output is a proof of illegality, expressed as a minimal un-
satisfiable core of the combined constraints.

2.1 Test program
A test program consists of an (implicit) initialization thread and
two or more user threads. The initialization thread executes first,
writing initial values to all shared memory locations referenced in
the program. The user threads execute after initialization has com-
pleted, running either in parallel or in a partial order specified by the
user. Programs are encoded in a subset of Java that includes control
flow constructs, the synchronized construct (which generates lock
and unlock instructions on a given monitor), method calls, field and
array accesses, integer and boolean operations, and assertions.

Figure 1 shows a test program from Manson et al. [19] both
in a standard schematic notation [19, 25] and as an annotated
Java program accepted by MEMSAT. The program consists of an
initialization thread and two user threads that execute in parallel.
In the schematic notation (Fig. 1(a)), threads that run in parallel
are separated by a vertical bar; threads whose execution is partially
ordered are separated by horizontal bars. In the Java encoding (Fig.
1(b)), the implicit static initialization method holds the code for the
initialization thread, while the methods annotated with “@thread”
indicate user threads. The (static) variables x and y refer to shared
memory locations, and r1 and r2 refer to thread-local registers.

2.2 Memory model specification
A memory model is specified as a set of constraints in relational
logic (§3)—that is, first order logic with quantifiers, set-theoretic

x = y = 0
r1 = x r2 = y
y = 1 x = 1

r1 == r2 == 1?

(a) Schematic notation

1 public class Test0 { s0

2 static int x = 0; a01

3 static int y = 0; a02

4 e0

5 @thread
6 public static void t1() { s1

7 int r1 = x; a11

8 y = 1; a12

9 assert r1 == 1;
10 } e1

11 @thread
12 public static void t2() { s2

13 int r2 = y; a21

14 x = 1; a22

15 assert r2 == 1;
16 } e2

17 }

(b) Annotated Java encoding

Figure 1. A sample litmus test for memory consistency models.

operators, transitive closure, and bitvector arithmetic.1 These con-
straints are given over relations that describe properties of test pro-
grams (such as control flow) and their executions (such as the value
written by a given write instruction). Each MEMSAT relation is
defined in terms of memory-related operations, or actions, that are
performed when a test program is executed. Actions are partitioned
into thread start, thread end, (volatile) read, (volatile) write, lock,
unlock, and special operations. Read, write, lock and unlock ac-
tions are generated by executing read, write and synchronize in-
structions. Special actions are generated by calls to methods that are
designated as “special” in the definition of a given memory model
(e.g., I/O methods in the Java Memory Model). Thread start and
end actions mark the beginning and termination of a thread and do
not correspond to any instructions.

Our framework provides two kinds of relations for specifying
memory models: relational constants and relational variables. Re-
lational constants capture static program properties, and MEMSAT
infers their values directly from the program text. For example, the
relative ordering of actions within a program’s control flow graph
is represented by the constant binary relation co. The value of co
for the program in Fig. 1 is the set {〈s0, a01〉, 〈a01, a02〉, 〈a02, e0〉,
〈s1, a11〉, 〈a11, a12〉, 〈a12, e1〉, 〈s2, a21〉, 〈a21, a22〉, 〈a22, e2〉},
where aij represents the action performed by the jth memory-
related instruction of the ith thread, and si and ei represent the
start and end actions of the ith thread. In this example, it suffices to
think of an action as the memory operation performed by a given
statement; however, the relationship can be more complex under
the JMM, due to its speculative executions.

Relational variables capture execution properties. In our frame-
work, an execution E is a structure LA,W, V, l,m,O1, . . . ,OnM
in which the relation A denotes the subset of the program’s actions
that are executed; the write-seen relation W maps each executed
read to the write of which the value is seen by that read; the value-
written relation V maps each write action to the value that is writ-
ten; the location-accessed relation l maps each read and write to the
memory location that it accesses; and the monitor-used relation m
maps each lock and unlock to its associated monitor. The definition
of an execution may also include any number of ordering relations
Oi over A (e.g., happens-before) that are specific to a given mem-
ory model.

Example: Sequential Consistency Sequential consistency
(SC) is perhaps the best known and most easily understood mem-

1 Relational constraints are provided to MEMSAT using a Java API, rather
than the illustrative syntax used in this paper.

ory model. It requires simply that all executed actions appear in a
(weak) total order that is consistent with the program order. Fig-
ure 2 shows a relational specification of sequential consistency
without synchronization, transcribed from Yang et al. [34]. Con-
stants are displayed in the sans-serif font, logic keywords in the
roman font, and variables in italics. The expression r[x], where r is
a binary relation and x is a scalar (or, in relational logic, a singleton
unary relation), denotes the relational image of x under r; r[x, y]
denotes a formula that evaluates to true only if the relation r maps
x to y; and r+ denotes the transitive closure of r. The operator
“one” constrains its argument relation to contain exactly one tuple.

1 ∀i, j :A | i 6= j =⇒ (ord[i, j] ∨ ord[j, i])

2 ∀i, j :A | ord[i, j] =⇒ ¬ ord[j, i]

3 ∀i, j, k :A | (ord[i, j] ∧ ord[j, k]) =⇒ ord[i, k]

4 ∀i, j :A | (t[i] = t[j] ∧ co+[i, j]) =⇒ ord[i, j]

5 ∀i, j :A | (t[i] 6= t[j] ∧ to+[t[i], t[j]]) =⇒ ord[i, j]

6 ∀k :A ∩ Read | oneW [k] ∧W [k] ⊆ (A ∩Write)

7 ∀k :A ∩ Read | l[k] = l[W [k]]

8 ∀k :A ∩ Read | ¬ ord[k,W [k]]

9 ∀k :A ∩ Read, j :A ∩Write|¬(l[j] = l[k] ∧ ord[W [k], j] ∧ ord[j, k])

Figure 2. Sequential consistency in relational logic.

We define sequential consistency in terms of the execution
structure E = LA,W, V, l,m, ordM and program constants co,
to, t, Read and Write. The variable ord models the ordering of the
executed actionsA; the constant t maps each action in a program to
the thread that executes it; the constant to denotes the partial exe-
cution order among threads; and Read and Write model all actions
in a program whose action kind is a read or a write, respectively.
The first three formulas in Fig. 2 constrain ord to be weakly total,
asymmetric and transitive. The fourth and fifth formulas specify
that it is consistent with the program order and the thread execution
order. The sixth and seventh formulas constrain W to be a function
from executed reads to executed writes and to be consistent with
the location-accessed relation. The last two formulas require that
W be consistent with ord: a read k cannot see a write that fol-
lows it in the ord relation, and no write to l[k] is ordered (by ord)
between W [k] and k.

Example: Java Memory Model. The Java Memory Model
(JMM) specifies what behavior is legal for a given program using
a “committing semantics” [2, 3, 19, 25]. An execution is legal if it
can be derived from a sequence of speculative executions of the
program, constructed according to the following rules. The first
execution in the sequence is “well-behaved” [3]: its reads can only
see writes that happen-before them. The happens-before ordering
(hb) transitively relates reads and writes in an execution according
to the program order (po) and the synchronizes-with (sw) order
implied by synchronization constructs. The remaining executions
in the sequence are derived from the initial well-behaved execution
by “committing” and executing data races. After each execution,
one or more data races from that execution are chosen, and the
reads and writes involved in those data races are remembered, or
“committed.” The committed data races are then executed in the
next execution: each read in the execution must either be committed
and see a committed write through a race, or it must see a write
through the happens-before relation. The committed writes must
also be executed, and they must write the committed values. Any
execution reachable through this process is legal under the JMM.

Figure 3 presents a relational formalization of the revised JMM,
transcribed from Sevcik and Aspinall [25]. A JMM execution
E = LA,W, V, l,m, po, so, hb, swM includes four ordering rela-

a WELL-FORMED(E) ∧ ∀i : [1..k] |WELL-FORMED(Ei)

b A =
Si≤k
i=0 Ci ∧ C0 = ∅ ∧ ∀i : [1..k] |Ci−1 ⊆ Ci

c ∀i : [1..k] |Ci / li = Ci / l ∧ Ci / mi = Ci / m

1 ∀i : [1..k] |Ci ⊆ Ai
2 ∀i : [1..k], r :Ci ∩ Read | (hb[W [r], r]⇐⇒ hbi [W [r], r]) ∧ ¬hbi [r,W [r]]

3 ∀i : [1..k] |Ci / Vi = Ci / V

4 ∀i : [1..k] |Ci−1 / Wi = Ci−1 / W

5 ∀i : [1..k], r : (Ai \ Ci) ∩ Read | hbi [Wi(r), r]

6 ∀i : [1..k], r : (Ci \ Ci−1) ∩ Read |W [r] ⊆ Ci−1

7 ∀i : [1..k], y :Ci, x :Ai | (y ⊆ Special ∧ hb[x, y]) =⇒ x ⊆ Ci

Figure 3. Revised JMM in relational logic.

tions: po, so, hb, and sw . The relation po models the program
order, which is total over the actions of a single thread and which
does not relate actions from different threads; so is a total order
over all synchronization actions in A (i.e., the lock, unlock, thread
start and thread end actions); sw consists of the tuples 〈a, b〉 in so
such that a is an unlock and b is a lock on a given monitor, or a is a
write and b is a read of a given volatile location in shared memory;
and hb is the transitive closure of po ∪ sw . An execution is well-
formed, denoted by WELL-FORMED(E), if its constituent relations
satisfy Definition 7 of the revised JMM [25], which we omit here
for brevity. A well-formed executionE is legal if there is a finite se-
quence of sets Ci, where 0 ≤ i ≤ k, and a finite sequence of well-
formed executions Ei = LAi,Wi, Vi, li,mi, poi , soi , hbi , swiM,
where 1 ≤ i ≤ k, that satisfy the constraints in Fig. 3. The upper
bound on the number of speculative executions, denoted by k, can
either be provided as an input to the tool or MEMSAT will compute
a sound k from the program text. The symbol / denotes domain re-
striction, and all other symbols have their previously defined or
standard meaning.

2.3 Proof of legality (witness)
Given a test program P and a memory model M , MEMSAT gen-
erates a legality formula F (P,M) of the form

F (P,E) ∧ Fα(P,E) ∧
Vi≤k
i=1 F (P,Ei) ∧MP (E,E1, . . . , Ek),

where k ≥ 0; F (P,E) is true only if the execution E respects the
intra-thread semantics of P ; Fα(P,E) is true only if E satisfies
all of the assertions in P ; and MP (E,E1, . . . , Ek) is true only if
the constraints that constitute M are satisfied with respect to the
constants and variables that describe P and E,E1, . . . , Ek.

A model of the formula F (P,M) is an assignment of relational
values (i.e., sets of tuples) to the variables in E, E1, . . . , Ek which
makes each constraint in the formula true. This assignment, if it
exists, is a concrete witness that at least one execution of P is both
legal with respect to M and satisfies all the assertions in P . The
tuples that comprise a MEMSAT model are drawn from a finite set,
or universe, of symbolic values computed by the tool based on the
program text and the values of the finitization parameters.

Figure 4 shows a witness that demonstrates the legality of the
program in Fig. 1 with respect to the revised JMM (Fig. 3). For
readability, MEMSAT displays formatted snippets of the model
produced by the constraint solver rather than the complete assign-
ment from variables to values. Each action in the set A (or Ai)
of executed actions is annotated with its action kind. Read and
write actions are additionally annotated with the location they ac-
cess and the value they read or write. For example, the annotation
“::read(x,0)” on the action a11 in the set A1 means that a11 was
a read of the value 0 from the field x (i.e. V1[W1[a11]] = 0 and
l1[a11] = x). The values assigned to orderings such as hb are

E1 E2 E

A1 = { A2 = { A = {
s0::start,
a01::write(x,0),
a02::write(y,0),
e0::end,

s0::start,
a01::write(x,0),
a02::write(y,0),
e0::end,

s0::start,
a01::write(x,0),
a02::write(y,0),
e0::end,

s1::start, s2::start,
a11::read(x,0), a21::read(y,0),
a12::write(y,1), a22::write(x,1),
e1::end, e2::end

s1::start, s2::start,
a11::read(x,0), a21::read(y,0),
a12::write(y,1), a22::write(x,1),
e1::end, e2::end

s1::start, s2::start,
a11::read(x,1), a21::read(y,1),
a12::write(y,1), a22::write(x,1),
e1::end, e2::end

} } }

W1 = {〈a11, a01〉, 〈a21, a02〉} W2 = {〈a11, a01〉, 〈a21, a02〉} W = {〈a11, a22〉, 〈a21, a12〉}

hb1 = {〈s0, a01〉, 〈a01, a02〉, 〈a02, e0〉, 〈e0, s1〉, hb2 = {〈s0, a01〉, 〈a01, a02〉, 〈a02, e0〉, 〈e0, s1〉, hb = {〈s0, a01〉, 〈a01, a02〉, 〈a02, e0〉, 〈e0, s1〉,
〈e0, s2〉, 〈s1, a11〉, 〈a11, a12〉, 〈a12, e1〉, 〈e0, s2〉, 〈s1, a11〉, 〈a11, a12〉, 〈a12, e1〉, 〈e0, s2〉, 〈s1, a11〉, 〈a11, a12〉, 〈a12, e1〉,
〈s2, a21〉, 〈a21, a22〉, 〈a22, e2〉} 〈s2, a21〉, 〈a21, a22〉, 〈a22, e2〉} 〈s2, a21〉, 〈a21, a22〉, 〈a22, e2〉}

C1 = {a12, a22} C2 = A2

Figure 4. A witness for the program in Fig. 1 under the revised JMM (Fig. 3).

shown partially; we only display the tuples in their transitive re-
duction.

Operationally, the execution E in Fig. 4 is justified as follows.
We start with the well-behaved execution E1, in which each read
sees the write that happens before it. Both the read of x by the
thread t1 and the read of y by t2 see the initial writes of 0 to
these locations. The execution E1 has two data races that can be
committed: a11 and a22 form a data race on x, and a12 and a21

form a data race on y. MEMSAT chooses to commit both, setting
C1 to {a12, a22}. The next execution, E2, performs the committed
writes: a12, a22 ∈ A2, and each writes 1 to its respective location.
Note that the reads of E2 still see the default writes since they
have not been committed to C1. We next commit the reads and
all the remaining actions to C2. The final execution, E, performs
the actions from C2, with each committed read seeing the write of
1 in the opposite thread.

2.4 Proof of illegality (minimal core)
A formula that has no models is said to be unsatisfiable. Unsatis-
fiability of a legality formula F (P,M) means that the (finitized)
program P has no executions that are legal with respect to M and
that also satisfy all the assertions in P . To aid in the understanding
of causes of illegality, MEMSAT produces a minimal unsatisfiable
core of the formula F (P,M). A minimal unsatisfiable core is an
unsatisfiable subset of the formula’s constraints that becomes satis-
fiable if any of its members are removed. In other words, a minimal
core represents an irreducible cause of unsatisfiability.

constraint source

V [a01] = 0 Fig. 1(b), line 2
V [a02] = 0 Fig. 1(b), line 3
V [W [a11]] = 1 Fig. 1(b), line 9
V [W [a21]] = 1 Fig. 1(b), line 15

∀i, j :A | i 6= j =⇒ (ord[i, j] ∨ ord[j, i]) Fig. 2, line 1
∀i, j, k :A | (ord[i, j] ∧ ord[j, k]) =⇒ ord[i, k] Fig. 2, line 3
∀i, j :A | (t[i] = t[j] ∧ co+[i, j]) =⇒ ord[i, j] Fig. 2, line 4
∀k :A ∩ Read | ¬ ord[k,W [k]] Fig. 2, line 8

Figure 5. A minimal core for the program in Fig. 1 under sequen-
tial consistency (Fig. 2).

Figure 5 shows a minimal core that illustrates why the program
in Fig. 1 has no sequentially consistent executions. The first two
constraints2 encode the meaning of the instructions on lines 2 and

2 As explained in the next section, MEMSAT encodes F (P, E) and
Fα(P, E) in terms of the variables aij , each of which is constrained to

3 of Fig. 1(b). The next two constraints encode the assertions on
lines 9 and 15. The remaining constraints are drawn from the
definition in Fig. 2. According to this core, the sample program
is not sequentially consistent because all initial writes write 0; all
assertions expect 1; all actions must be executed in a total order
consistent with co (which, in this case, means that at least one of
reads must occur before the non-initial write to the same location);
and no read can observe an out-of-order write.

3. Approach
A MEMSAT analysis of a test program P and a memory model M
involves five steps:

1. Converting P into an intermediate form I(P);

2. Translating I(P) into a relational representationR(P);

3. CombiningR(P) and M into the legality formula F (P,M);

4. Computing a set of bounds B(P,M) on the space to be
searched for a model or a core of F (P,M); and

5. Finding a model or a core of the relational satisfiability problem
defined by F (P,M) and B(P,M).

The first and last steps use off-the-shelf tools, the WALA [29] pro-
gram analysis library and the Kodkod [26, 28] constraint solver.
Translation, constraint assembly, and bounds computation com-
prise the core technical innovations of MEMSAT.

3.1 A brief introduction to relational logic
A key ingredient of our approach is the use of relational logic [14],
which extends first-order logic with relational algebra and signed
bitvector arithmetic. The basic concept in this logic is a relation:
a set of tuples of equal length, drawn from a common universe
of atoms. Atoms can denote integers or uninterpreted symbolic
values. The arity of a relation, which can be any positive integer,
determines the length of its tuples. We refer to unary relations (i.e.,
relations of arity 1) as “sets” and to singleton unary relations as
“scalars.”

The kernel of the logic, shown in Fig. 6, includes standard
bitvector operators; connectives and quantifiers of first order logic;
and the operators of relational algebra. The latter include relational
join (.), product (→), union (∪), intersection (∩), difference (\),
and transitive closure (+). The join (.) of two relations is the pair-
wise join of their tuples, where 〈a0, · · · , ak〉.〈ak, · · · , an〉 yields

evaluate to the action (if any) generated by E while executing the jth in-
struction of the ith thread.

Expr := r | ∅ |Expr+ |Expr rop Expr | {decl | Formula} |
Formula ? Expr : Expr |Bits(Bitvec)

Formula := Expr rcmp Expr |Bitvec bcmp Bitvec | [l]one Expr |
¬Formula | Formula fop Formula | ∀ decl | Formula |
∃ decl | Formula | true | false

Bitvec := v | ¬Bitvec | Bitvec bop Bitvec | bits(Expr) | |Expr|
r := relation
∅ := empty relation
rcmp := ⊆ | 6⊆ | = | 6=
bcmp := < | ≤ | = | > | ≥

decl := x : Expr | decl, decl
rop := . | → | ∪ | ∩ | \
fop := ∧ | ∨ | =⇒ | ⇐⇒
bop := + | − | ∗ | / |% | ∧ | ∨ |⊕

Figure 6. Relational logic.

〈a0, · · · , ak−1, ak+1, · · · , an〉. We use e.r and r[e] interchange-
ably to represent the join of e and r. The product (→) of two
relations is the pairwise product of their tuples, which is defined
as 〈a0, · · · , ak〉 → 〈am, · · · , an〉 = 〈a0, · · · , ak, am, · · · , an〉.
The formulas lone Expr and one Expr are true for relations with
at most one and exactly one tuple, respectively. The cardinality ex-
pression |r| gives the number of tuples in r as a bitvector; bits(r)
computes the sum of atoms representing integers in the set r as a
bitvector; and Bits(v), where v is the bitvector b0 . . . bk, evaluates
to the set of integer atoms 2i for which bi 6= 0. All other expres-
sions and formulas have their standard meaning.

3.2 Preprocessing
To translate a test program P to relational logic, MEMSAT first
finitizes P ’s code by unwinding all loops and inlining all method
calls. The finitized code is then transformed into an intermediate
structure I(P) = Lefg , guard , ptsTo,maySeeM, in which efg
denotes the extended control flow graph of P ; guard maps each
instruction in efg to the control conditions that guard its execution;
ptsTo maps each variable to the heap objects, if any, that it may
point to at runtime; and maySee maps each read in efg to the set
of writes that it may observe. All four components of I(P) are
computed using standard WALA analyses [29].

1 public class Test1 {
2 static int x = 0;
3 static int y = 0;

4 @thread
5 public static void t1() {
6 int r1 = x;
7 if (r1 != 0)
8 y = r1;
9 else

10 y = 1;
11 assert r1 == 1;
12 }
13 @thread
14 public static void t2() {
15 int r2 = y;
16 x = 1;
17 assert r2 == 1;
18 }
19 }

(a) Annotated Java encoding

00 start

03 end

01 write(x,0)

02 write(y,0)

10 start

15 assert(r1==1)

11 r1=read(x)
12 branch(r1!=0)

14 write(y,1)

20 start

23 assert(r2==1)

21 r2=read(y)

22 write(x,1)13 write(y,r1)

16 end 24 end

T F

v ptsTo(v)
r1 {}
r2 {}

ij guard(sij)
13 r1!=0
14 r1=0
other true

ij maySee(sij)
11 {01, 22}
21 {02, 13, 14}

(b) Intermediate form

Figure 7. The intermediate form for a test program. The label ij
for a statement s indicates that s is the jth statement in the ith

thread.

An example of I(P) is shown in Fig. 7. The extended control
flow graph of P is the union of the control flow graphs of P ’s
threads, with additional edges between the exit and entry blocks

of threads whose execution is partially ordered. The nodes of the
graph are comprised of WALA statements3 (Fig. 8) in the Static
Single Assignment (SSA) form, which gives a new name to every
new definition of a variable. Variable definitions are merged using
φ statements, and heap accesses are expressed as explicit read and
write statements. The synthetic start and end statements indicate
the start and end of a thread. The value of guard(s, vi), where s is
vj = φ(· · · , vi, · · ·), is the condition under which s assigns vi to
vj . For all other statements, guard(s) evaluates to the conjunction
of control conditions that must be true for s to execute [9].

JStmt := start | end | branch(JExpr) | assert(JExpr) | vi = JExpr |
vj = φ(· · · , vi, · · ·) | lock(vref) | unlock(vref) |
vi = read([vref ,] Field) |write([vref ,] Field, JLeaf)

JExpr := JLeaf | new(Class) | JExpr op JExpr | !JExpr

JLeaf := vi | null | true | false | 0 | -1 | 1 | -2 | 2 | . . . Field := identifier
op := + | − | ∗ | / |% | < | > | == |&& | || Class := identifier

Figure 8. Syntax for statements in the intermediate representation.

3.3 Translation
The translation of a preprocessed program I(P) to its relational
representationR(P) relies on a translation function T : JExpr →
Expr (Fig. 9) that takes a WALA expression and returns a relational
expression. Unlike prior relational encodings (e.g., [9]) for sequen-
tial programs, the function T does not interpret heap accesses. That
is, if a variable vi is defined by a read statement s, T JviK is an un-
constrained unary relation ρvi , which acts as a placeholder for the
value read by s. In a sequential setting, a relational encoding for
the value seen by a read can be computed directly from the pro-
gram text. In a concurrent setting, however, these values are deter-
mined both by the program semantics and by the memory model.
The placeholders are a key feature of our framework that allows
us to separate the encoding of program semantics from the speci-
fication of the memory model: T encodes the program semantics
in terms of the placeholders, which the constraint assembler (§3.4)
then replaces with relational expressions dictated by the memory
model.

T JviK :=

8>><>>:
if def (vi) is:

ρvi vi=read(∗)
T JeK vi=eSn

j=1FJT Jguard(def (vi), vj)KK ? T JvjK :∅ vi=φ(v1,..., vn)

T Je1 && e2K := EJFJT Je1KK ∧ FJT Je2KKK
T Je1 == e2K := EJT Je1K = T Je2KK
T Je1 + e2K := EJBJT Je1KK + BJT Je2KKK

T JtrueK := True
T JfalseK := False

EJfK := f ? True : False
EJbK := Bits(b)
FJeK := e ⊆ True

BJeK := bits(e)
EJFJeKK := e
EJBJeKK := e

FJEJfKK := f
BJEJbKK := b

LJsK :=

(
f s ∈ {read(f),write(f, e)}
f ∪ T Jvref K s ∈ {read(vref , f),write(vref , f, e)}
T Jvref K s ∈ {lock(vref), unlock(vref)}

VJsK := T JeK s ∈ {write(∗, e), assert(e)}
GJsK := FJT Jguard(s)KK

Figure 9. Translation function T and representation functions L,
V , and G.

For expressions that are not defined by heap reads, the function
T yields the same relational expressions as a prior encoding [9]
for sequential programs. Figure 9 reproduces a representative sam-
pling of those. The function def takes a variable in SSA form and
returns the statement that defines its value. True and False are con-

3 For the sake of brevity, we omit the formal description of arrays and
method calls that correspond to special actions.

stant unary relations whose values are the atoms true and false,
respectively. The function E converts formulas and bitvectors to
expressions, and F and B do the reverse. All integer and boolean
operations are translated using their corresponding operators in re-
lational logic.

The relational representationR(P) is a structure LI(P),L,V,
GM, which captures the semantics of the program I(P) with the
partial functions L, V and G. The function L maps reads, writes,
locks and unlocks to relational expressions that represent the heap
locations or monitors accessed by these statements. If s is a read
or a write of a static field f , LJsK yields the constant relation f
whose value, {〈f〉}, consists of the atom that represents the field
f . If s reads or writes an instance field f , LJsK yields f ∪ T Jvref K,
whose value is a set of two unary tuples, one of which represents
the field f and the other the object referenced by vref . For monitor
statements,LJsK produces an expression that evaluates to the object
that is locked or unlocked by s. The function V maps writes and
assertions to relational encodings of the values that they write or
assert. The function G takes each statement s in its domain to a
relational formula that represents the guard of s. Figure 10 shows
L, V , and G for the program in Fig. 7.

s LJsK VJsK GJsK acts(s)
00 start true {a00}
01 write(x, 0) x Bits(0) true {a01}
02 write(y, 0) y Bits(0) true {a02}
03 end true {a03}
10 start true {a10}
11 r1 = read(x) x true {a11}
13 write(y, r1) y ρr1 ρr1 6=Bits(0) {a13}
14 write(y, 1) y Bits(1) ρr1 =Bits(0) {a13}
15 assert(r1==1) ρr1 =Bits(1) true
16 end true {a16}
20 start true {a20}
21 r2 = read(y) y true {a21}
22 write(x, 1) x Bits(1) true {a22}
23 assert(r2==1) ρr2 =Bits(1) true
24 end true {a24}

r Bu(r) Bl(r)

Ai
{〈a00〉, 〈a01〉, 〈a02〉, 〈a03〉, 〈a10〉, 〈a11〉,
〈a13〉, 〈a16〉, 〈a20〉, 〈a21〉, 〈a22〉, 〈a24〉} Bu(Ai)\{〈a13〉}

Wi {〈a11, a01〉, 〈a11, a22〉, 〈a21, a02〉, 〈a21, a13〉} { }
Vi {a01, a02, a13, a22}×{-8, 1, 2, 4} { }
li {a01, a11, a22} × {x} ∪ {a02, a13, a21} × {y} Bu(li)

mi { } { }

Figure 10. Relational representation functions, actions and sample
bounds for the program in Fig. 7.

3.4 Constraint assembly
Our tool encodes the legality of a program R(P) with respect to a
memory modelMP (E,E1, . . . , Ek) using the recursive constraint
assembly procedure defined in Fig. 11. The procedure F takes as
input a relational representation R(P) and a memory model spec-
ification MP (E,E1, . . . , Ek) and produces the legality formula
F (P,M). The base step, F(s, Ei), allocates a fresh unary rela-
tion ais for each statement s and execution Ei ∈ {E,E1, . . . , Ek}
to represent the action that Ei performs if it executes s. The func-
tion σ(fe, Ei) replaces all placeholder relations ρv in the formula
or expression fe with Vi[Wi[F(def (v), Ei)]], which is the value
observed by the read that defines the variable v in the context of
Ei. In other words, the application of σ replaces the placeholders
generated in the translation stage with the values specified by the
memory model.

The recursive step F(R(P), Ei) constrains the execution Ei
to respect the semantics of R(P) by generating the following

F(R(P),MP (E,E1, . . . , Ek)) := F(R(P), E) ∧ Fα(R(P), E)∧“Vk
j=1 F(R(P), Ej)

”
∧ MP (E,E1, . . . , Ek)

F(R(P), Ei) := (
V
s∈ops(I(P)) loneF(s, Ei))∧ (1)

(
V
s∈ops(I(P)) σ(GJsK, Ei)⇐⇒ F(s, Ei) 6= ∅)∧ (2)

(
V
s,s′∈ops(I(P)),s 6=s′F(s, Ei)∩F(s′, Ei) = ∅)∧ (3)

(
V
s∈ops(I(P)) F(s,R(P), Ei))∧ (4)

(Ai =
S
s∈ops(I(P)) F(s, Ei)) (5)

F(s,R(P), Ei) :=

8>><>>:
F(s, Ei).li = σ(LJsK, Ei) s∈ read(∗)
F(s, Ei).li = σ(LJsK, Ei)∧ s∈ write(∗)
F(s, Ei).Vi = σ(VJsK, Ei)
F(s, Ei).mi = σ(LJsK, Ei) s∈{lock(∗),unlock(∗)}

F(s, Ei) := ais
Fα(R(P), E) :=

V
s∈(assert(∗)∩I(P)) σ(GJsK ∧ FJVJsKK, E)

σ(fe, Ei) := fe ⊕{ρv 7→Vi[Wi[F(def (v), Ei)]] | v∈vars(I(P))}

Figure 11. Constraint assembly functionF . The auxiliary function
ops yields all statements in I(P) that perform memory related
operations, and vars returns the defined variables. The operator
⊕ performs syntactic substitution: fe ⊕{x 7→ y} replaces all free
occurrences of x in the formula or expression fe with y.

formuals: (1) a statement executed by Ei can perform at most one
action; (2) a statement performs an action if and only if its guard
is true in the context of Ei; (3) different statements, if executed,
must perform different actions; (4) the value-written (Vi), location-
accessed (li) and monitor-used (mi) relations of Ei are consistent
with the corresponding values given by V and L; and (5) the set Ai
of all actions executed by Ei is the union of the actions performed
by the executed statements. The step Fα ensures that the main
execution E satisfies all assertions in P .

3.5 Bounds assembly
The last phase of the analysis—finding a model or a core of the
assembled legality formula—is delegated to the Kodkod constraint
solver [26]. Kodkod takes as input a relational satisfiability prob-
lem, which is solved by reduction to boolean satisfiability and ap-
plication of a SAT solver (e.g., [10]) to the resulting boolean con-
straints. A relational satisfiability problem consists of a formula
in relational logic, a universe of atoms in which the formula is to
be interpreted, and a lower and upper bound on the value of each
relation in the formula. These bounds are given as sets of tuples
drawn from the provided universe. The upper bound Bu(r) spec-
ifies the tuples that the relation r may contain in a model of the
formula. The lower bound Bl(r) ⊆ Bu(r) designates the tuples
that r must contain, if any. The total number of unknown tuples—
i.e.,

P
r |Bu(r) \ Bl(r)|—determines the exponent in the size of

the search space explored by Kodkod. We therefore use the algo-
rithms in Figs. 12 and 13 to set the bounds judiciously, so that the
resulting search space is both compact and includes all potential
witnesses.

Figure 12 shows the MEMSAT functions for computing the uni-
verse and bounds for a legality formula F(R(P),MP (E,E1, . . . ,
Ek)). Both the universe and the bounds are defined in terms of
the auxiliary function acts , discussed below, which maps each
memory-related statement s ∈ ops(I(P)) to a set of atoms rep-
resenting the actions that the execution of smay generate. The uni-
verse consists of five kinds of symbolic values: 1) primitive val-
ues (bits, booleans, and null); 2) heap objects that may be allo-
cated by P ; 3) locations (fields) referenced within P ; 4) threads
that comprise P ; and 5) memory actions that may be performed by
P . The bounds are drawn from the universe based on the (sound)
information computed by the preprocessor. For example, the upper
bound on ais is the set of all unary tuples drawn from acts(s). Its
lower bound is empty, unless the guard of s is the constant true and
acts(s) has exactly one action atom. In this case, the lower and
upper bounds on ais are the same; i.e., everyEi is guaranteed to ex-

U(F (P,M)) := bits ∪ bool ∪nil ∪ objs ∪ threads(I(P)) ∪ fields(I(P)) ∪
S
s∈ops(I(P))acts(s)

Bu(F (P,M)) :=
S
i∈{ε,1,...,k}{r 7→ Bu(r, ops(I(P))) | r ∈ Ei} ∪ {ais 7→Bu(s) | s∈ops(I(P))}

Bl(F (P,M)) :=
S
i∈{ε,1,...,k}{r 7→ Bl(r, ops(I(P))) | r ∈ Ei} ∪ {ais 7→Bl(s) | s∈ops(I(P))}

. . . Bu(. . .) precondition

r, S

S
s∈S Bu(s) arity(r) = 1S
s∈S acts(s)×Bu(r, s) arity(r) = 2

s
˘
〈x〉 | x ∈ acts(s)

¯
Wi, s

S
x∈maySee(s)acts(x) s ∈ read(∗)

Vi, s
bits s ∈ write(∗, eint)
bool s ∈ write(∗, ebool)
ptsTo(vref)∪nil s ∈ write(∗, vref)

li, s
{f} s ∈ rw(f)
{f}∪ptsTo(v) s ∈ rw(f, v)

mi, s ptsTo(v) s ∈ ul(v)

. . . Bl(. . .) precondition

r, S

S
s∈S Bl(s) arity(r) = 1S
s∈S acts(s)×Bl(r, s) arity(r) = 2

s Bu(s)
guard(s) = true∧
|acts(s)| = 1

Wi, s ∅
Vi, s ∅

li, s
{f} s ∈ rw(f)
{f} s ∈ rw(f, v) ∧ ¬ sole(s, v)
{f}∪ptsTo(v) s ∈ rw(f, v) ∧ sole(s, v)

mi, s ptsTo(v) ul(s, v) ∧ sole(s, v)

bits := {−2b−1, 1, . . . , 2b−2}
objs :=

S
v∈vars(I(P))ptsTo(v)

bool := {true, false}
nil := {null}

rw(f) := {read(f),write(f, e)}
rw(f, v) := {read(v, f),write(v, f, e)}

ul(v) := {lock(v), unlock(v)}
sole(s, v) := |acts(s)| = 1 ∧ |ptsTo(v)| = 1

Figure 12. Computing the universe (U) and bounds (Bl, Bu) for the legality formula F (P,M) = F(R(P),MP (E,E1, . . . , Ek)). All
functions return ∅ if applied to arguments that violate their preconditions. The auxiliary function threads returns a set of objects that
represent the threads in a given program, and fields yields the set of fields that are referenced in the program’s read and write statements.
Epsilon (ε) stands for the empty string, and b is the integer finitization parameter provided by the user.

COMPUTE-ACTS(efg, ptsTo)

1 acts ← map()

2 for 0 ≤ i < |threads(efg)| do
3 cfgi ← restrict(efg, i)

4 R← REPRESENTATIVE-ATOMS(cfgi)

5 for s ∈ ops(cfgi) do
6 S ← {}
7 for s′ ∈ domain(R) do

8 if MAY-GEN-SAME-ACT(ptsTo, s, s′) then
9 S ← S ∪ {R[s′]}

10 acts[s]← S

11 return acts

MAX-EXECUTABLE-SETS(cfgi, s)

1 ms ← map()

2 for s′ ∈ succs(cfgi, s) do

3 ms′ ← MAX-EXECUTABLE-SETS(cfgi, s
′)

4 for k ∈ domain(ms′) ∩ domain(ms) do

5 if |ms′[k]| > |ms[k]| then

6 ms[k]← ms′[k]

7 for k ∈ domain(ms′) \ domain(ms) do

8 ms[k]← ms′[k]

9 k ← KEY(s)

10 ms[k]← {s} ∪ (k ∈ domain(ms) ? ms[k] : {})
11 return ms

REPRESENTATIVE-ATOMS(cfgi)

1 ms ← MAX-EXECUTABLE-SETS(cfgi, si0)

2 ra ← map()

3 for k ∈ domain(ms) do
4 for sij ∈ ms[k] do
5 ra[sij]← aij
6 return ra

MAY-GEN-SAME-ACT(ptsTo, s, s′)

1 mayAlias ← λv.λv′. ptsTo(v) ∩ ptsTo(v′) 6= ∅
2 switch(s)

3 case start, end : return s′ = s

4 case read(f) : return s′ = read(f)

5 case write(f, e) : return s′ = write(f, e′)

6 case read(v, f) : return s′ = read(v′, f) ∧mayAlias(v, v′)

7 case write(v, f, e) : return s′ = write(v′, f, e′) ∧mayAlias(v, v′)

8 case lock(v) : return s′ = lock(v′) ∧mayAlias(v, v′)

9 case unlock(v) : return s′ = unlock(v′) ∧mayAlias(v, v′)

KEY(ptsTo, s)

1 switch(s)
2 case start, end : return list(kind(s))

3 case read(f),write(f, e) : return list(kind(s), f)

4 case read(v, f),write(v, f, e) : return list(kind(s),f,ptsTo(v))

5 case lock(v), unlock(v) : return list(kind(s), ptsTo(v))

Figure 13. COMPUTE-ACTS procedure for computing the assignment of actions to statements. The auxiliary function restrict(efg , i)
restricts a given efg to the control flow graph of the ith thread; domain(m) yields the set of all keys mapped by the map m; and kind(s)
returns the kind of the statement s as a string (e.g. “read”, “write”, etc.). Other auxiliary functions are self-explanatory.

ecute s and, therefore, to perform the action acts(s). Other bounds
are derived from acts and I(P) in a similar fashion.

The procedure COMPUTE-ACTS for computing the acts func-
tion is presented in Fig. 13. It works, thread by thread, as follows.
Given a thread ti, we use the function KEY to partition the state-
ments of ti into equivalence classes. For example, two reads of the
same static field have equal keys and are in the same equivalence
class. Then, for each class of statements C, MAX-EXECUTABLE-
SETS finds the largest subset Cmax ⊆ C such that all elements of
Cmax appear on a single path through the CFG of ti. We say that
the statements in Cmax are representative of C. Following the gen-
eration of Cmax for each C, REPRESENTATIVE-ATOMS creates a
unique atom aij for every representative statement sij and records
the correspondence between the two in a map. The size of this map
is an upper bound on the number of actions that any execution of

ti may generate, and it is bounded above by the total number of
memory-related statements in ti. The last few lines of COMPUTE-
ACTS use the representatives map to compute acts(s) for all s in
ti. In particular, acts(s) contains the atom aij if s and sij may
generate the same memory event (e.g., a read of the field f).

An example of the acts mapping and of the resulting bounds is
shown in Fig. 10. The sample mapping illustrates four key proper-
ties of acts , which ensure that our bounds are both compact and do
not exclude any witnesses:

1. each statement s is mapped to at least one atom;

2. if s and s′ may both be performed in some execution, the union
of their acts sets contains at least two atoms;

3. if s and s′ may produce the same memory event, the intersection
of their acts contains at least one atom; and

Sequential Consistency Coherence PRAM Causal Consistency Processor Consistency

test
w.exp.

/w.fnd.
sec vars clauses

w.exp.

/w.fnd.
sec vars clauses

w.exp.

/w.fnd.
sec vars clauses

w.exp.

/w.fnd.
sec vars clauses

w.exp.

/w.fnd.
sec vars clauses

1 y/y 2 363 584 y/y 2 87 62 y/y 2 835 1,298 y/y 2 1,030 1,649 y/y 2 996 1,528

2 n/n 2 800 1,335 y/y 2 249 128 y/y 2 1,628 2,584 n/n 2 2,262 3,756 y/y 2 1,902 2,966

3 y/y 3 36,848 69,896 y/y 2 4,380 1,786 y/y 10 143,328 256,041 y/y 12 326,930 616,481 y/y 14 149,986 267,130

4 n/n 1 1,305 2,226 y/y 1 429 242 y/y 1 2,803 4,613 y/y 1 3,727 6,337 y/y 1 3,203 5,181

5 n/n 2 1,028 1,735 y/y 1 332 185 n/n 2 2,138 3,449 n/n 2 2,922 4,906 n/n 2 2,469 3,914

6 n/n 1 716 1,186 n/n 1 238 251 y/y 1 1,404 2,193 y/y 1 1,990 3,265 n/n 2 1,639 2,519

7 n/n 2 2,164 3,777 y/y 1 758 274 y/y 2 4,932 8,404 y/y 2 6,274 10,940 n/n 2 5,542 9,281

8 y/y 1 2,298 4,026 y/y 1 589 336 y/y 2 5,679 9,368 y/y 1 8,817 15,329 y/y 2 6,330 10,331

9 n/n 2 7,592 13,890 y/y 1 2,061 370 y/y 2 23,472 41,122 y/y 2 37,171 67,671 y/y 3 25,302 43,988

10 n/n 1 800 1,334 y/y 1 249 127 n/n 1 1,644 2,610 n/n 1 2,265 3,757 n/n 1 1,918 2,992

11 n/n 1 800 1,333 y/y 2 249 126 y/y 1 1,628 2,582 n/y 1 2,262 3,754 y/y 1 1,902 2,964

12 n/n 2 1,849 3,210 y/y 1 432 218 y/y 1 4,486 7,277 n/n 2 7,095 12,215 y/y 2 5,038 8,088

13 n/n 2 3,547 6,328 y/y 1 651 308 y/y 2 9,791 16,216 n/y 2 17,184 30,385 y/y 2 10,753 17,684

14 n/n 1 1,317 2,244 y/y 1 449 268 y/y 1 2,109 3,244 n/y 1 3,732 6,275 y/y 1 2,445 3,682

15 n/n 1 2,203 3,842 y/y 1 788 379 y/y 1 3,887 6,334 n/y 1 6,316 10,921 n/n 2 4,417 7,049

Table 1. MEMSAT results for five classic memory models on Nemos test cases [20]. The column label “w.exp./w.fnd” stands for “witness
expected / witness found.”

4. if s and s′ may never produce the same memory event, the
intersection of their acts sets is empty.

The first two properties ensure that witnesses are not missed be-
cause the search space excludes executions that perform particular
statements or combinations of statements. For example, if acts(s)
is empty for some s, then both the lower and the upper bound on the
relation ais are also empty, which forces the solver to treat ais as the
constant relation ∅. As a result, the only way to satisfy the legality
constraint σ(GJsK, Ei)⇐⇒ F(s, Ei) 6= ∅ is to have the guard of s
evaluate to false. An empty acts set for s therefore rules out all wit-
nesses that perform s. Similarly, if acts(s)∪acts(s′) contains just
one atom aij, then Bu(ais) = Bu(a

i
s) = {〈aij〉}. In this case, the

only way to satisfy the legality constraint F(s, Ei)∩F(s′, Ei) = ∅
is to set either ais or ais′ (or both) to the empty set, thus ruling out
all witnesses that execute both s and s′.

The third property ensures that witnesses are not missed because
the memory model equates actions performed by different state-
ments in the context of different executions. For example, the pro-
gram in Fig. 7 is legal under the Java Memory Model. In its witness
execution E, statement 11 reads the value 1 from x, which causes
statement 13 to execute and write the value 1 to y; i.e. a13 ⊆ A.
The executionE is justified by a speculative executionE1, in which
statement 11 reads the value 0 from x, causing statement 14 to exe-
cute and write the value 1 to y; i.e., a1

14 ⊆ A1. As a result, the only
way to speculatively commit a write of 1 to y is to commit the result
of executing a1

14, but the only way to honor this commitment in E
is by executing a13. Hence, we must have a13 = a1

14, which means
thatBu(a13)∩Bu(a1

14) (and, by extension, acts(s13)∩acts(s14))
must be non-empty.

The fourth property ensures compactness of the search space. If
s and s′ may never perform the same event, then a commitment to
perform an action generated by s in a speculative execution Ei can
never be honored by executing s′ in Ei+1. We can therefore leave
acts(s) ∩ acts(s′) empty to get a smaller search space without
losing any witnesses.

4. Case Studies
We used MEMSAT to check seven existing memory models using
their published test cases: the Java Memory Model (JMM) by Man-
son et al. [19], a revised version of it by Sevcik and Aspinall [25],
and five classic memory models with existing axiomatic descrip-

tions [34]. Our experiments revealed several discrepancies between
what was expected and the actual results of the tests.

4.1 Classic memory models
Table 1 presents the results of applying MEMSAT to the classic
memory models specified in the Nemos framework [34] and the
test cases provided with the NemosFinder tool [20]. The test pro-
grams consist of 2-8 threads, each of which performs up to four
memory accesses.4 For every model and every test, the table shows
whether a witness was expected and whether we found one; the
total analysis time, rounded to the nearest second; and the size of
the final SAT problem, as measured by the number of variables and
clauses. All experiments were performed on a 2.4 GHz Intel Core
2 Duo machine with 4 GB of RAM.

We found that sequential consistency, coherence and PRAM be-
have as expected on all tests, while causal consistency allows wit-
nesses for tests 10 and 12–15, against expectation. Our initial ex-
periments also revealed that the Nemos definition of processor con-
sistency (PC) behaves as sequential consistency on the given tests,
due to an overconstraint in the mapConstraints predicate [34]. We
isolated the faulty constraint from the minimal core generated for
test 2. The PC results that are shown in Table 1 reflect our fix to
mapConstraints, which involved replacing an equality with an im-
plication. The analysis time for all tests was negligible.

4.2 Java Memory Model
The Java Memory Model (JMM) was first defined in the Java
Language Specification [12]. A few years later, Pugh [21] showed
that this initial definition was flawed, leading to a formal revision
process [15]. Manson et al. [19] eventually re-defined the model in
its current form, which we call the “original JMM.” Sevcik and
Aspinall [25] then formalized the original JMM in the Isabelle
theorem prover [13] and discovered that it disallows causality tests
17–20 [6], contrary to expectation. They fixed this flaw in a revision
of the model, which we call the “revised JMM,” by weakening rules
2 and 7 of legality [19]. The revised model also omits rules 3 and 8;
restricts executions to be finite; and modifies the handling of initial
writes.

4 Note that a program with t threads, which perform n memory operations
each, has roughly (n!)t candidate executions under a relaxed memory
model [24]. As a result, even tests as small as these are too difficult for
manual analysis.

Original JMM Revised JMM

test
w.exp.

/w.fnd.
sec vars clauses

w.exp.

/w.fnd.
sec vars clauses

1 y/y 2 3,044 5,725 y/y 2 1,764 2,767

2 y/y 2 7,311 18,872 y/y 2 4,250 6,352

3 y/y 2 9,579 23,179 y/y 2 5,776 8,993

4 n/n 2 2,924 5,552 n/n 2 1,709 2,807

5 n/n 3 15,029 28,869 n/n 2 9,263 15,795

6 y/y 2 6,506 15,457 y/y 2 3,822 3,591

7 y/y 2 5,459 10,410 y/y 2 2,949 4,859

8 y/y 2 3,715 7,112 y/y 2 2,192 3,662

9 y/y 2 7,505 14,384 y/y 2 4,581 7,716

10 n/n 2 15,486 29,850 n/n 2 9,480 16,000

11 y/y 2 9,106 17,484 y/y 2 4,645 7,763

12 n/n 4 22,038 65,378 n/n 3 10,757 18,213

13 n/n 2 3,066 5,826 n/n 2 1,781 2,851

14 n/n 35 78,481 256,684 n/n 13 34,393 71,345

15 n/n 96 332,130 1,246,708 n/n 56 112,230 249,352

16 y/y 1 1,930 3,539 y/y 1 1,152 1,809

17 y/y 2 15,348 42,259 y/y 2 8,873 15,784

18 y/y 2 15,357 42,297 y/y 1 8,882 15,822

19 y/n 2 5,693 11,351 y/y 1 3,182 5,380

20 y/n 2 8,335 16,727 y/y 2 4,552 7,702

T1 n/n 189 729,697 2,676,373 n/n 22 148,125 318,106

T1.t y/y 23 492,152 1,773,208 y/y 4 112,569 238,649

T2 n/n 3 11,796 30,032 n/n 2 7,219 11,746

T2.t y/y 1 5,564 11,066 y/y 2 3,650 6,665

T3 n/n 26 389,029 1,209,703 n/n 12 151,048 299,977

T3.t y/y 34 459,861 1,483,288 y/y 8 152,963 307,337

T4 n/n 3 10,031 22,792 n/n 3 6,104 10,349

T4.t y/y 2 12,162 28,091 y/y 2 7,415 11,801

T5 n/n 2 5,769 13,070 n/y 2 3,462 5,511

T5.t y/y 1 5,393 11,581 y/y 1 3,326 5,522

Table 2. MEMSAT results for the original [19] and revised [25]
definition of the JMM on standard causality tests [6] and program
transformation tests [25].

Table 2 shows the results of applying MEMSAT to both the
original and the revised JMM on two sets of test cases: the standard
causality tests by Pugh et al. [6] and the program transformation
tests by Sevcik and Aspinall [25]. Causality tests are labeled 1–
20 and transformation tests are T1–T5.t. All tests consist of 2 to 4
threads, each with up to 10 lines of code. Two of the tests contain
loops, which were unwound once. We initially found that none of
the tests pass for the revised JMM, because its specification of the
synchronizes-with relation fails to include edges from the end of
the initialization thread to the start of the user threads. The omission
was immediately apparent from the minimal cores, which showed
that it was impossible for any reads to see the initial writes without
these edges. We fixed the definition to include the missing edges
and repeated the experiments to obtain the results in Table 2.

The highlighted entries show that the original JMM does not
behave as expected on tests 19 and 20, confirming the findings
by Aspinall and Sevcik [3]. The cores produced by MEMSAT for
these tests consist of program constraints and rules 2 and 7 of
the original JMM. The revised JMM, which weakens both rules,
correctly validates tests 19 and 20.

Our findings disagree with those of Aspinall and Sevcik [3,
25] on the causality tests 17–18 and on the transform test T5. In
particular, we found that the original JMM allows both tests 17
and 18. The witnesses for these tests would have been difficult
to construct by hand, since each consists of an unusual justifying

sequence that has two different statements, only one of which is
guarded by a conditional, performing the same action. We also
found that the revised JMM allows the transform test T5, against
expectation. This test was designed to show that rule 9 of both the
original and revised JMM forbids reordering of statements with
special actions. The test indeed fails for the original model, and
MEMSAT produces a minimal core that includes rule 9. Upon
closer inspection of rule 9 in the revised model, we found that its
specification is weaker than in the original model. The difference
between the two rules is undocumented.

Most of our experiments on the JMM completed in a few sec-
onds. The most notable exceptions—tests 15 and T1—had three or
more user threads each and no witnesses. The resulting cores were
hence large and relatively expensive to minimize. The core mini-
mization feature [27] of Kodkod can be turned off for better perfor-
mance. Without it, MEMSAT would simply output an unsatisfiable
core that is not guaranteed to be minimal.

5. Related Work
Many memory models have been proposed both at the hardware
interface (see [1] for a detailed survey) and at the programming
language level [17, 19, 23]. The difficulty of reasoning about these
proposals was recognized early, prompting the development of nu-
merous techniques for formalizing and analyzing memory models.

Automated Analyses of the Java Memory Model. A number of
automated analyses have been developed for various incarnations
of the JMM. Yang et al. [31] present an analysis of the JMM CRF
model [17]. In this work, the model is hard-coded in a tool based
on the Murϕ model checker [8], and test programs are given in
the Murϕ input language. Roychoudhury and Mitra [22] propose
their own operational specification of the JMM that they devised
from the Java Language Specification [12], based on guarded com-
mands. They use XSB logic programming [30] for search-space
exploration. For input test programs, the user needs to specify the
paths taken in each thread. De et al. [7] developed OpMM, an op-
erational under-approximation for the current version of the JMM
[19]. They use a model checker similar to JavaPathFinder for state
exploration, with the semantics of OpMM built into it. Aspinall and
Sevcik [2] formalized the data race free guarantee of the current
JMM and proved it using the Isabelle theorem prover [13]. Finally,
Manson [18] developed a simulator for the current version of the
JMM that enumerates all possible executions for a given program.

Since MEMSAT supports an axiomatic style for specifying
memory models, the JMM specification can be provided directly
as an input with no need for an operational approximation. Our
tool is based on a SAT solver, so it suffers less from the state-
explosion problem faced by explicit-state model checkers, and its
test programs are given in Java. Unlike Manson’s simulator [18],
MEMSAT does not need to explicitly enumerate all executions,
and it can be used to check memory models other than the JMM.
Unlike techniques based on theorem proving, MEMSAT cannot be
used to verify properties of memory models. Instead, it is intended
as a debugging and rapid prototyping tool to help support reasoning
about them.

Automated Analyses of Other Memory Models. Aside from the
JMM, other memory models have been the focus of formalization
and analysis in prior work. Sober [5] is a scalable model check-
ing technique for detecting program executions that are not se-
quentially consistent due to store buffer relaxation. CheckFence
[4] is a SAT-based tool for checking that a data structure, imple-
mented in C, is sequentially consistent under a hard-coded relaxed
memory model, which approximates several different hardware-
level memory models. Unlike these tools, MEMSAT was devel-
oped for checking different memory models against small pro-

grams, rather than for checking larger programs against a specific
low-level memory model. While both MEMSAT and CheckFence
are based on SAT, their translation techniques are fundamentally
different. MemSAT uses a template-based translation with place-
holders, which enables it to handle different input memory models.
MemSAT also incorporates optimizations that allow it to handle
high-level memory models with speculative executions and arbi-
trary ordering relations.

Yang et al. [11, 33] devised a technique based on SAT for evalu-
ating tests against the Itanium memory model. To encode transitiv-
ity constraints, the tool generates a functional program for each in-
put test that, when executed, produces a set of propositional clauses
to be analyzed by a SAT solver. The authors report debugging one
of their test cases by examining the propositional clauses in a low-
level core generated by the SAT solver. MEMSAT, by contrast,
generates cores that are meaningful and minimal at the specifica-
tion level. Moreover, our backend engine supports transitive closure
naturally, simplifying the expression of transitivity constraints.

Sarkar et al. [24] used the HOL theorem prover to formalize
a semantics for multiprocessor x86 programs with an integrated
relaxed memory model. They also developed two automated tools
written in OCaml, one to check litmus tests against the axiomatic
memory model and one to run the tests on actual hardware. Unlike
these tools, which are dedicated checkers for the x86-CC memory
model, MEMSAT takes a memory model specification as input and
targets Java rather than machine code.
Frameworks for Memory Model Analysis. Several frameworks
for checking memory models have been proposed. The Unified
Memory Model (UMM) [32] is a framework for describing oper-
ational memory models. Memory models in the UMM are given
using guarded commands, with a transition table for specifying
the behavior of instructions, and a bypass table for specifying
allowed instruction reorderings. The framework is based on the
Murϕ model checker. Yang et al. also developed the Nemos frame-
work [34], which is based on SAT and supports simple axiomatic
specifications of low-level memory models. Litmus tests are pro-
vided as traces—i.e., sequences of reads and writes.

Our tool improves on the UMM and Nemos in several ways.
First, unlike either of these tools, MEMSAT can provide proofs of
illegality in the form of minimal cores. Second, Nemos encodes
memory models with a limited set of predicates, which cannot ex-
press rules about locking or speculative executions. MemSAT han-
dles memory models with both of these features. Finally, Nemos
requires users to manually enumerate complete traces, which our
tool does automatically based on the program and the assertions
being checked.

6. Conclusions
We presented MEMSAT, a fully automated tool for debugging and
reasoning about axiomatic specifications of memory models. We
used MEMSAT to check the JMM [19], a revised version of it
[2, 25], and several well-known memory models. Our experiments
confirmed previously reported discrepancies in the expected behav-
ior of test programs, and uncovered new ones. To the best of our
knowledge, our tool is the first fully automated technique that can
handle the current axiomatic specification of the JMM. In the fu-
ture, we plan to investigate applying MEMSAT to hardware mem-
ory models.

References
[1] S. V. Adve and K. Gharachorloo. Shared memory consistency models:

A tutorial. Computer, 29(12):66–76, 1996.
[2] D. Aspinall and J. Sevcik. Formalising Java’s data race free guarantee.

In TPHOLs ’07, pages 22–37, 2007.

[3] D. Aspinall and J. Sevcı́k. Java memory model examples: good, bad
and ugly. In VAMP ’07, Lisbon, Portugal, September 2007.

[4] S. Burckhardt, R. Alur, and M. M. K. Martin. CheckFence: checking
consistency of concurrent data types on relaxed memory models. In
PLDI ’07, 2007.

[5] S. Burckhardt and M. Musuvathi. Effective program verification for
relaxed memory models. In CAV ’08, 2008.

[6] Causality test cases for the Java Memory Model. http://www.cs.
umd.edu/∼pugh/java/memoryModel/CausalityTestCases.html.

[7] A. De, A. Roychoudhury, and D. D’Souza. Java memory model aware
software validation. In PASTE ’08, 2008.

[8] D. Dill. The Murϕ verification system. In CAV ’96, 1996.
[9] J. Dolby, M. Vaziri, and F. Tip. Finding bugs efficiently with a SAT

solver. In FSE ’07, pages 195–204, 2007.
[10] N. Eén and N. Sörensson. An extensible SAT-solver. In SAT’03, 2003.
[11] G. Gopalakrishnan, Y. Yang, and H. Sivaraj. QB or Not QB: An

efficient execution verification tool for memory orderings. In CAV
’04, 2004.

[12] J. Gosling, B. Joy, and G. Steele. The Java Specification Language.
Addison-Wesley, 1996.

[13] Isabelle Theorem Prover. http://isabelle.in.tum.de/.
[14] D. Jackson. Software Abstractions: logic, language and analysis. MIT

Press, 2006.
[15] JSR-133: Java memory model and thread specification revision.

http://www.cs.umd.edu/∼pugh/java/memoryModel.
[16] L. Lamport. How to make a multiprocessor computer that correctly

executes multiprocess program. IEEE Trans. Comput., 28(9), 1979.
[17] J.-W. Maessen, Arvind, and X. Shen. Improving the Java Memory

Model using CRF. In OOPSLA ’00, 2000.
[18] J. Manson. The Java memory model. PhD thesis, University of

Maryland, College Park, 2004.
[19] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In

POPL ’05, pages 378–391, New York, NY, USA, 2005. ACM.
[20] NemosFinder. http://www.cs.utah.edu/formal verification/.
[21] W. Pugh. Fixing the Java memory model. In Java Grande ’99, 1999.
[22] A. Roychoudhury and T. Mitra. Specifying multithreaded Java

semantics for program verification. In ICSE ’02, 2002.
[23] V. A. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A

theory of memory models. In PPoPP ’07, pages 161–172, New York,
NY, USA, 2007. ACM.

[24] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens, T. Ridge, T. Braibant,
M. O Myreen, and J. Alglave. The semantics of x86–CC multiproces-
sor machine code. In POPL ’09, 2009.

[25] J. Sevcı́k and D. Aspinall. On validity of program transformations in
the Java memory model. In ECOOP ’08, 2008.

[26] E. Torlak. A constraint solver for software engineering: finding models
and cores of large relational specifications. PhD thesis, MIT, 2009.

[27] E. Torlak, F. S.-H. Chang, and D. Jackson. Finding minimal
unsatisfiable cores of declarative specifications. In FM ’08, 2008.

[28] E. Torlak and D. Jackson. Kodkod: A relational model finder. In
TACAS ’07, 2007.

[29] Watson libraries for analysis (WALA). http://wala.sourceforge.net.
[30] The XSB logic programming system. http://xsb.sourceforge.net.
[31] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Analyzing the CRF

Java memory model. In APSEC ’01, 2001.
[32] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Specifying Java

thread semantics using a uniform memory model. In JGI ’02, 2002.
[33] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Analyzing

the Intel Itanium memory ordering rules using logic programming and
SAT. In CHARME ’03, 2003.

[34] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Nemos:
a framework for axiomatic and executable specifications of memory
consistency models. In IPDPS ’04, pages 26–30, 2004.

