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Abstract. These notes are accompanying material for the lecture enti-
tled “OpenSMT and Applications” held at MIT during the First Sum-
mer School on SAT and SMT. The purpose of this document is mainly
to provide exhaustive bibliographic references for the topics discussed
during the presentation.

1 OpenSMT

The OpenSMT project started in 2008 in the Formal Verification and Secu-
rity Group at USI (Università della Svizzera Italiana, Lugano, Switzerland)
as an attempt of building an open-source, easy to extend, but at the same
time efficient, SMT-Solver. As of 2010 (see SMT-COMP’10) OpenSMT is the
fastest open-source SMT-Solver in several logics (QF UF, QF IDL, QF RDL,
QF UFIDL). Details about OpenSMT architecture and applications can be
found in [3, 5–8,18]

2 Interpolants

The notion of “interpolant” is connected with Craig’s Interpolation Theorem [10],
that shows that in first order logic, for every pair of unsatisfiable formulæ A and
B, there exists an interpolant, i.e., a formula I1 such that

(i) T ` A→ I;
(ii) B ∧ I is T -unsatisfiable;

(iii) I is defined over the common non-logical symbols.2

Interpolants find application in model-checking as an alternative/improvement
over the use of quantifier-elimination methods for computing the “post” states
of a transition system [14], or to improve abstraction-refinement paradigm in
the context of software verification by means of lazy abstraction [12,16]. In both
cases the verifcation effort is carried out by means of SAT/SMT-Solvers.

In order to keep everything decidable, it is important to work at the quantifier-
free level. Notice that Craig’s theorem does not guarantee that if A and B are

1Throughout these notes we will use red for formula A and symbols local to it, blue
for formula B and symbols local to it, and green for interpolants.

2This formulation of the theorem is actually slightly different from (but equivalent
to) the original one, in which an interpolant is a formula I for a pair of formulæ A→ B,
such that A→ I → B.



Fig. 1. A graphical representation of the notion of interpolant.

quantifier-free then I is so. It is the case for some theories, such as EUF (Equality
with Uninterpreted Functions) [11,15], LRA (Linear Rational Arithmetic) [15],
LIA (Linear Integer Arithmetic) if we allow the use of ≡n predicates [1], AX
(Arrays with extensionality) if we allow the use of a diff function symbol [4].
It is also interesting to notice that theory combination does not “transfer” to
computing quantifier-free interpolants, because even though EUF ∪ LRA [15]
admits quantifier-free interpolants, EUF ∪ LIA does not [2].

2.1 Examples and Exercizes

Example 1. If A ≡ ⊥ an interpolant is ⊥. If B ≡ ⊥ and interpolant is >.

Example 2. An interpolant for

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}, B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}

is I ≡ c1.

Example 3. An interpolant for

A ≡ {(x− y ≤ 2) ∧ (y − z ≤ 1)}, B ≡ {(z − w ≤ 0) ∧ (w − x ≤ −10)}

is I ≡ x− z ≤ 8.

Exercise 1. Verify that the interpolants in the above examples verify properties
(i)− (iii).

Exercise 2. Find alternative interpolants for Examples 2 and 3.

2.2 Interpolants in OpenSMT

Interpolants can be computed in OpenSMT by means of some “SMT-LIB2-like”
commands 3:

3It is important to precise that no standard command for interpolation exists in
the current SMT-LIB2 standard [17].



– (set-option :produce-interpolants <bool>) tells OpenSMT to
compute interpolants;

– (assert-partition <formula>) tells OpenSMT about a partition;
– (get-interpolant <n>) commands to retrieve interpolant.

Example 4. The following script computes an interpolant of example 2.

(set-option :print-success false)
(set-logic QF_IDL)
(set-option :produce-interpolants true)
(declare-fun a () Bool)
(declare-fun b () Bool)
(declare-fun c_1 () Bool)
(declare-fun c_2 () Bool)
; Partition A
(assert-partition (and

(not a)
(or a c_1)
(or a c_2)
))

; Partition B
(assert-partition (and

(not b)
(or b (not c_1))
(or b (not c_2))
))

(check-sat)
(get-interpolant 1)
(exit)

Example 5. The following script computes an interpolant of example 3.

(set-option :print-success false)
(set-logic QF_IDL)
(set-option :produce-interpolants true)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(declare-fun w () Int)
; Partition A
(assert-partition (and

(<= (- x y) 2)
(<= (- y z) 1)
))

; Partition B
(assert-partition (and

(<= (- z w) 0)



(<= (- w x) (- 10))
))

(check-sat)
(get-interpolant 1)
(exit)

Exercise 3. Write a script to compute an interpolant for

A ≡ {(x+ y ≤ 0) ∧ (−2x− y + z ≤ −5)}
B ≡ {(x− z ≤ 3)}

where x, y, z are variables of type Real (i.e., logic QF_LRA has to be used) and
run it through OpenSMT.

3 Application to Program Verification

Before discussing the use of interpolants in program verification with model
checking, we need to give a more generic definition of interpolants. The definition
involves several (n ≥ 2) partitions A1, . . . , An whose conjunction is unsatisfiable,
and defines n+ 1 interpolants I0, . . . , In such that:

(i) I0 = >, In = ⊥;
(ii) T ` (Ik ∧Ak+1)→ Ik+1;

(iii) Ik defined over shared symbols of Ak and Ak+1.

Intuitively, each Ak is used to encode a set of instructions in the program,
while interpolants represent overapproximations of postconditions, resulting from
the application of the instructions.

We show the application of interpolants by means of an example. Consider
the following program fragment defined over integer variables

1: y = x;
2: while ( x >= 1 ) {
3: x = x - 1;
4: y = y - 1;
5: }
6: if ( y >= 1 )
7: ERROR;

which contains an error location at line 7. The location is however unreach-
able. In fact if x ≤ 0, then the loop is not taken, and since y = x by the first
instruction, the if branch is also not taken. If x ≥ 1 instead, the loop will de-
crease both x and y initially equal, and so when the loop condition is falsified
the value of y will prevent taking the if branch. In order to formally analyze the
program, we need to extract its control-flow graph and translate its instructions
into a transition system, as shown in Figure 2 below.
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T1 T3
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T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Fig. 2. Control-flow graph and transitions.

This translation process may be carried out in several ways, for instance T2
could have been split into a T ′2 updating only x and a T ′′2 updating only y. Notice
that some translations are better than others, w.r.t. the way the lazy abstraction
framework performs.

Once the translation is done, we may start building the unwinding of the
program, based on the control graph. We begin from location 0 (actually not
listed in the program, we assume it is the initial state) and following the control-
flow graph we unwind T1 and T3 (Figure 3a).
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Fig. 3. Unwinding of the program.

Notice that each node has a label on top of it, within curly brackets. In the
lazy abstraction labels are initially abstracted away to >. The provided trace
however is infeasible. It can be checked by means of a symbolic execution of
the formula in Figure 4a. The interpolants we may compute “around” the two
partitions are shown in Figure 4b, and result into the unwinding in Figure 3.
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Fig. 4. Counterexample for the first trace.

Another round of abstraction-refinement will produce the unwinding in Fig-
ure 3d, and we may stop expanding the tree because of covering (Figure 3e). For
details refer to [16].

4 Computing Interpolants

4.1 Quantifier Elimination

In a recursively enumerable theory T there is a tight connection between the
property of eliminating quantifiers and that of being quantifier-free interpolating:
the two are in fact equivalent [13]. This means that, in principle, quantifier
elimination algorithms can be used to compute interpolants. However, it is well
known that quantifier elimination techniques are very expensive: in fact the
whole idea about interpolants is to avoid quantifier elimination !

Consider the interpolation problem A ∧ B, and let a the tuple of variables
local to A: an interpolant can be obtained by performing quantifier elimination
on ∃a.A, to obtain an interpolant I. Notice that I is the strongest possible
interpolant, because quantifier elimination preserves equivalence (i.e., ∃a.A ↔
I), and therefore we cannot find a stronger formula that is still implied by A.

4.2 Extension of known techniques

The common way to obtain interpolating procedures is to modify existing ones.
There are two school of thoughts in this respect. In the first class of approaches, a
calculus or a set of inference rules is extended with side conditions that describe
how the interpolant is modified during the proof [1, 15]. For example, in [1] a
sequent-like calculus for LIA is extended as shown in Figure 5.

Exercise 4. Show that the rule in Figure 5b produce a correct (partial) inter-
polant, provided that b1∨b2 are local to B and that I1 and I2 are correct partial
interpolants for the premises.



Γ, b1 ` ∆ Γ, b2 ` ∆ ∨-Left
Γ, b1 ∨ b2 ` ∆

Γ, b1 ` ∆ ‖ I1 Γ, b2 ` ∆ ‖ I2
∨-Left

Γ, b1 ∨ b2 ` ∆ ‖ I1 ∧ I2

(a) (b)

Fig. 5. Extension of a sequent calculus. The constraints for the partitions A and
B are “hidden” inside the sequents Γ ` ∆.

The other method to obtain interpolants is to modify an existing decision
procedure [9, 11, 19]. Figure 6 shows how a witness of unsatisfiability extracted
from the simplex algorithm can be used to compute an interpolant.
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Fig. 6. Interpolant from Simplex proof.

5 The Two-Provers Paradigm

Interpolation can be seen as a game between two entities, a prover for A and a
prover for B. This view has been first proposed in [11] for the theory of equality
with uninterpreted functions. The idea is that starting from a pair 〈A,B〉, each
prover in turn is allowed to perform a step to produce a new pair 〈A′, B′〉. Steps
could be of different types, for instance, if A ` φ derive something in A to get
〈A ∪ {φ}, B〉. Another step could be a propagation of a formula φ ∈ A to B, if φ
is on the shared language. This view is very similar to that of the Nelson-Oppen
schema for combining theories.

Now suppose that after a number of steps we derive ⊥ in A or B, then we can
reconstruct an interpolant for the original pair 〈A,B〉 by giving an interpolating
instruction to each of the steps. The step plus the interpolating instruction is
called interpolating metarule: metarules that suffice in most cases are shown in
table 1 (notice that what is shown in the table is slightly different from what
you can find in the slides, but the idea is exactly the same, it is just a syntactic
difference).

Notice that the rules do not provide a complete calculus, nor they suggest
any strategy to be applied to reach unsatisfiabililty. The idea is that taken any



Close1 Close2 Propagate1 Propagate2

A | B

Prv.: A is unsat.
Int.: φ′ ≡ ⊥.

A | B

Prv.: B is unsat.
Int.: φ′ ≡ >.

A | B ∪ {ψ}
A | B

Prv.: A ` ψ and
ψ is AB-common.

Int.: φ′ ≡ φ ∧ ψ.

A ∪ {ψ} | B
A | B

Prv.: B ` ψ and
ψ is AB-common.

Int.: φ′ ≡ ψ → φ.

Define0 Define1 Define2

A ∪ {a = t} | B ∪ {a = t}
A | B

Prv.: t is AB-common, a fresh.
Int.: φ′ ≡ φ(t/a).

A ∪ {a = t} | B
A | B

Prv.: t is A-local and a is fresh.
Int.: φ′ ≡ φ.

A | B ∪ {a = t}
A | B

Prv.: t is B-local and a is fresh.
Int.: φ′ ≡ φ.

Disjunction1 Disjunction2

· · · A ∪ {ψk} | B · · ·
A | B

Prv.:
∨n

k=1 ψk is A-local and A `
∨n

k=1 ψk.
Int.: φ′ ≡

∨n
k=1 φk.

· · · A | B ∪ {ψk} · · ·
A | B

Prv.:
∨n

k=1 ψk is B-local and B `
∨n

k=1 ψk.
Int.: φ′ ≡

∧n
k=1 φk.

Redplus1 Redplus2 Redminus1 Redminus2

A ∪ {ψ} | B
A | B

Prv.: A ` ψ and
ψ is A-local.

Int.: φ′ ≡ φ.

A | B ∪ {ψ}
A | B

Prv.: B ` ψ and
ψ is B-local.

Int.: φ′ ≡ φ.

A | B
A ∪ {ψ} | B

Prv.: A ` ψ and
ψ is A-local.

Int.: φ′ ≡ φ.

A | B
A | B ∪ {ψ}

Prv.: B ` ψ and
ψ is B-local.

Int.: φ′ ≡ φ.

ConstElim1 ConstElim2 ConstElim0

A | B
A ∪ {a = t} | B

Prv.: a is A-strict and
does not occur in A, t.

Int.: φ′ ≡ φ.

A | B
A | B ∪ {b = t}

Prv.: b is B-strict and
does not occur in B, t.

Int.: φ′ ≡ φ.

A | B
A ∪ {c = t} | B ∪ {c = t}

Prv.: c, t are AB-common,
c does not occur in A,B, t.

Int.: φ′ ≡ φ.

Table 1. Interpolating Metarules: each rule has a proviso Prv. and an instruction
Int. for recursively computing the new interpolant φ′ from the old one(s) φ, φ1, . . . , φk.
These rules appeared in [4].

algorithm or calculus that leads to unsatisfiable state, one can reconstruct an
interpolant by matching each step of the algorithm/calculus with one or more
metarule, without modifying the algorithm/calculus directly.



Example 6. Consider again the partitions from Example 2.

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}, B ≡ {¬b ∧ (b ∨ ¬c2) ∧ (b ∨ ¬c2)}

There are several strategies that can lead to unsatisfiability. For instance

(Close2)
〈. . . ∧ c1, . . . ∧ ⊥〉

(RedPlus2)
〈. . . ∧ c1,¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2) ∧ c1 ∧ b〉

(RedPlus2)
〈. . . ∧ c1,¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2) ∧ c1〉

(Propagate1)
〈. . . ∧ c1,¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)〉

(RedPlus1)
〈¬a ∧ (a ∨ c1) ∧ (a ∨ c2),¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)〉

Exercise 5. Compute the interpolant using the metarules for the derivation strat-
egy in the previous example.

Exercise 6. Find alternative strategies and compute corresponding interpolants.

Exercise 7. Try to apply the metarules approach to the algorithms and calculi
in [1, 9, 11].
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