
OpenSMT and Applications to
Interpolation and Proof Manipulation

Roberto Bruttomesso, Natasha Sharygina

USI Lugano

MIT - June 16, 2011

Outline

1 The OpenSMT Solver

2 Interpolants

3 Application to Program Verification

4 Computing Interpolants

5 Proof Transformation (for interpolation and reduction)

The OpenSMT Solver

Introduction

e(DPLL(T)) = e(DPLL) + e(T) + e(COMM)

DPLL T

Introduction

e(DPLL(T)) = e(DPLL) + e(T) + e(COMM)

DPLL

Introduction

e(DPLL(T)) ≈ e(T)

DPLL

Join SMT-COMP !

The OpenSMT Solver

Open-source solver developed at USI since 20081

Based on MiniSAT, and Efficient (e.g., see SMT-COMP’10)

Structured to be easily extended with new theory-solvers

Several algorithms for computing interpolants and manipulating
proofs of unsatisfiability

Coming soon: integration with model-checker MCMT
(JWW F.Alberti, S. Ghilardi, S.Ranise)

1Available at http://www.verify.usi.ch/opensmt

The OpenSMT Solver

Open-source solver developed at USI since 20081

Based on MiniSAT, and Efficient (e.g., see SMT-COMP’10)

Structured to be easily extended with new theory-solvers

Several algorithms for computing interpolants and manipulating
proofs of unsatisfiability

Coming soon: integration with model-checker MCMT
(JWW F.Alberti, S. Ghilardi, S.Ranise)

1Available at http://www.verify.usi.ch/opensmt

The OpenSMT Solver

Open-source solver developed at USI since 20081

Based on MiniSAT, and Efficient (e.g., see SMT-COMP’10)

Structured to be easily extended with new theory-solvers

Several algorithms for computing interpolants and manipulating
proofs of unsatisfiability

Coming soon: integration with model-checker MCMT
(JWW F.Alberti, S. Ghilardi, S.Ranise)

1Available at http://www.verify.usi.ch/opensmt

The OpenSMT Solver

Open-source solver developed at USI since 20081

Based on MiniSAT, and Efficient (e.g., see SMT-COMP’10)

Structured to be easily extended with new theory-solvers

Several algorithms for computing interpolants and manipulating
proofs of unsatisfiability

Coming soon: integration with model-checker MCMT
(JWW F.Alberti, S. Ghilardi, S.Ranise)

1Available at http://www.verify.usi.ch/opensmt

Interpolants

Quantifier-free Interpolation

A first-order theory T has quantifier-free interpolation property

iff

for every quantifier-free formulae A, B, such that A ∧B is
T -unsatisfiable, there exists a quantifier-free formula I such that:

(i) T ` A→ I;

(ii) B ∧ I is T -unsatisfiable;

(iii) I is defined over common symbols of A and B.

In short, I is an overapproximation of A that is still unsatisfiable
with B, and that uses the common language

Quantifier-free Interpolation

A first-order theory T has quantifier-free interpolation property

iff

for every quantifier-free formulae A, B, such that A ∧B is
T -unsatisfiable, there exists a quantifier-free formula I such that:

(i) T ` A→ I;

(ii) B ∧ I is T -unsatisfiable;

(iii) I is defined over common symbols of A and B.

In short, I is an overapproximation of A that is still unsatisfiable
with B, and that uses the common language

Quantifier-free Interpolation

A first-order theory T has quantifier-free interpolation property

iff

for every quantifier-free formulae A, B, such that A ∧B is
T -unsatisfiable, there exists a quantifier-free formula I such that:

(i) T ` A→ I;

(ii) B ∧ I is T -unsatisfiable;

(iii) I is defined over common symbols of A and B.

In short, I is an overapproximation of A that is still unsatisfiable
with B, and that uses the common language

Quantifier-free Interpolation

A first-order theory T has quantifier-free interpolation property

iff

for every quantifier-free formulae A, B, such that A ∧B is
T -unsatisfiable, there exists a quantifier-free formula I such that:

(i) T ` A→ I;

(ii) B ∧ I is T -unsatisfiable;

(iii) I is defined over common symbols of A and B.

In short, I is an overapproximation of A that is still unsatisfiable
with B, and that uses the common language

Quantifier-free Interpolation

For A ∧B is T -unsatisfiable, I is a quantifier-free formula such that:

(i) T ` A→ I;

(ii) B ∧ I is T -unsatisfiable;

(iii) I is defined over common symbols of A and B.

Quantifier-free Interpolation

For A ∧B is T -unsatisfiable, I is a quantifier-free formula such that:

(i) T ` A→ I;

(ii) B ∧ I is T -unsatisfiable;

(iii) I is defined over common symbols of A and B.

Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free
interpolants:

Linear Real Arithmetic (LRA);

Linear Integer Arithmetic (LIA)

(with help of {≡n} predicates);

Equality with Uninterpreted Functions (EUF);

Arrays with extensionality (AX)

(with help of diff function);

some combinations, like (LRA ∪ EUF);

but not some other, like (LIA ∪ EUF).

In general, those theories that admit Quantifier Elimination , also
admit quantifier-free interpolants

Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free
interpolants:

Linear Real Arithmetic (LRA);

Linear Integer Arithmetic (LIA)

(with help of {≡n} predicates);

Equality with Uninterpreted Functions (EUF);

Arrays with extensionality (AX)

(with help of diff function);

some combinations, like (LRA ∪ EUF);

but not some other, like (LIA ∪ EUF).

In general, those theories that admit Quantifier Elimination , also
admit quantifier-free interpolants

Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free
interpolants:

Linear Real Arithmetic (LRA);

Linear Integer Arithmetic (LIA)

(with help of {≡n} predicates);

Equality with Uninterpreted Functions (EUF);

Arrays with extensionality (AX)

(with help of diff function);

some combinations, like (LRA ∪ EUF);

but not some other, like (LIA ∪ EUF).

In general, those theories that admit Quantifier Elimination , also
admit quantifier-free interpolants

Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free
interpolants:

Linear Real Arithmetic (LRA);

Linear Integer Arithmetic (LIA)
(with help of {≡n} predicates);

Equality with Uninterpreted Functions (EUF);

Arrays with extensionality (AX)

(with help of diff function);

some combinations, like (LRA ∪ EUF);

but not some other, like (LIA ∪ EUF).

In general, those theories that admit Quantifier Elimination , also
admit quantifier-free interpolants

Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free
interpolants:

Linear Real Arithmetic (LRA);

Linear Integer Arithmetic (LIA)
(with help of {≡n} predicates);

Equality with Uninterpreted Functions (EUF);

Arrays with extensionality (AX)

(with help of diff function);

some combinations, like (LRA ∪ EUF);

but not some other, like (LIA ∪ EUF).

In general, those theories that admit Quantifier Elimination , also
admit quantifier-free interpolants

Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free
interpolants:

Linear Real Arithmetic (LRA);

Linear Integer Arithmetic (LIA)
(with help of {≡n} predicates);

Equality with Uninterpreted Functions (EUF);

Arrays with extensionality (AX)

(with help of diff function);

some combinations, like (LRA ∪ EUF);

but not some other, like (LIA ∪ EUF).

In general, those theories that admit Quantifier Elimination , also
admit quantifier-free interpolants

Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free
interpolants:

Linear Real Arithmetic (LRA);

Linear Integer Arithmetic (LIA)
(with help of {≡n} predicates);

Equality with Uninterpreted Functions (EUF);

Arrays with extensionality (AX)
(with help of diff function);

some combinations, like (LRA ∪ EUF);

but not some other, like (LIA ∪ EUF).

In general, those theories that admit Quantifier Elimination , also
admit quantifier-free interpolants

Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free
interpolants:

Linear Real Arithmetic (LRA);

Linear Integer Arithmetic (LIA)
(with help of {≡n} predicates);

Equality with Uninterpreted Functions (EUF);

Arrays with extensionality (AX)
(with help of diff function);

some combinations, like (LRA ∪ EUF);

but not some other, like (LIA ∪ EUF).

In general, those theories that admit Quantifier Elimination , also
admit quantifier-free interpolants

Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free
interpolants:

Linear Real Arithmetic (LRA);

Linear Integer Arithmetic (LIA)
(with help of {≡n} predicates);

Equality with Uninterpreted Functions (EUF);

Arrays with extensionality (AX)
(with help of diff function);

some combinations, like (LRA ∪ EUF);

but not some other, like (LIA ∪ EUF).

In general, those theories that admit Quantifier Elimination , also
admit quantifier-free interpolants

Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free
interpolants:

Linear Real Arithmetic (LRA);

Linear Integer Arithmetic (LIA)
(with help of {≡n} predicates);

Equality with Uninterpreted Functions (EUF);

Arrays with extensionality (AX)
(with help of diff function);

some combinations, like (LRA ∪ EUF);

but not some other, like (LIA ∪ EUF).

In general, those theories that admit Quantifier Elimination , also
admit quantifier-free interpolants

Some easy examples

Example (Trivial cases)

If A is unsatisfiable on its own (i.e., A = ⊥), then I = ⊥.

If B is unsatisfiable on its own (i.e., B = ⊥), then I = >.

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = {c1} (one of the many possible, see later)

Example (Linear Real Arithmetic)

A ≡ {(x− y ≤ 2) ∧ (y − z ≤ 1)}
B ≡ {(z − w ≤ 0) ∧ (w − x ≤ −10)}
I = {x− z ≤ 8} (one of the infinite possible)

Some easy examples

Example (Trivial cases)

If A is unsatisfiable on its own (i.e., A = ⊥), then I = ⊥.
If B is unsatisfiable on its own (i.e., B = ⊥), then I = >.

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = {c1} (one of the many possible, see later)

Example (Linear Real Arithmetic)

A ≡ {(x− y ≤ 2) ∧ (y − z ≤ 1)}
B ≡ {(z − w ≤ 0) ∧ (w − x ≤ −10)}
I = {x− z ≤ 8} (one of the infinite possible)

Some easy examples

Example (Trivial cases)

If A is unsatisfiable on its own (i.e., A = ⊥), then I = ⊥.
If B is unsatisfiable on its own (i.e., B = ⊥), then I = >.

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}

I = {c1} (one of the many possible, see later)

Example (Linear Real Arithmetic)

A ≡ {(x− y ≤ 2) ∧ (y − z ≤ 1)}
B ≡ {(z − w ≤ 0) ∧ (w − x ≤ −10)}
I = {x− z ≤ 8} (one of the infinite possible)

Some easy examples

Example (Trivial cases)

If A is unsatisfiable on its own (i.e., A = ⊥), then I = ⊥.
If B is unsatisfiable on its own (i.e., B = ⊥), then I = >.

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = {c1}

(one of the many possible, see later)

Example (Linear Real Arithmetic)

A ≡ {(x− y ≤ 2) ∧ (y − z ≤ 1)}
B ≡ {(z − w ≤ 0) ∧ (w − x ≤ −10)}
I = {x− z ≤ 8} (one of the infinite possible)

Some easy examples

Example (Trivial cases)

If A is unsatisfiable on its own (i.e., A = ⊥), then I = ⊥.
If B is unsatisfiable on its own (i.e., B = ⊥), then I = >.

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = {c1} (one of the many possible, see later)

Example (Linear Real Arithmetic)

A ≡ {(x− y ≤ 2) ∧ (y − z ≤ 1)}
B ≡ {(z − w ≤ 0) ∧ (w − x ≤ −10)}
I = {x− z ≤ 8} (one of the infinite possible)

Some easy examples

Example (Trivial cases)

If A is unsatisfiable on its own (i.e., A = ⊥), then I = ⊥.
If B is unsatisfiable on its own (i.e., B = ⊥), then I = >.

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = {c1} (one of the many possible, see later)

Example (Linear Real Arithmetic)

A ≡ {(x− y ≤ 2) ∧ (y − z ≤ 1)}
B ≡ {(z − w ≤ 0) ∧ (w − x ≤ −10)}

I = {x− z ≤ 8} (one of the infinite possible)

Some easy examples

Example (Trivial cases)

If A is unsatisfiable on its own (i.e., A = ⊥), then I = ⊥.
If B is unsatisfiable on its own (i.e., B = ⊥), then I = >.

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = {c1} (one of the many possible, see later)

Example (Linear Real Arithmetic)

A ≡ {(x− y ≤ 2) ∧ (y − z ≤ 1)}
B ≡ {(z − w ≤ 0) ∧ (w − x ≤ −10)}
I = {x− z ≤ 8}

(one of the infinite possible)

Some easy examples

Example (Trivial cases)

If A is unsatisfiable on its own (i.e., A = ⊥), then I = ⊥.
If B is unsatisfiable on its own (i.e., B = ⊥), then I = >.

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = {c1} (one of the many possible, see later)

Example (Linear Real Arithmetic)

A ≡ {(x− y ≤ 2) ∧ (y − z ≤ 1)}
B ≡ {(z − w ≤ 0) ∧ (w − x ≤ −10)}
I = {x− z ≤ 8} (one of the infinite possible)

Computing interpolants with OpenSMT

SMT-LIB 2 Standard does not support (yet) interpolation commands

OpenSMT supports non-standard interpolation commands

(set-option :produce-interpolants <bool>)

tells OpenSMT to compute interpolants

(assert-partition <formula>)

tells OpenSMT about a partition

(get-interpolant <n>)

command to retrieve an interpolant

Computing interpolants with OpenSMT

SMT-LIB 2 Standard does not support (yet) interpolation commands

OpenSMT supports non-standard interpolation commands

(set-option :produce-interpolants <bool>)

tells OpenSMT to compute interpolants

(assert-partition <formula>)

tells OpenSMT about a partition

(get-interpolant <n>)

command to retrieve an interpolant

Computing interpolants with OpenSMT

SMT-LIB 2 Standard does not support (yet) interpolation commands

OpenSMT supports non-standard interpolation commands

(set-option :produce-interpolants <bool>)

tells OpenSMT to compute interpolants

(assert-partition <formula>)

tells OpenSMT about a partition

(get-interpolant <n>)

command to retrieve an interpolant

Computing interpolants with OpenSMT

SMT-LIB 2 Standard does not support (yet) interpolation commands

OpenSMT supports non-standard interpolation commands

(set-option :produce-interpolants <bool>)

tells OpenSMT to compute interpolants

(assert-partition <formula>)

tells OpenSMT about a partition

(get-interpolant <n>)

command to retrieve an interpolant

Computing interpolants with OpenSMT

SMT-LIB 2 Standard does not support (yet) interpolation commands

OpenSMT supports non-standard interpolation commands

(set-option :produce-interpolants <bool>)

tells OpenSMT to compute interpolants

(assert-partition <formula>)

tells OpenSMT about a partition

(get-interpolant <n>)

command to retrieve an interpolant

Application to Program Verification

Application to Program Verification

So far we have considered interpolants between two partitions A and B

A more general definition involves n ≥ 2 partitions A1, . . . , An,
whose conjunction is unsatisfiable

Interpolants I0, . . . , In are such that

(i) I0 = >, In = ⊥;

(ii) T ` (Ik ∧Ak+1)→ Ik+1;

(iii) Ik on shared symbols of Ak and Ak+1.

For n = 2 , you get the previous definition for A and B

Application to Program Verification

So far we have considered interpolants between two partitions A and B

A more general definition involves n ≥ 2 partitions A1, . . . , An,
whose conjunction is unsatisfiable

Interpolants I0, . . . , In are such that

(i) I0 = >, In = ⊥;

(ii) T ` (Ik ∧Ak+1)→ Ik+1;

(iii) Ik on shared symbols of Ak and Ak+1.

For n = 2 , you get the previous definition for A and B

Application to Program Verification
Lazy Abstraction with Interpolants

Original (Concrete) Program

Control Flow and Transitions

1: y = x;
2: while (x ≥ 1) {
3: x = x - 1;
4: y = y - 1;
5: }
6: if (y ≥ 1)
7: ERROR;

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

Original (Concrete) Program Control Flow and Transitions

1: y = x;
2: while (x ≥ 1) {
3: x = x - 1;
4: y = y - 1;
5: }
6: if (y ≥ 1)
7: ERROR;

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

(Abstract) Program Unwinding Control Flow and Transitions

{ > }

aatrue
aax1 = x0

aay1 = x0

{ y1 - x1 ≤ 0 }

aax1 ≤ 0
aay1 ≥ 1
aax2 = x1

aay2 = y1

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { > } { > }

{ > }

aatrue
aax1 = x0

aay1 = x0

{ y1 - x1 ≤ 0 }

aax1 ≤ 0
aay1 ≥ 1
aax2 = x1

aay2 = y1

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { > } { > }

{ > }

aatrue
aax1 = x0

aay1 = x0

{ y1 - x1 ≤ 0 }

aax1 ≤ 0
aay1 ≥ 1
aax2 = x1

aay2 = y1

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { > } { > }

{ > }
aatrue
aax1 = x0

aay1 = x0

{ y1 - x1 ≤ 0 }

aax1 ≤ 0
aay1 ≥ 1
aax2 = x1

aay2 = y1

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { > } { > }

{ > }
aatrue
aax1 = x0

aay1 = x0

{ y1 - x1 ≤ 0 }
aax1 ≤ 0
aay1 ≥ 1
aax2 = x1

aay2 = y1

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { > } { > }

{ > }
aatrue
aax1 = x0

aay1 = x0

{ y1 - x1 ≤ 0 }
aax1 ≤ 0
aay1 ≥ 1
aax2 = x1

aay2 = y1

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

{ > }
aatrue
aax1 = x0

aay1 = x0

{ y1 - x1 ≤ 0 }
aax1 ≤ 0
aay1 ≥ 1
aax2 = x1

aay2 = y1

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

2

T2

7
T3

{ > } { > }

{ > }

aatrue
aax1 = x0
aay1 = x0

{ y1 - x1 ≤ 0 }

aax1 ≥ 1
aax2 = x1 - 1
aay2 = y1 - 1

{ y2 - x2 ≤ 0 }

aax2 ≤ 0
aay2 ≥ 1
aax3 = x2
aay3 = y2

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

2

T2

7
T3

{ > } { > }

{ > }
aatrue
aax1 = x0
aay1 = x0

{ y1 - x1 ≤ 0 }

aax1 ≥ 1
aax2 = x1 - 1
aay2 = y1 - 1

{ y2 - x2 ≤ 0 }

aax2 ≤ 0
aay2 ≥ 1
aax3 = x2
aay3 = y2

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

2

T2

7
T3

{ > } { > }

{ > }
aatrue
aax1 = x0
aay1 = x0
{ y1 - x1 ≤ 0 }
aax1 ≥ 1
aax2 = x1 - 1
aay2 = y1 - 1

{ y2 - x2 ≤ 0 }

aax2 ≤ 0
aay2 ≥ 1
aax3 = x2
aay3 = y2

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

2

T2

7
T3

{ > } { > }

{ > }
aatrue
aax1 = x0
aay1 = x0
{ y1 - x1 ≤ 0 }
aax1 ≥ 1
aax2 = x1 - 1
aay2 = y1 - 1
{ y2 - x2 ≤ 0 }
aax2 ≤ 0
aay2 ≥ 1
aax3 = x2
aay3 = y2

{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

2

T2

7
T3

{ > } { > }

{ > }
aatrue
aax1 = x0
aay1 = x0
{ y1 - x1 ≤ 0 }
aax1 ≥ 1
aax2 = x1 - 1
aay2 = y1 - 1
{ y2 - x2 ≤ 0 }
aax2 ≤ 0
aay2 ≥ 1
aax3 = x2
aay3 = y2
{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

2

T2

7
T3

{ y - x ≤ 0 } { ⊥ }

{ > }
aatrue
aax1 = x0
aay1 = x0
{ y1 - x1 ≤ 0 }
aax1 ≥ 1
aax2 = x1 - 1
aay2 = y1 - 1
{ y2 - x2 ≤ 0 }
aax2 ≤ 0
aay2 ≥ 1
aax3 = x2
aay3 = y2
{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Application to Program Verification
Lazy Abstraction with Interpolants

(Abstract) Program Unwinding Control Flow and Transitions

0 2 7
T1 T3

{ > } { ⊥ }{ y - x ≤ 0 }

2

T2

7
T3

{ y - x ≤ 0 } { ⊥ }

Covered
{ > }
aatrue
aax1 = x0
aay1 = x0
{ y1 - x1 ≤ 0 }
aax1 ≥ 1
aax2 = x1 - 1
aay2 = y1 - 1
{ y2 - x2 ≤ 0 }
aax2 ≤ 0
aay2 ≥ 1
aax3 = x2
aay3 = y2
{ ⊥ }

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y

Computing Interpolants

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for A ∧B can be computed as
follows:

Take A. Let ~a be the symbols local to A;

“Quantify-out” local symbols as ∃~a. A;

Compute I = QE(∃~a. A).

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = QE(∃a. A) = A(>/a) ∨A(⊥/a) = ⊥ ∨ (c1 ∧ c2) = c1 ∧ c2

Interpolants computed this way are the “strongest” possible, as
T ` A↔ I (remember that by definition T ` A→ I is enough)

This technique is computationally too expensive and is to be
avoided

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for A ∧B can be computed as
follows:

Take A. Let ~a be the symbols local to A;

“Quantify-out” local symbols as ∃~a. A;

Compute I = QE(∃~a. A).

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = QE(∃a. A) = A(>/a) ∨A(⊥/a) = ⊥ ∨ (c1 ∧ c2) = c1 ∧ c2

Interpolants computed this way are the “strongest” possible, as
T ` A↔ I (remember that by definition T ` A→ I is enough)

This technique is computationally too expensive and is to be
avoided

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for A ∧B can be computed as
follows:

Take A. Let ~a be the symbols local to A;

“Quantify-out” local symbols as ∃~a. A;

Compute I = QE(∃~a. A).

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = QE(∃a. A) = A(>/a) ∨A(⊥/a) = ⊥ ∨ (c1 ∧ c2) = c1 ∧ c2

Interpolants computed this way are the “strongest” possible, as
T ` A↔ I (remember that by definition T ` A→ I is enough)

This technique is computationally too expensive and is to be
avoided

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for A ∧B can be computed as
follows:

Take A. Let ~a be the symbols local to A;

“Quantify-out” local symbols as ∃~a. A;

Compute I = QE(∃~a. A).

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = QE(∃a. A) = A(>/a) ∨A(⊥/a) = ⊥ ∨ (c1 ∧ c2) = c1 ∧ c2

Interpolants computed this way are the “strongest” possible, as
T ` A↔ I (remember that by definition T ` A→ I is enough)

This technique is computationally too expensive and is to be
avoided

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for A ∧B can be computed as
follows:

Take A. Let ~a be the symbols local to A;

“Quantify-out” local symbols as ∃~a. A;

Compute I = QE(∃~a. A).

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}

I = QE(∃a. A) = A(>/a) ∨A(⊥/a) = ⊥ ∨ (c1 ∧ c2) = c1 ∧ c2

Interpolants computed this way are the “strongest” possible, as
T ` A↔ I (remember that by definition T ` A→ I is enough)

This technique is computationally too expensive and is to be
avoided

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for A ∧B can be computed as
follows:

Take A. Let ~a be the symbols local to A;

“Quantify-out” local symbols as ∃~a. A;

Compute I = QE(∃~a. A).

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = QE(∃a. A)

= A(>/a) ∨A(⊥/a) = ⊥ ∨ (c1 ∧ c2) = c1 ∧ c2

Interpolants computed this way are the “strongest” possible, as
T ` A↔ I (remember that by definition T ` A→ I is enough)

This technique is computationally too expensive and is to be
avoided

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for A ∧B can be computed as
follows:

Take A. Let ~a be the symbols local to A;

“Quantify-out” local symbols as ∃~a. A;

Compute I = QE(∃~a. A).

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = QE(∃a. A) = A(>/a) ∨A(⊥/a)

= ⊥ ∨ (c1 ∧ c2) = c1 ∧ c2

Interpolants computed this way are the “strongest” possible, as
T ` A↔ I (remember that by definition T ` A→ I is enough)

This technique is computationally too expensive and is to be
avoided

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for A ∧B can be computed as
follows:

Take A. Let ~a be the symbols local to A;

“Quantify-out” local symbols as ∃~a. A;

Compute I = QE(∃~a. A).

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = QE(∃a. A) = A(>/a) ∨A(⊥/a) = ⊥ ∨ (c1 ∧ c2)

= c1 ∧ c2

Interpolants computed this way are the “strongest” possible, as
T ` A↔ I (remember that by definition T ` A→ I is enough)

This technique is computationally too expensive and is to be
avoided

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for A ∧B can be computed as
follows:

Take A. Let ~a be the symbols local to A;

“Quantify-out” local symbols as ∃~a. A;

Compute I = QE(∃~a. A).

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = QE(∃a. A) = A(>/a) ∨A(⊥/a) = ⊥ ∨ (c1 ∧ c2) = c1 ∧ c2

Interpolants computed this way are the “strongest” possible, as
T ` A↔ I (remember that by definition T ` A→ I is enough)

This technique is computationally too expensive and is to be
avoided

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for A ∧B can be computed as
follows:

Take A. Let ~a be the symbols local to A;

“Quantify-out” local symbols as ∃~a. A;

Compute I = QE(∃~a. A).

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = QE(∃a. A) = A(>/a) ∨A(⊥/a) = ⊥ ∨ (c1 ∧ c2) = c1 ∧ c2

Interpolants computed this way are the “strongest” possible, as
T ` A↔ I

(remember that by definition T ` A→ I is enough)

This technique is computationally too expensive and is to be
avoided

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for A ∧B can be computed as
follows:

Take A. Let ~a be the symbols local to A;

“Quantify-out” local symbols as ∃~a. A;

Compute I = QE(∃~a. A).

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = QE(∃a. A) = A(>/a) ∨A(⊥/a) = ⊥ ∨ (c1 ∧ c2) = c1 ∧ c2

Interpolants computed this way are the “strongest” possible, as
T ` A↔ I (remember that by definition T ` A→ I is enough)

This technique is computationally too expensive and is to be
avoided

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for A ∧B can be computed as
follows:

Take A. Let ~a be the symbols local to A;

“Quantify-out” local symbols as ∃~a. A;

Compute I = QE(∃~a. A).

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = QE(∃a. A) = A(>/a) ∨A(⊥/a) = ⊥ ∨ (c1 ∧ c2) = c1 ∧ c2

Interpolants computed this way are the “strongest” possible, as
T ` A↔ I (remember that by definition T ` A→ I is enough)

This technique is computationally too expensive and is to be
avoided

Interpolants Computation in Practice

Several ways of describing interpolant computation:

By extending rules of an existing calculus with a set of “interpolating
instructions”

Γ, b1 ` ∆ Γ, b2 ` ∆
∨-Left

Γ, b1 ∨ b2 ` ∆

(+) Formally very clean
(−) Non-deterministic

By extending an existing algorithm, e.g., the Simplex: output the summaries
of the constraints belonging to A that are involved in the conflict

A
x+ y + z ≤ 0 1

(+) Algorithmically precise
(−) Low flexibility

Interpolants Computation in Practice

Several ways of describing interpolant computation:

By extending rules of an existing calculus with a set of “interpolating
instructions”

Γ, b1 ` ∆ Γ, b2 ` ∆
∨-Left

Γ, b1 ∨ b2 ` ∆

(+) Formally very clean
(−) Non-deterministic

By extending an existing algorithm, e.g., the Simplex: output the summaries
of the constraints belonging to A that are involved in the conflict

A
x+ y + z ≤ 0 1

(+) Algorithmically precise
(−) Low flexibility

Interpolants Computation in Practice

Several ways of describing interpolant computation:

By extending rules of an existing calculus with a set of “interpolating
instructions”

Γ, b1 ` ∆ ‖ I1 Γ, b2 ` ∆ ‖ I2
∨-Left

Γ, b1 ∨ b2 ` ∆ ‖ I1 ∧ I2

(+) Formally very clean
(−) Non-deterministic

By extending an existing algorithm, e.g., the Simplex: output the summaries
of the constraints belonging to A that are involved in the conflict

A
x+ y + z ≤ 0 1

(+) Algorithmically precise
(−) Low flexibility

Interpolants Computation in Practice

Several ways of describing interpolant computation:

By extending rules of an existing calculus with a set of “interpolating
instructions”

Γ, b1 ` ∆ ‖ I1 Γ, b2 ` ∆ ‖ I2
∨-Left

Γ, b1 ∨ b2 ` ∆ ‖ I1 ∧ I2

(+) Formally very clean
(−) Non-deterministic

By extending an existing algorithm, e.g., the Simplex: output the summaries
of the constraints belonging to A that are involved in the conflict

A
x+ y + z ≤ 0 1

(+) Algorithmically precise
(−) Low flexibility

Interpolants Computation in Practice

Several ways of describing interpolant computation:

By extending rules of an existing calculus with a set of “interpolating
instructions”

Γ, b1 ` ∆ ‖ I1 Γ, b2 ` ∆ ‖ I2
∨-Left

Γ, b1 ∨ b2 ` ∆ ‖ I1 ∧ I2

(+) Formally very clean
(−) Non-deterministic

By extending an existing algorithm, e.g., the Simplex: output the summaries
of the constraints belonging to A that are involved in the conflict

A
x+ y + z ≤ 0 1

(+) Algorithmically precise
(−) Low flexibility

Interpolants Computation in Practice

Several ways of describing interpolant computation:

By extending rules of an existing calculus with a set of “interpolating
instructions”

Γ, b1 ` ∆ ‖ I1 Γ, b2 ` ∆ ‖ I2
∨-Left

Γ, b1 ∨ b2 ` ∆ ‖ I1 ∧ I2

(+) Formally very clean
(−) Non-deterministic

By extending an existing algorithm, e.g., the Simplex: output the summaries
of the constraints belonging to A that are involved in the conflict

A
x+ y + z ≤ 0 1

−2y + 3z ≤ 0 1/2

I x+ 5
2
z ≤ 0

B − 3
5
x− 3

2
z ≤ −3 5/3

(+) Algorithmically precise
(−) Low flexibility

Interpolants Computation in Practice

Several ways of describing interpolant computation:

By extending rules of an existing calculus with a set of “interpolating
instructions”

Γ, b1 ` ∆ ‖ I1 Γ, b2 ` ∆ ‖ I2
∨-Left

Γ, b1 ∨ b2 ` ∆ ‖ I1 ∧ I2

(+) Formally very clean
(−) Non-deterministic

By extending an existing algorithm, e.g., the Simplex: output the summaries
of the constraints belonging to A that are involved in the conflict

A
x+ y + z ≤ 0 1

−2y + 3z ≤ 0 1/2

I x+ 5
2
z ≤ 0

B − 3
5
x− 3

2
z ≤ −3 5/3

(+) Algorithmically precise
(−) Low flexibility

Interpolants Computation in Practice

Several ways of describing interpolant computation:

By extending rules of an existing calculus with a set of “interpolating
instructions”

Γ, b1 ` ∆ ‖ I1 Γ, b2 ` ∆ ‖ I2
∨-Left

Γ, b1 ∨ b2 ` ∆ ‖ I1 ∧ I2

(+) Formally very clean
(−) Non-deterministic

By extending an existing algorithm, e.g., the Simplex: output the summaries
of the constraints belonging to A that are involved in the conflict

A
x+ y + z ≤ 0 1

−2y + 3z ≤ 0 1/2

I x+ 5
2
z ≤ 0

B − 3
5
x− 3

2
z ≤ −3 5/3

(+) Algorithmically precise
(−) Low flexibility

Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any
particular calculus or algorithm

Two identical provers, one for A and one for B cooperate in turns to
derive unsatisfiability (similarly to Nelson-Oppen framework). At any
step provers either

locally derive new facts

exchange information on the
shared language with the other
prover

A B
γ1 δ1
γ2 δ2

γ3 → γ3

If α1 ∧ α2 ` α3

Repeat until either A or B derive ⊥

Interpolant can be computed in backward manner

Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any
particular calculus or algorithm

Two identical provers, one for A and one for B cooperate in turns to
derive unsatisfiability (similarly to Nelson-Oppen framework). At any
step provers either

locally derive new facts

exchange information on the
shared language with the other
prover

A B
γ1 δ1
γ2 δ2

γ3 → γ3

If α1 ∧ α2 ` α3

Repeat until either A or B derive ⊥

Interpolant can be computed in backward manner

Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any
particular calculus or algorithm

Two identical provers, one for A and one for B cooperate in turns to
derive unsatisfiability (similarly to Nelson-Oppen framework). At any
step provers either

locally derive new facts

exchange information on the
shared language with the other
prover

A B
γ1 δ1
γ2 δ2

γ3 → γ3

If α1 ∧ α2 ` α3

Repeat until either A or B derive ⊥

Interpolant can be computed in backward manner

Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any
particular calculus or algorithm

Two identical provers, one for A and one for B cooperate in turns to
derive unsatisfiability (similarly to Nelson-Oppen framework). At any
step provers either

locally derive new facts

exchange information on the
shared language with the other
prover

A B
γ1 δ1
γ2 δ2
γ3

→ γ3

A ` γ3

Repeat until either A or B derive ⊥

Interpolant can be computed in backward manner

Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any
particular calculus or algorithm

Two identical provers, one for A and one for B cooperate in turns to
derive unsatisfiability (similarly to Nelson-Oppen framework). At any
step provers either

locally derive new facts

exchange information on the
shared language with the other
prover

A B
γ1 δ1
γ2 δ2
γ3

→ γ3

If α1 ∧ α2 ` α3

Repeat until either A or B derive ⊥

Interpolant can be computed in backward manner

Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any
particular calculus or algorithm

Two identical provers, one for A and one for B cooperate in turns to
derive unsatisfiability (similarly to Nelson-Oppen framework). At any
step provers either

locally derive new facts

exchange information on the
shared language with the other
prover

A B
γ1 δ1
γ2 δ2
γ3 → γ3

If γ3 is on common language

Repeat until either A or B derive ⊥

Interpolant can be computed in backward manner

Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any
particular calculus or algorithm

Two identical provers, one for A and one for B cooperate in turns to
derive unsatisfiability (similarly to Nelson-Oppen framework). At any
step provers either

locally derive new facts

exchange information on the
shared language with the other
prover

A B
γ1 δ1
γ2 δ2
γ3

→

γ3

If α1 ∧ α2 ` α3

Repeat until either A or B derive ⊥

Interpolant can be computed in backward manner

Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any
particular calculus or algorithm

Two identical provers, one for A and one for B cooperate in turns to
derive unsatisfiability (similarly to Nelson-Oppen framework). At any
step provers either

locally derive new facts

exchange information on the
shared language with the other
prover

A B
γ1 δ1
γ2 δ2
γ3

→

γ3

If α1 ∧ α2 ` α3

Repeat until either A or B derive ⊥

Interpolant can be computed in backward manner

Two-Provers Paradigm

Base Cases

A B
.
⊥

A B
.

⊥

I ≡ ⊥ I ≡ >

Derivations

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

Exchange

A B
.
γ

⇒
A′ B′

.
γ γ

I ≡ γ ∧ I ′ I ′

A B
.

γ
⇒

A′ B′

.
γ γ

I ≡ γ → I ′ I ′

Two-Provers Paradigm

Base Cases

A B
.
⊥

A B
.

⊥

I ≡ ⊥

I ≡ >

Derivations

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

Exchange

A B
.
γ

⇒
A′ B′

.
γ γ

I ≡ γ ∧ I ′ I ′

A B
.

γ
⇒

A′ B′

.
γ γ

I ≡ γ → I ′ I ′

Two-Provers Paradigm

Base Cases

A B
.
⊥

A B
.

⊥

I ≡ ⊥

I ≡ >

Derivations

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

Exchange

A B
.
γ

⇒
A′ B′

.
γ γ

I ≡ γ ∧ I ′ I ′

A B
.

γ
⇒

A′ B′

.
γ γ

I ≡ γ → I ′ I ′

Two-Provers Paradigm

Base Cases

A B
.
⊥

A B
.

⊥

I ≡ ⊥ I ≡ >
Derivations

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

Exchange

A B
.
γ

⇒
A′ B′

.
γ γ

I ≡ γ ∧ I ′ I ′

A B
.

γ
⇒

A′ B′

.
γ γ

I ≡ γ → I ′ I ′

Two-Provers Paradigm

Base Cases

A B
.
⊥

A B
.

⊥

I ≡ ⊥ I ≡ >
Derivations

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

Exchange

A B
.
γ

⇒
A′ B′

.
γ γ

I ≡ γ ∧ I ′ I ′

A B
.

γ
⇒

A′ B′

.
γ γ

I ≡ γ → I ′ I ′

Two-Provers Paradigm

Base Cases

A B
.
⊥

A B
.

⊥

I ≡ ⊥ I ≡ >
Derivations

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

Exchange

A B
.
γ

⇒
A′ B′

.
γ γ

I ≡ γ ∧ I ′ I ′

A B
.

γ
⇒

A′ B′

.
γ γ

I ≡ γ → I ′ I ′

Two-Provers Paradigm

Base Cases

A B
.
⊥

A B
.

⊥

I ≡ ⊥ I ≡ >
Derivations

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

Exchange

A B
.
γ

⇒
A′ B′

.
γ γ

I ≡ γ ∧ I ′ I ′

A B
.

γ
⇒

A′ B′

.
γ γ

I ≡ γ → I ′ I ′

Two-Provers Paradigm

Base Cases

A B
.
⊥

A B
.

⊥

I ≡ ⊥ I ≡ >
Derivations

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

Exchange

A B
.
γ

⇒
A′ B′

.
γ γ

I ≡ γ ∧ I ′ I ′

A B
.

γ
⇒

A′ B′

.
γ γ

I ≡ γ → I ′ I ′

Two-Provers Paradigm

Base Cases

A B
.
⊥

A B
.

⊥

I ≡ ⊥ I ≡ >
Derivations

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

Exchange

A B
.
γ

⇒
A′ B′

.
γ γ

I ≡ γ ∧ I ′ I ′

A B
.

γ
⇒

A′ B′

.
γ γ

I ≡ γ → I ′ I ′

Two-Provers Paradigm

Base Cases

A B
.
⊥

A B
.

⊥

I ≡ ⊥ I ≡ >
Derivations

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

Exchange

A B
.
γ

⇒
A′ B′

.
γ γ

I ≡ γ ∧ I ′ I ′

A B
.

γ
⇒

A′ B′

.
γ γ

I ≡ γ → I ′ I ′

Two-Provers Paradigm

Base Cases

A B
.
⊥

A B
.

⊥

I ≡ ⊥ I ≡ >
Derivations

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

Exchange

A B
.
γ

⇒
A′ B′

.
γ γ

I ≡ γ ∧ I ′ I ′

A B
.

γ
⇒

A′ B′

.
γ γ

I ≡ γ → I ′ I ′

Two-Provers Paradigm

Base Cases

A B
.
⊥

A B
.

⊥

I ≡ ⊥ I ≡ >
Derivations

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

A B
.

⇒
A′ B′

.
γ

I ≡ I ′ I ′

Exchange

A B
.
γ

⇒
A′ B′

.
γ γ

I ≡ γ ∧ I ′ I ′

A B
.

γ
⇒

A′ B′

.
γ γ

I ≡ γ → I ′ I ′

Example - Strategy 1

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

I ≡ c1 ∧ > ≡ c1 I ′ ≡ c1 ∧ > I ′′ ≡ >

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

⊥

I ′′′ ≡ >

Example - Strategy 1

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

I ≡ c1 ∧ > ≡ c1 I ′ ≡ c1 ∧ > I ′′ ≡ >

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

⊥

I ′′′ ≡ >

Example - Strategy 1

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

I ≡ c1 ∧ > ≡ c1 I ′ ≡ c1 ∧ > I ′′ ≡ >

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

⊥

I ′′′ ≡ >

Example - Strategy 1

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

I ≡ c1 ∧ > ≡ c1 I ′ ≡ c1 ∧ > I ′′ ≡ >

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

⊥

I ′′′ ≡ >

Example - Strategy 1

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

I ≡ c1 ∧ > ≡ c1 I ′ ≡ c1 ∧ > I ′′ ≡ >

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

⊥

I ′′′ ≡ >

Example - Strategy 1

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

I ≡ c1 ∧ > ≡ c1 I ′ ≡ c1 ∧ >

I ′′ ≡ >

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

⊥

I ′′′ ≡ >

Example - Strategy 1

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

I ≡ c1 ∧ > ≡ c1

I ′ ≡ c1 ∧ > I ′′ ≡ >

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

⊥

I ′′′ ≡ >

Example - Strategy 1

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

I ≡ c1 ∧ >

≡ c1

I ′ ≡ c1 ∧ > I ′′ ≡ >

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

⊥

I ′′′ ≡ >

Example - Strategy 1

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

I ≡ c1 ∧ > ≡ c1 I ′ ≡ c1 ∧ > I ′′ ≡ >

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1

⊥

I ′′′ ≡ >

Example - Strategy 2 (Strong interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1
c2

I ≡ c1 ∧ c2 ∧ > ≡ c1 ∧ c2 I ′ ≡ c1 ∧ c2 ∧ >

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

⊥

I ′′ ≡ > I ′′′ ≡ >

Example - Strategy 2 (Strong interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1
c2

I ≡ c1 ∧ c2 ∧ > ≡ c1 ∧ c2 I ′ ≡ c1 ∧ c2 ∧ >

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

⊥

I ′′ ≡ > I ′′′ ≡ >

Example - Strategy 2 (Strong interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1
c2

I ≡ c1 ∧ c2 ∧ > ≡ c1 ∧ c2 I ′ ≡ c1 ∧ c2 ∧ >

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

⊥

I ′′ ≡ > I ′′′ ≡ >

Example - Strategy 2 (Strong interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1
c2

I ≡ c1 ∧ c2 ∧ > ≡ c1 ∧ c2 I ′ ≡ c1 ∧ c2 ∧ >

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

⊥

I ′′ ≡ > I ′′′ ≡ >

Example - Strategy 2 (Strong interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1
c2

I ≡ c1 ∧ c2 ∧ > ≡ c1 ∧ c2 I ′ ≡ c1 ∧ c2 ∧ >

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

⊥

I ′′ ≡ >

I ′′′ ≡ >

Example - Strategy 2 (Strong interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1
c2

I ≡ c1 ∧ c2 ∧ > ≡ c1 ∧ c2 I ′ ≡ c1 ∧ c2 ∧ >

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

⊥

I ′′ ≡ > I ′′′ ≡ >

Example - Strategy 2 (Strong interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1
c2

I ≡ c1 ∧ c2 ∧ > ≡ c1 ∧ c2

I ′ ≡ c1 ∧ c2 ∧ >

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

⊥

I ′′ ≡ > I ′′′ ≡ >

Example - Strategy 2 (Strong interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1
c2

I ≡ c1 ∧ c2 ∧ >

≡ c1 ∧ c2

I ′ ≡ c1 ∧ c2 ∧ >

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

⊥

I ′′ ≡ > I ′′′ ≡ >

Example - Strategy 2 (Strong interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1
c2

I ≡ c1 ∧ c2 ∧ > ≡ c1 ∧ c2 I ′ ≡ c1 ∧ c2 ∧ >

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
c1 c1
c2 c2

⊥

I ′′ ≡ > I ′′′ ≡ >

Example - Strategy 3 (weak interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

¬c1
¬c2

I ≡ (¬c1 ∧ ¬c2)→ ⊥ ≡ c1 ∨ c2 I ′ ≡ (¬c1 ∧ ¬c2)→ ⊥

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2
⊥

I ′′ ≡ ⊥ I ′′′ ≡ ⊥

Example - Strategy 3 (weak interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

¬c1
¬c2

I ≡ (¬c1 ∧ ¬c2)→ ⊥ ≡ c1 ∨ c2 I ′ ≡ (¬c1 ∧ ¬c2)→ ⊥

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2
⊥

I ′′ ≡ ⊥ I ′′′ ≡ ⊥

Example - Strategy 3 (weak interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

¬c1
¬c2

I ≡ (¬c1 ∧ ¬c2)→ ⊥ ≡ c1 ∨ c2 I ′ ≡ (¬c1 ∧ ¬c2)→ ⊥

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2
⊥

I ′′ ≡ ⊥ I ′′′ ≡ ⊥

Example - Strategy 3 (weak interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

¬c1
¬c2

I ≡ (¬c1 ∧ ¬c2)→ ⊥ ≡ c1 ∨ c2 I ′ ≡ (¬c1 ∧ ¬c2)→ ⊥

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2
⊥

I ′′ ≡ ⊥ I ′′′ ≡ ⊥

Example - Strategy 3 (weak interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

¬c1
¬c2

I ≡ (¬c1 ∧ ¬c2)→ ⊥ ≡ c1 ∨ c2 I ′ ≡ (¬c1 ∧ ¬c2)→ ⊥

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2
⊥

I ′′ ≡ ⊥

I ′′′ ≡ ⊥

Example - Strategy 3 (weak interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

¬c1
¬c2

I ≡ (¬c1 ∧ ¬c2)→ ⊥ ≡ c1 ∨ c2 I ′ ≡ (¬c1 ∧ ¬c2)→ ⊥

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2
⊥

I ′′ ≡ ⊥ I ′′′ ≡ ⊥

Example - Strategy 3 (weak interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

¬c1
¬c2

I ≡ (¬c1 ∧ ¬c2)→ ⊥ ≡ c1 ∨ c2

I ′ ≡ (¬c1 ∧ ¬c2)→ ⊥

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2
⊥

I ′′ ≡ ⊥ I ′′′ ≡ ⊥

Example - Strategy 3 (weak interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

¬c1
¬c2

I ≡ (¬c1 ∧ ¬c2)→ ⊥

≡ c1 ∨ c2

I ′ ≡ (¬c1 ∧ ¬c2)→ ⊥

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2
⊥

I ′′ ≡ ⊥ I ′′′ ≡ ⊥

Example - Strategy 3 (weak interpolant)

A B
a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

Der.∗
=⇒

A′ B′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b

¬c1
¬c2

I ≡ (¬c1 ∧ ¬c2)→ ⊥ ≡ c1 ∨ c2 I ′ ≡ (¬c1 ∧ ¬c2)→ ⊥

Ex.
=⇒

A′′ B′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2

Der.∗
=⇒

A′′′ B′′′

a ∨ c1 ¬c1 ∨ b
a ∨ c2 ¬c2 ∨ b
¬a ¬b
¬c1 ¬c1
¬c2 ¬c2
⊥

I ′′ ≡ ⊥ I ′′′ ≡ ⊥

Proof Transformation
(for interpolation and reduction)

Proof Transformation and Reduction
Motivation

Resolution proofs find application in several ambits

Interpolation-based model checking

Abstraction techniques

Unsatisfiable core extraction in SAT/SMT

Automatic theorem proving

Problems

Clean structure of proofs is required for interpolation generation

Size affects efficiency

Size can be exponential w.r.t. input formula

Proof Transformation and Reduction
Motivation

Resolution proofs find application in several ambits

Interpolation-based model checking

Abstraction techniques

Unsatisfiable core extraction in SAT/SMT

Automatic theorem proving

Problems

Clean structure of proofs is required for interpolation generation

Size affects efficiency

Size can be exponential w.r.t. input formula

Proof Transformation and Reduction
Motivation

Resolution proofs find application in several ambits

Interpolation-based model checking

Abstraction techniques

Unsatisfiable core extraction in SAT/SMT

Automatic theorem proving

Problems

Clean structure of proofs is required for interpolation generation

Size affects efficiency

Size can be exponential w.r.t. input formula

Proof Transformation and Reduction
Motivation

Resolution proofs find application in several ambits

Interpolation-based model checking

Abstraction techniques

Unsatisfiable core extraction in SAT/SMT

Automatic theorem proving

Problems

Clean structure of proofs is required for interpolation generation

Size affects efficiency

Size can be exponential w.r.t. input formula

Proof Transformation and Reduction
Motivation

Resolution proofs find application in several ambits

Interpolation-based model checking

Abstraction techniques

Unsatisfiable core extraction in SAT/SMT

Automatic theorem proving

Problems

Clean structure of proofs is required for interpolation generation

Size affects efficiency

Size can be exponential w.r.t. input formula

Interpolation
Generation for Boolean logic

Interpolant I for unsatisfiable conjunction of formulae A ∧B

State-of-the-art approach [Pudlák97, McMillan04]

Derivation of unsatisfiability resolution proof of A ∧B

Computation of I from proof structure in linear time

Interpolation
Generation for Boolean logic

Interpolant I for unsatisfiable conjunction of formulae A ∧B

State-of-the-art approach [Pudlák97, McMillan04]

Derivation of unsatisfiability resolution proof of A ∧B

Computation of I from proof structure in linear time

Interpolation
Generation for Boolean logic

Interpolant I for unsatisfiable conjunction of formulae A ∧B

State-of-the-art approach [Pudlák97, McMillan04]

Derivation of unsatisfiability resolution proof of A ∧B

Computation of I from proof structure in linear time

Interpolation
Generation for Boolean logic

Interpolant I for unsatisfiable conjunction of formulae A ∧B

State-of-the-art approach [Pudlák97, McMillan04]

Derivation of unsatisfiability resolution proof of A ∧B

Computation of I from proof structure in linear time

Resolution System
Background

Literal p p

Clause p ∨ q ∨ r ∨ . . . → pqr . . . Empty clause ⊥

Input formula (p ∨ q) ∧ (r ∨ p) . . . → {pq, rp}

Resolution rule pC pD
p

CD

Antecedents: pC pD Resolvent: CD Pivot: p

Resolution proof of unsatisfiability of a set of clauses S

Tree

Leaves as clauses of S

Intermediate nodes as resolvents

Root as unique empty clause

Resolution System
Background

Literal p p

Clause p ∨ q ∨ r ∨ . . . → pqr . . . Empty clause ⊥

Input formula (p ∨ q) ∧ (r ∨ p) . . . → {pq, rp}

Resolution rule pC pD
p

CD

Antecedents: pC pD Resolvent: CD Pivot: p

Resolution proof of unsatisfiability of a set of clauses S

Tree

Leaves as clauses of S

Intermediate nodes as resolvents

Root as unique empty clause

Resolution System
Background

Literal p p

Clause p ∨ q ∨ r ∨ . . . → pqr . . . Empty clause ⊥

Input formula (p ∨ q) ∧ (r ∨ p) . . . → {pq, rp}

Resolution rule pC pD
p

CD

Antecedents: pC pD Resolvent: CD Pivot: p

Resolution proof of unsatisfiability of a set of clauses S

Tree

Leaves as clauses of S

Intermediate nodes as resolvents

Root as unique empty clause

Resolution System
Background

Literal p p

Clause p ∨ q ∨ r ∨ . . . → pqr . . . Empty clause ⊥

Input formula (p ∨ q) ∧ (r ∨ p) . . . → {pq, rp}

Resolution rule pC pD
p

CD

Antecedents: pC pD Resolvent: CD Pivot: p

Resolution proof of unsatisfiability of a set of clauses S

Tree

Leaves as clauses of S

Intermediate nodes as resolvents

Root as unique empty clause

Resolution System
Background

Literal p p

Clause p ∨ q ∨ r ∨ . . . → pqr . . . Empty clause ⊥

Input formula (p ∨ q) ∧ (r ∨ p) . . . → {pq, rp}

Resolution rule pC pD
p

CD

Antecedents: pC pD Resolvent: CD Pivot: p

Resolution proof of unsatisfiability of a set of clauses S

Tree

Leaves as clauses of S

Intermediate nodes as resolvents

Root as unique empty clause

Resolution System
Background

Literal p p

Clause p ∨ q ∨ r ∨ . . . → pqr . . . Empty clause ⊥

Input formula (p ∨ q) ∧ (r ∨ p) . . . → {pq, rp}

Resolution rule pC pD
p

CD

Antecedents: pC pD Resolvent: CD Pivot: p

Resolution proof of unsatisfiability of a set of clauses S

Tree

Leaves as clauses of S

Intermediate nodes as resolvents

Root as unique empty clause

Resolution Proofs
SAT

A ≡ {pq, pq} B ≡ {qr, qr}

Proof of unsatisfiability

pq pq
p

q

qr qr
r

q
q

⊥

Resolution Proofs
SAT

A ≡ {pq, pq} B ≡ {qr, qr}

Proof of unsatisfiability

pq pq
p

q

qr qr
r

q
q

⊥

Interpolant Generation
SAT [Pudlák97]

Computation of interpolant I for A ∧B from proof structure

Partial interpolant for leaf

Partial interpolant for resolvent

Pivot

Partial interpolants for antecedents

Partial interpolant for ⊥ is I

Interpolant Generation
SAT [Pudlák97]

Computation of interpolant I for A ∧B from proof structure

Partial interpolant for leaf

Partial interpolant for resolvent

Pivot

Partial interpolants for antecedents

Partial interpolant for ⊥ is I

Interpolant Generation
SAT [Pudlák97]

Computation of interpolant I for A ∧B from proof structure

Partial interpolant for leaf

Partial interpolant for resolvent

Pivot

Partial interpolants for antecedents

Partial interpolant for ⊥ is I

Interpolant Generation
SAT [Pudlák97]

Computation of interpolant I for A ∧B from proof structure

Partial interpolant for leaf

Partial interpolant for resolvent

Pivot

Partial interpolants for antecedents

Partial interpolant for ⊥ is I

Interpolant Generation
SAT [Pudlák97]

A ≡ {pq, pq} B ≡ {qr, qr}

Proof of unsatisfiability

pq

{⊥}

pq

{⊥}

p

q

{⊥}

qr

{>}

qr

{>}

r

q

{>}

q

⊥

{q}

Interpolant Generation
SAT [Pudlák97]

A ≡ {pq, pq} B ≡ {qr, qr}

Proof of unsatisfiability

pq {⊥} pq {⊥}
p

q

{⊥}

qr

{>}

qr

{>}

r

q

{>}

q

⊥

{q}

Interpolant Generation
SAT [Pudlák97]

A ≡ {pq, pq} B ≡ {qr, qr}

Proof of unsatisfiability

pq {⊥} pq {⊥}
p

q

{⊥}

qr {>} qr {>}
r

q

{>}

q

⊥

{q}

Interpolant Generation
SAT [Pudlák97]

A ≡ {pq, pq} B ≡ {qr, qr}

Proof of unsatisfiability

pq {⊥} pq {⊥}
p

q {⊥ ∨ ⊥}

{⊥}

qr {>} qr {>}
r

q

{>}

q

⊥

{q}

Interpolant Generation
SAT [Pudlák97]

A ≡ {pq, pq} B ≡ {qr, qr}

Proof of unsatisfiability

pq {⊥} pq {⊥}
p

q {⊥}

qr {>} qr {>}
r

q

{>}

q

⊥

{q}

Interpolant Generation
SAT [Pudlák97]

A ≡ {pq, pq} B ≡ {qr, qr}

Proof of unsatisfiability

pq {⊥} pq {⊥}
p

q {⊥}

qr {>} qr {>}
r

q {> ∧ >}

{>}

q

⊥

{q}

Interpolant Generation
SAT [Pudlák97]

A ≡ {pq, pq} B ≡ {qr, qr}

Proof of unsatisfiability

pq {⊥} pq {⊥}
p

q {⊥}

qr {>} qr {>}
r

q {>}
q

⊥

{q}

Interpolant Generation
SAT [Pudlák97]

A ≡ {pq, pq} B ≡ {qr, qr}

Proof of unsatisfiability

pq {⊥} pq {⊥}
p

q {⊥}

qr {>} qr {>}
r

q {>}
q

⊥ {(⊥ ∨ q) ∧ (> ∨ q)}

{q}

Interpolant Generation
SAT [Pudlák97]

A ≡ {pq, pq} B ≡ {qr, qr}

Proof of unsatisfiability

pq {⊥} pq {⊥}
p

q {⊥}

qr {>} qr {>}
r

q {>}
q

⊥ {q}

Resolution Proofs
SMT

A ≡ {

p︷ ︸︸ ︷
(5x− y ≤ 1) ,

q︷ ︸︸ ︷
(y − 5x ≤ −1) } , B ≡ {

r︷ ︸︸ ︷
(y − 5z ≤ 3) ,

s︷ ︸︸ ︷
(5z − y ≤ − 2) }

Theory lemmata

LIA:

t︷ ︸︸ ︷
(x− z ≤ 0)

u︷ ︸︸ ︷
(x− z ≥ 1)

LRA:

p︷ ︸︸ ︷
(5x− y � 1)

r︷ ︸︸ ︷
(y − 5z � 3)

u︷ ︸︸ ︷
(x− z � 1)

LRA:

q︷ ︸︸ ︷
(y − 5x � − 1)

s︷ ︸︸ ︷
(5z − y � − 2)

t︷ ︸︸ ︷
(x− z � 0)

Resolution Proofs
SMT

A ≡ {

p︷ ︸︸ ︷
(5x− y ≤ 1) ,

q︷ ︸︸ ︷
(y − 5x ≤ −1) } , B ≡ {

r︷ ︸︸ ︷
(y − 5z ≤ 3) ,

s︷ ︸︸ ︷
(5z − y ≤ − 2) }

Theory lemmata

LIA:

t︷ ︸︸ ︷
(x− z ≤ 0)

u︷ ︸︸ ︷
(x− z ≥ 1)

LRA:

p︷ ︸︸ ︷
(5x− y � 1)

r︷ ︸︸ ︷
(y − 5z � 3)

u︷ ︸︸ ︷
(x− z � 1)

LRA:

q︷ ︸︸ ︷
(y − 5x � − 1)

s︷ ︸︸ ︷
(5z − y � − 2)

t︷ ︸︸ ︷
(x− z � 0)

Resolution Proofs
SMT

A ≡ {

p︷ ︸︸ ︷
(5x− y ≤ 1) ,

q︷ ︸︸ ︷
(y − 5x ≤ −1) } , B ≡ {

r︷ ︸︸ ︷
(y − 5z ≤ 3) ,

s︷ ︸︸ ︷
(5z − y ≤ − 2) }

Theory lemmata

LIA:

t︷ ︸︸ ︷
(x− z ≤ 0)

u︷ ︸︸ ︷
(x− z ≥ 1)

LRA:

p︷ ︸︸ ︷
(5x− y � 1)

r︷ ︸︸ ︷
(y − 5z � 3)

u︷ ︸︸ ︷
(x− z � 1)

LRA:

q︷ ︸︸ ︷
(y − 5x � − 1)

s︷ ︸︸ ︷
(5z − y � − 2)

t︷ ︸︸ ︷
(x− z � 0)

Resolution Proofs
SMT

A ≡ {

p︷ ︸︸ ︷
(5x− y ≤ 1) ,

q︷ ︸︸ ︷
(y − 5x ≤ −1) } , B ≡ {

r︷ ︸︸ ︷
(y − 5z ≤ 3) ,

s︷ ︸︸ ︷
(5z − y ≤ − 2) }

Theory lemmata

LIA:

t︷ ︸︸ ︷
(x− z ≤ 0)

u︷ ︸︸ ︷
(x− z ≥ 1)

LRA:

p︷ ︸︸ ︷
(5x− y � 1)

r︷ ︸︸ ︷
(y − 5z � 3)

u︷ ︸︸ ︷
(x− z � 1)

LRA:

q︷ ︸︸ ︷
(y − 5x � − 1)

s︷ ︸︸ ︷
(5z − y � − 2)

t︷ ︸︸ ︷
(x− z � 0)

Resolution Proofs
SMT

A ≡ {

p︷ ︸︸ ︷
(5x− y ≤ 1) ,

q︷ ︸︸ ︷
(y − 5x ≤ −1) } , B ≡ {

r︷ ︸︸ ︷
(y − 5z ≤ 3) ,

s︷ ︸︸ ︷
(5z − y ≤ − 2) }

Theory lemmata

LIA:

t︷ ︸︸ ︷
(x− z ≤ 0)

u︷ ︸︸ ︷
(x− z ≥ 1)

LRA:

p︷ ︸︸ ︷
(5x− y � 1)

r︷ ︸︸ ︷
(y − 5z � 3)

u︷ ︸︸ ︷
(x− z � 1)

LRA:

q︷ ︸︸ ︷
(y − 5x � − 1)

s︷ ︸︸ ︷
(5z − y � − 2)

t︷ ︸︸ ︷
(x− z � 0)

Resolution Proofs
SMT

A ≡ {p, q} B ≡ {r, s} L ≡ {tu, pru, qst}

Proof of unsatisfiability

p pru
p

ru r
r

u tu
u

t qst
t

qs q
q

s s
s

⊥

Resolution Proofs
SMT

A ≡ {p, q} B ≡ {r, s} L ≡ {tu, pru, qst}

Proof of unsatisfiability

p pru
p

ru r
r

u tu
u

t qst
t

qs q
q

s s
s

⊥

Interpolant Generation
SMT

A ≡ {p, q} B ≡ {r, s} L ≡ {tu, pru, qst}

Proof of unsatisfiability

p

{⊥}

pru
p

ru r

{>}

r
u tu

?

u
t qst

t
qs q

{⊥}

q
s s

{>}

s
⊥

Interpolant Generation
SMT

A ≡ {p, q} B ≡ {r, s} L ≡ {tu, pru, qst}

Proof of unsatisfiability

p {⊥} pru
p

ru r

{>}

r
u tu

?

u
t qst

t
qs q {⊥}

q
s s

{>}

s
⊥

Interpolant Generation
SMT

A ≡ {p, q} B ≡ {r, s} L ≡ {tu, pru, qst}

Proof of unsatisfiability

p {⊥} pru
p

ru r {>}
r

u tu

?

u
t qst

t
qs q {⊥}

q
s s {>}

s
⊥

Interpolant Generation
SMT

A ≡ {p, q} B ≡ {r, s} L ≡ {tu, pru, qst}

Proof of unsatisfiability

p {⊥} pru
p

ru r {>}
r

u tu ?
u

t qst
t

qs q {⊥}
q

s s {>}
s

⊥

Interpolation
Challenge

State-of-the-art approach [Pudlák97, McMillan04]

Derivation of unsatisfiability proof of A ∧B

Computation of interpolant from proof structure in linear time

Restriction

Need for proof not to contain AB-mixed predicates

A-local B-local AB-common AB-mixed

A ≡ { (5x− y ≤ 1) , . . .} B ≡ { (y − 5z ≤ 3) , . . .}

L ≡ { (x− z ≤ 0) , . . .}

Interpolation
Challenge

State-of-the-art approach [Pudlák97, McMillan04]

Derivation of unsatisfiability proof of A ∧B

Computation of interpolant from proof structure in linear time

Restriction

Need for proof not to contain AB-mixed predicates

A-local B-local AB-common AB-mixed

A ≡ { (5x− y ≤ 1) , . . .} B ≡ { (y − 5z ≤ 3) , . . .}

L ≡ { (x− z ≤ 0) , . . .}

Interpolation
Challenge

State-of-the-art approach [Pudlák97, McMillan04]

Derivation of unsatisfiability proof of A ∧B

Computation of interpolant from proof structure in linear time

Restriction

Need for proof not to contain AB-mixed predicates

A-local B-local AB-common AB-mixed

A ≡ { (5x− y ≤ 1) , . . .} B ≡ { (y − 5z ≤ 3) , . . .}

L ≡ { (x− z ≤ 0) , . . .}

Interpolation
Challenge

State-of-the-art approach [Pudlák97, McMillan04]

Derivation of unsatisfiability proof of A ∧B

Computation of interpolant from proof structure in linear time

Restriction

Need for proof not to contain AB-mixed predicates

A-local B-local AB-common AB-mixed

A ≡ { (5x− y ≤ 1) , . . .} B ≡ { (y − 5z ≤ 3) , . . .}

L ≡ { (x− z ≤ 0) , . . .}

Interpolation
Challenge

State-of-the-art approach [Pudlák97, McMillan04]

Derivation of unsatisfiability proof of A ∧B

Computation of interpolant from proof structure in linear time

Restriction

Need for proof not to contain AB-mixed predicates

A-local B-local AB-common AB-mixed

A ≡ { (5x− y ≤ 1) , . . .} B ≡ { (y − 5z ≤ 3) , . . .}

L ≡ { (x− z ≤ 0) , . . .}

Interpolation
Challenge

State-of-the-art approach [Pudlák97, McMillan04]

Derivation of unsatisfiability proof of A ∧B

Computation of interpolant from proof structure in linear time

Restriction

Need for proof not to contain AB-mixed predicates

A-local B-local AB-common AB-mixed

A ≡ { (5x− y ≤ 1) , . . .} B ≡ { (y − 5z ≤ 3) , . . .}

L ≡ { (x− z ≤ 0) , . . .}

Interpolation
Possible Solutions

Need for proof not to contain AB-mixed predicates

Tune solvers to avoid generating AB-mixed predicates
[Cimatti08,Beyer08]

Transform proof to remove AB-mixed predicates

Interpolation
Possible Solutions

Need for proof not to contain AB-mixed predicates

Tune solvers to avoid generating AB-mixed predicates
[Cimatti08,Beyer08]

Transform proof to remove AB-mixed predicates

Interpolation
Possible Solutions

Need for proof not to contain AB-mixed predicates

Tune solvers to avoid generating AB-mixed predicates
[Cimatti08,Beyer08]

Transform proof to remove AB-mixed predicates

Proof Transformation
Motivation

Proof transformation approach

Motivation: more flexibility by decoupling SMT solving and
interpolant generation

Motivation: standard SMT techniques can require addition of
AB-mixed predicates

Theory reduction via Lemma on Demand [DeMoura02, Barrett06]

Reduction of AX to EUF

Reduction of LIA to LRA

Ackermann’s Expansion

Theory combination via DTC [Bozzano05]

Proof Transformation
Motivation

Proof transformation approach

Motivation: more flexibility by decoupling SMT solving and
interpolant generation

Motivation: standard SMT techniques can require addition of
AB-mixed predicates

Theory reduction via Lemma on Demand [DeMoura02, Barrett06]

Reduction of AX to EUF

Reduction of LIA to LRA

Ackermann’s Expansion

Theory combination via DTC [Bozzano05]

Proof Transformation
Motivation

Proof transformation approach

Motivation: more flexibility by decoupling SMT solving and
interpolant generation

Motivation: standard SMT techniques can require addition of
AB-mixed predicates

Theory reduction via Lemma on Demand [DeMoura02, Barrett06]

Reduction of AX to EUF

Reduction of LIA to LRA

Ackermann’s Expansion

Theory combination via DTC [Bozzano05]

Proof Transformation
Motivation

Proof transformation approach

Motivation: more flexibility by decoupling SMT solving and
interpolant generation

Motivation: standard SMT techniques can require addition of
AB-mixed predicates

Theory reduction via Lemma on Demand [DeMoura02, Barrett06]

Reduction of AX to EUF

Reduction of LIA to LRA

Ackermann’s Expansion

Theory combination via DTC [Bozzano05]

Proof Transformation Framework

Proof rewriting framework based on local rules

Isolation of AB-mixed predicates into subtrees

Removal of AB-mixed subtrees

No more AB-mixed predicates, proof still valid

Proof Transformation Framework

Proof rewriting framework based on local rules

Isolation of AB-mixed predicates into subtrees

Removal of AB-mixed subtrees

No more AB-mixed predicates, proof still valid

Proof Transformation Framework

Proof rewriting framework based on local rules

Isolation of AB-mixed predicates into subtrees

Removal of AB-mixed subtrees

No more AB-mixed predicates, proof still valid

Proof Transformation Framework

Proof rewriting framework based on local rules

Isolation of AB-mixed predicates into subtrees

Removal of AB-mixed subtrees

No more AB-mixed predicates, proof still valid

Proof Transformation
Effect

(a) Initial proof: A-local, B-local, AB-common, AB-mixed

(b) Transformed proof: AB-mixed predicates isolated into subtrees

(c) Final proof: AB-mixed subtrees removed, new leaves are theory
lemmata

(a) (b) (c)

Proof Transformation
Advantages

No more AB-mixed predicates, new leaves are theory lemmata

Easy combination of SMT and interpolation techniques

Theory reduction, theory combination without restrictions

Interpolant generation for propositional resolution proofs of
unsatisfiability [Pudlák97]

(Partial) interpolant generation for theory (combination) lemmata
[Yorsh05]

Proof Transformation
Advantages

No more AB-mixed predicates, new leaves are theory lemmata

Easy combination of SMT and interpolation techniques

Theory reduction, theory combination without restrictions

Interpolant generation for propositional resolution proofs of
unsatisfiability [Pudlák97]

(Partial) interpolant generation for theory (combination) lemmata
[Yorsh05]

Proof Transformation
Advantages

No more AB-mixed predicates, new leaves are theory lemmata

Easy combination of SMT and interpolation techniques

Theory reduction, theory combination without restrictions

Interpolant generation for propositional resolution proofs of
unsatisfiability [Pudlák97]

(Partial) interpolant generation for theory (combination) lemmata
[Yorsh05]

Proof Transformation
Advantages

No more AB-mixed predicates, new leaves are theory lemmata

Easy combination of SMT and interpolation techniques

Theory reduction, theory combination without restrictions

Interpolant generation for propositional resolution proofs of
unsatisfiability [Pudlák97]

(Partial) interpolant generation for theory (combination) lemmata
[Yorsh05]

Proof Transformation
Advantages

No more AB-mixed predicates, new leaves are theory lemmata

Easy combination of SMT and interpolation techniques

Theory reduction, theory combination without restrictions

Interpolant generation for propositional resolution proofs of
unsatisfiability [Pudlák97]

(Partial) interpolant generation for theory (combination) lemmata
[Yorsh05]

Proof Transformation Framework
Features

Local rewriting rules

Rule context

pqC pD
p

qCD qE
q

CDE

Exhaustiveness up to symmetry

Proof Transformation Framework
Features

Local rewriting rules

Rule context

pqC pD
p

qCD qE
q

CDE

Exhaustiveness up to symmetry

Proof Transformation Framework
Features

Local rewriting rules

Rule context

pqC pD
p

qCD qE
q

CDE

Exhaustiveness up to symmetry

Proof Transformation Framework
Local Rewriting Rules

pqC pD
p

qCD qE
q

CDE

⇒
pqC qE

q
pCE pD

p
CDE

Pivots swapping

AB-mixed predicates isolation into subtrees

Proof Transformation Framework
Local Rewriting Rules

pqC pD
p

qCD qE
q

CDE

⇒
pqC qE

q
pCE pD

p
CDE

Pivots swapping

AB-mixed predicates isolation into subtrees

Proof Transformation Framework
Local Rewriting Rules

pqC pD
p

qCD qE
q

CDE

⇒
pqC qE

q
pCE pD

p
CDE

Pivots swapping

AB-mixed predicates isolation into subtrees

Reduction LIA to LRA
Transformation

A ≡ {p, q} B ≡ {r, s} L ≡ {tu, pru, qst}

Proof of unsatisfiability

p pru
p

ru r
r

u tu
u

t qst
t

qs q
q

s s
s

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

• •••
•

•• •
•

• ••
•

• •••
•

•• •
•

• •
•

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

• •••
•

•• •
•

• ••
•

• •••
•

•• •
•

• •
•

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

• •••
•

•• ••
•

•• •
•

• •••
•

•• •
•

• •
•

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

• •••
•

•• ••
•

•• •
•

• •••
•

•• •
•

• •
•

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

• •••
•

•• ••
•

•• •
•

• •••
•

•• •
•

• •
•

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

•• •••
•

••• •
•

•• •
•

• •••
•

•• •
•

• •
•

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

•• •••
•

••• •
•

•• •
•

• •••
•

•• •
•

• •
•

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

•• •••
•

••• •
•

•• •
•

• •••
•

•• •
•

• •
•

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

•• •••
•

••• •
•

•• •••
•

••• •
•

•• •
•

• •
•

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

•• •••
•

••• •
•

•• •••
•

••• •
•

•• •
•

• •
•

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

•• •••
•

••• •
•

•• •••
•

••• •
•

•• •
•

• •
•

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

•• •••
•

••• •••
•

•••• •
•

••• •
•

•• •
•

• •
•

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

•• •••
•

••• •••
•

•••• •
•

••• •
•

•• •
•

• •
•

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

•• •••
•

••• •••
•

•••• •
•

••• •
•

•• •
•

• •
•

⊥

Reduction LIA to LRA
Transformation

Proof of unsatisfiability

•••• •
•

••• •
•

•• •
•

• •
•

⊥

Proof Transformation Framework
Considerations

Potential drawbacks

Overhead w.r.t. solving time

Increase of proof size

Proof Transformation Framework
Considerations

Potential drawbacks

Overhead w.r.t. solving time

Increase of proof size

Proof Transformation Framework
Considerations

Potential drawbacks

Overhead w.r.t. solving time

Increase of proof size

Transformation Framework
Features

Local rewriting rules

B reduction

A perturbation

Rule context

pqC pD
p

qCD qE
q

CDE

Exhaustiveness up to symmetry

Transformation Framework
Features

Local rewriting rules

B reduction

A perturbation

Rule context

pqC pD
p

qCD qE
q

CDE

Exhaustiveness up to symmetry

Transformation Framework
Features

Local rewriting rules

B reduction

A perturbation

Rule context

pqC pD
p

qCD qE
q

CDE

Exhaustiveness up to symmetry

Transformation Framework
Features

Local rewriting rules

B reduction

A perturbation

Rule context

pqC pD
p

qCD qE
q

CDE

Exhaustiveness up to symmetry

Transformation Framework
Local rewriting rules

B rules

B1

pqC pqD
p

qCD pqE
q

pCDE

⇒
pqC pqE

q
pCE

Redundancy as reintroduction variable after elimination

Subproof simplification

Subproof root strengthening

Transformation Framework
Local rewriting rules

B rules

B1

pqC pqD
p

qCD pqE
q

pCDE

⇒
pqC pqE

q
pCE

Redundancy as reintroduction variable after elimination

Subproof simplification

Subproof root strengthening

Transformation Framework
Local rewriting rules

B rules

B1

pqC pqD
p

qCD pqE
q

pCDE

⇒
pqC pqE

q
pCE

Redundancy as reintroduction variable after elimination

Subproof simplification

Subproof root strengthening

Transformation Framework
Local rewriting rules

B rules

B1

pqC pqD
p

qCD pqE
q

pCDE

⇒
pqC pqE

q
pCE

Redundancy as reintroduction variable after elimination

Subproof simplification

Subproof root strengthening

Transformation Framework
Local rewriting rules

A rules

A2

pqC pD
p

qCD qE
q

CDE

⇒
pqC qE

q
pCE pD

p
CDE

Pivots swapping

Topology perturbation

Redundancies exposure

Transformation Framework
Local rewriting rules

A rules

A2

pqC pD
p

qCD qE
q

CDE

⇒
pqC qE

q
pCE pD

p
CDE

Pivots swapping

Topology perturbation

Redundancies exposure

Transformation Framework
Local rewriting rules

A rules

A2

pqC pD
p

qCD qE
q

CDE

⇒
pqC qE

q
pCE pD

p
CDE

Pivots swapping

Topology perturbation

Redundancies exposure

Transformation Framework
Local rewriting rules

A rules

A2

pqC pD
p

qCD qE
q

CDE

⇒
pqC qE

q
pCE pD

p
CDE

Pivots swapping

Topology perturbation

Redundancies exposure

Local rewriting rules

A1

pqC pqD
p

qCD qE
q

CDE

⇒
pqC qE

pCE

qE pqD
q

pDE
p

CDE

A2

pqC pD
p

qCD qE
q

CDE

⇒
pqC qE

q
pCE pD

p
CDE

B1

pqC pqD
p

qCD pqE
q

pCDE

⇒
pqC pqE

q
pCE

B2

pqC pD
p

qDC pqE
q

pCDE

⇒
pqC pqE

q
pCE pD

p
CDE

B2′

pqC pD
p

qDC pqE
q

pCDE

⇒
pqC pqE

q
pCE

B3

pqC pD
p

qCD pqE
q

pCDE

⇒ pD

Evaluation
Framework and Benchmarks

OpenSMT

C++ open-source SMT solver developed at USI

Fastest open-source solver in SMT-comp 2009, 2010 for various
logics

Benchmarks

SMT: SMT-LIB library

Academic and industrial problems

Evaluation
Framework and Benchmarks

OpenSMT

C++ open-source SMT solver developed at USI

Fastest open-source solver in SMT-comp 2009, 2010 for various
logics

Benchmarks

SMT: SMT-LIB library

Academic and industrial problems

Evaluation
Framework and Benchmarks

OpenSMT

C++ open-source SMT solver developed at USI

Fastest open-source solver in SMT-comp 2009, 2010 for various
logics

Benchmarks

SMT: SMT-LIB library

Academic and industrial problems

Evaluation
Framework and Benchmarks

OpenSMT

C++ open-source SMT solver developed at USI

Fastest open-source solver in SMT-comp 2009, 2010 for various
logics

Benchmarks

SMT: SMT-LIB library

Academic and industrial problems

Experimental results over QF UFIDL

Group # #AB %time %nodes %edges

RDS 2 7 84% -16% -19%
EufLaAr 2 74 18% 187% 193%
pete 15 20 16% 66% 68%
pete2 52 13 6% 73% 80%
uclid 11 12 29% 87% 90%

Overall 82 16 13% 74% 79%

— number of benchmarks solved

#AB — average number of AB-mixed predicates in proof

%time — average time overhead

%nodes, %edges — average difference in proof size

Comparison

RecyclePivots (closest related work) [Strichman’08]

Pros
Global information
Fast and effective

Cons
Cannot expose redundancies

Rule-based approach

Pros
Flexibility in rules application
Flexibility in amount of transformation
Can expose redundancies

Cons
Local information

Comparison

RecyclePivots (closest related work) [Strichman’08]

Pros
Global information
Fast and effective

Cons
Cannot expose redundancies

Rule-based approach

Pros
Flexibility in rules application
Flexibility in amount of transformation
Can expose redundancies

Cons
Local information

Comparison

RecyclePivots (closest related work) [Strichman’08]

Pros
Global information
Fast and effective

Cons
Cannot expose redundancies

Rule-based approach

Pros
Flexibility in rules application
Flexibility in amount of transformation
Can expose redundancies

Cons
Local information

Comparison

RecyclePivots (closest related work) [Strichman’08]

Pros
Global information
Fast and effective

Cons
Cannot expose redundancies

Rule-based approach

Pros
Flexibility in rules application
Flexibility in amount of transformation
Can expose redundancies

Cons
Local information

Implementation
Reduction Algorithm

Based on a sequence of proof traversals (e.g. topological order)

Parameterized in number of traversals and time limit

Examination non-leaf clauses

Pivot in both antecedents → update, match context, apply rule

qC ′D′ qE′

q
CDE

⇒ qC ′D′ qE′

q
C ′D′E′

⇒
pqC ′ pD′

p
qC ′D′ qE′

q
C ′D′E′

Pivot not in both antecedents → remove resolution step

C ′D′ qE′

q
CDE

⇒ C ′D′

Easy combination with RecyclePivots

Implementation
Reduction Algorithm

Based on a sequence of proof traversals (e.g. topological order)

Parameterized in number of traversals and time limit

Examination non-leaf clauses

Pivot in both antecedents → update, match context, apply rule

qC ′D′ qE′

q
CDE

⇒ qC ′D′ qE′

q
C ′D′E′

⇒
pqC ′ pD′

p
qC ′D′ qE′

q
C ′D′E′

Pivot not in both antecedents → remove resolution step

C ′D′ qE′

q
CDE

⇒ C ′D′

Easy combination with RecyclePivots

Implementation
Reduction Algorithm

Based on a sequence of proof traversals (e.g. topological order)

Parameterized in number of traversals and time limit

Examination non-leaf clauses

Pivot in both antecedents → update, match context, apply rule

qC ′D′ qE′

q
CDE

⇒ qC ′D′ qE′

q
C ′D′E′

⇒
pqC ′ pD′

p
qC ′D′ qE′

q
C ′D′E′

Pivot not in both antecedents → remove resolution step

C ′D′ qE′

q
CDE

⇒ C ′D′

Easy combination with RecyclePivots

Implementation
Reduction Algorithm

Based on a sequence of proof traversals (e.g. topological order)

Parameterized in number of traversals and time limit

Examination non-leaf clauses

Pivot in both antecedents → update, match context, apply rule

qC ′D′ qE′

q
CDE

⇒ qC ′D′ qE′

q
C ′D′E′

⇒
pqC ′ pD′

p
qC ′D′ qE′

q
C ′D′E′

Pivot not in both antecedents → remove resolution step

C ′D′ qE′

q
CDE

⇒ C ′D′

Easy combination with RecyclePivots

Implementation
Reduction Algorithm

Based on a sequence of proof traversals (e.g. topological order)

Parameterized in number of traversals and time limit

Examination non-leaf clauses

Pivot in both antecedents → update, match context, apply rule

qC ′D′ qE′

q
CDE

⇒ qC ′D′ qE′

q
C ′D′E′

⇒
pqC ′ pD′

p
qC ′D′ qE′

q
C ′D′E′

Pivot not in both antecedents → remove resolution step

C ′D′ qE′

q
CDE

⇒ C ′D′

Easy combination with RecyclePivots

Implementation
Reduction Algorithm

Based on a sequence of proof traversals (e.g. topological order)

Parameterized in number of traversals and time limit

Examination non-leaf clauses

Pivot in both antecedents → update, match context, apply rule

qC ′D′ qE′

q
CDE

⇒ qC ′D′ qE′

q
C ′D′E′

⇒
pqC ′ pD′

p
qC ′D′ qE′

q
C ′D′E′

Pivot not in both antecedents → remove resolution step

C ′D′ qE′

q
CDE

⇒ C ′D′

Easy combination with RecyclePivots

Evaluation
Framework and Benchmarks

Implemented in C++ and integrated with OpenSMT

Available at www.inf.usi.ch/phd/rollini/hvc.html

Benchmarks

SMT: SMT-LIB library

SAT: SAT competition

Academic and industrial problems

Evaluation
Framework and Benchmarks

Implemented in C++ and integrated with OpenSMT

Available at www.inf.usi.ch/phd/rollini/hvc.html

Benchmarks

SMT: SMT-LIB library

SAT: SAT competition

Academic and industrial problems

Evaluation
Framework and Benchmarks

Implemented in C++ and integrated with OpenSMT

Available at www.inf.usi.ch/phd/rollini/hvc.html

Benchmarks

SMT: SMT-LIB library

SAT: SAT competition

Academic and industrial problems

Combined Approach Evaluation
Experimental results over SMT: QF UF, QF IDL, QF LRA, QF RDL

Avgnodes Avgedges Avgcore T (s) MaxnodesMaxedgesMaxcore

RP 1370 6.7% 7.5% 1.3% 1.7 65.1% 68.9% 39.1%

Ratio

0.01 1366 8.9% 10.7% 1.4% 3.4 66.3% 70.2% 45.7%
0.025 1366 9.8% 11.9% 1.5% 3.6 77.2% 79.9% 45.7%
0.05 1366 10.7% 13.0% 1.6% 4.1 78.5% 81.2% 45.7%
0.075 1366 11.4% 13.8% 1.7% 4.5 78.5% 81.2% 45.7%
0.1 1364 11.8% 14.4% 1.7% 5.0 78.8% 83.6% 45.7%
0.25 1359 13.6% 16.6% 1.9% 7.6 79.6% 84.4% 45.7%
0.5 1348 15.0% 18.4% 2.0% 11.5 79.1% 85.2% 45.7%
0.75 1341 16.0% 19.5% 2.1% 15.1 79.9% 86.1% 45.7%
1 1337 16.7% 20.4% 2.2% 18.8 79.9% 86.1% 45.7%

Ratio — time threshold as fraction of solving time

— number of benchmarks solved

Avgnodes, Avgedges, Avgcore — average reduction in proof size

T (s) — average transformation time in seconds

Maxnodes, Maxedges, Maxcore — max reduction in proof size

Combined Approach Evaluation
Experimental results over SMT: QF UF, QF IDL, QF LRA, QF RDL

Avgnodes Avgedges Avgcore T (s) MaxnodesMaxedgesMaxcore

RP 1370 6.7% 7.5% 1.3% 1.7 65.1% 68.9% 39.1%

Ratio

0.01 1366 8.9% 10.7% 1.4% 3.4 66.3% 70.2% 45.7%
0.025 1366 9.8% 11.9% 1.5% 3.6 77.2% 79.9% 45.7%
0.05 1366 10.7% 13.0% 1.6% 4.1 78.5% 81.2% 45.7%
0.075 1366 11.4% 13.8% 1.7% 4.5 78.5% 81.2% 45.7%
0.1 1364 11.8% 14.4% 1.7% 5.0 78.8% 83.6% 45.7%
0.25 1359 13.6% 16.6% 1.9% 7.6 79.6% 84.4% 45.7%
0.5 1348 15.0% 18.4% 2.0% 11.5 79.1% 85.2% 45.7%
0.75 1341 16.0% 19.5% 2.1% 15.1 79.9% 86.1% 45.7%
1 1337 16.7% 20.4% 2.2% 18.8 79.9% 86.1% 45.7%

Ratio — time threshold as fraction of solving time

— number of benchmarks solved

Avgnodes, Avgedges, Avgcore — average reduction in proof size

T (s) — average transformation time in seconds

Maxnodes, Maxedges, Maxcore — max reduction in proof size

Combined Approach Evaluation
Experimental results over SMT: QF UF, QF IDL, QF LRA, QF RDL

Avgnodes Avgedges Avgcore T (s) MaxnodesMaxedgesMaxcore

RP 1370 6.7% 7.5% 1.3% 1.7 65.1% 68.9% 39.1%

Ratio

0.01 1366 8.9% 10.7% 1.4% 3.4 66.3% 70.2% 45.7%
0.025 1366 9.8% 11.9% 1.5% 3.6 77.2% 79.9% 45.7%
0.05 1366 10.7% 13.0% 1.6% 4.1 78.5% 81.2% 45.7%
0.075 1366 11.4% 13.8% 1.7% 4.5 78.5% 81.2% 45.7%
0.1 1364 11.8% 14.4% 1.7% 5.0 78.8% 83.6% 45.7%
0.25 1359 13.6% 16.6% 1.9% 7.6 79.6% 84.4% 45.7%
0.5 1348 15.0% 18.4% 2.0% 11.5 79.1% 85.2% 45.7%
0.75 1341 16.0% 19.5% 2.1% 15.1 79.9% 86.1% 45.7%

1 1337 16.7% 20.4% 2.2% 18.8 79.9% 86.1% 45.7%

Ratio — time threshold as fraction of solving time

— number of benchmarks solved

Avgnodes, Avgedges, Avgcore — average reduction in proof size

T (s) — average transformation time in seconds

Maxnodes, Maxedges, Maxcore — max reduction in proof size

Combined Approach Evaluation
Experimental results over SAT

Avgnodes Avgedges Avgcore T (s) MaxnodesMaxedgesMaxcore

RP 25 5.9% 6.5% 1.7% 10.8 33.1% 33.4% 30.3%

Ratio
0.01 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5%
0.025 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5%
0.05 25 7.0% 8.2% 1.8% 40.0 34.0% 34.4% 30.5%
0.075 25 7.2% 8.4% 1.8% 49.3 34.7% 35.1% 30.5%
0.1 25 7.3% 8.4% 1.8% 60.2 34.7% 35.1% 30.5%
0.25 25 7.6% 8.8% 1.9% 125.3 39.8% 40.6% 31.7%
0.5 25 7.8% 9.1% 1.9% 243.5 41.0% 41.9% 32.1%
0.75 25 7.9% 9.3% 1.9% 360.0 41.6% 42.6% 32.1%
1 23 8.4% 9.9% 2.1% 175.6 33.1% 33.4% 30.6%

Ratio — time threshold as fraction of solving time

— number of benchmarks solved

Avgnodes, Avgedges, Avgcore — average reduction in proof size

T (s) — average transformation time in seconds

Maxnodes, Maxedges, Maxcore — max reduction in proof size

Combined Approach Evaluation
Experimental results over SAT

Avgnodes Avgedges Avgcore T (s) MaxnodesMaxedgesMaxcore

RP 25 5.9% 6.5% 1.7% 10.8 33.1% 33.4% 30.3%

Ratio
0.01 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5%
0.025 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5%
0.05 25 7.0% 8.2% 1.8% 40.0 34.0% 34.4% 30.5%
0.075 25 7.2% 8.4% 1.8% 49.3 34.7% 35.1% 30.5%
0.1 25 7.3% 8.4% 1.8% 60.2 34.7% 35.1% 30.5%
0.25 25 7.6% 8.8% 1.9% 125.3 39.8% 40.6% 31.7%
0.5 25 7.8% 9.1% 1.9% 243.5 41.0% 41.9% 32.1%
0.75 25 7.9% 9.3% 1.9% 360.0 41.6% 42.6% 32.1%

Ratio — time threshold as fraction of solving time

— number of benchmarks solved

Avgnodes, Avgedges, Avgcore — average reduction in proof size

T (s) — average transformation time in seconds

Maxnodes, Maxedges, Maxcore — max reduction in proof size

Combined Approach Evaluation
Experimental results over SAT

Avgnodes Avgedges Avgcore T (s) MaxnodesMaxedgesMaxcore

RP 25 5.9% 6.5% 1.7% 10.8 33.1% 33.4% 30.3%

Ratio
0.01 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5%
0.025 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5%
0.05 25 7.0% 8.2% 1.8% 40.0 34.0% 34.4% 30.5%
0.075 25 7.2% 8.4% 1.8% 49.3 34.7% 35.1% 30.5%
0.1 25 7.3% 8.4% 1.8% 60.2 34.7% 35.1% 30.5%
0.25 25 7.6% 8.8% 1.9% 125.3 39.8% 40.6% 31.7%
0.5 25 7.8% 9.1% 1.9% 243.5 41.0% 41.9% 32.1%

0.75 25 7.9% 9.3% 1.9% 360.0 41.6% 42.6% 32.1%

Ratio — time threshold as fraction of solving time

— number of benchmarks solved

Avgnodes, Avgedges, Avgcore — average reduction in proof size

T (s) — average transformation time in seconds

Maxnodes, Maxedges, Maxcore — max reduction in proof size

Conclusion

OpenSMT Solver

Application to Lazy Abstraction with Interpolants

Proof Manipulation for Interpolation and Reduction

http://verify.inf.usi.ch

Thanks

References

R. Bruttomesso, S. Rollini, N. Sharygina, and A. Tsitovich.
Flexible Interpolation with Local Proof Transformations.
In ICCAD, 2010.

R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich.
The OpenSMT Solver.
In TACAS, pages 150153, 2010.

S. Rollini, R. Bruttomesso, and N. Sharygina.
An Efficient and Flexible Approach to Resolution Proof Reduction.
In HVC, 2010.

References

[Pudlák97] P. Pudlák. Lower Bounds for Resolution and Cutting Plane Proofs
and Monotone Computations. J. Symb. Log. 1997.

[McMillan04] K. L. McMillan. An Interpolating Theorem Prover. TACAS. 2004.

[Cimatti08] A. Cimatti, A. Griggio, R. Sebastiani. Efficient Interpolant
Generation in SMT. TACAS. 2008.

[Beyer08] D. Beyer, D. Zufferey, R. Majumdar. CSIsat: Interpolation for
LA+EUF. CAV. 2008.

[Bozzano05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. Van
Rossum, S. Ranise, R. Sebastiani. Efficient Satisfiability Modulo
Theories via Delayed Theory Combination. CAV. 2005.

[Yorsh05] G. Yorsh, M. Musuvathi. A Combination Method for Generating
Interpolants. CADE. 2005.

	The OpenSMT Solver
	Interpolants
	Application to Program Verification
	Computing Interpolants
	Proof Transformation (for interpolation and reduction)

