# OpenSMT and Applications to Interpolation and Proof Manipulation 

Roberto Bruttomesso, Natasha Sharygina

## USI Lugano

MIT - June 16, 2011

## Outline

$\boldsymbol{1}$ The OpenSMT Solver

2 Interpolants

3 Application to Program Verification

4 Computing Interpolants

5 Proof Transformation (for interpolation and reduction)

## The OpenSMT Solver

## Introduction

$$
\mathrm{e}(\operatorname{DPLL}(\mathrm{~T}))=\mathrm{e}(\mathrm{DPLL})+\mathrm{e}(\mathrm{~T})+\mathrm{e}(\mathrm{COMM})
$$



## Introduction

$$
\mathrm{e}(\operatorname{DPLL}(\mathrm{~T}))=\mathrm{e}(\mathrm{DPLL})+\mathrm{e}(\mathrm{~T})+\mathrm{e}(\mathrm{COMM})
$$



## Introduction

$$
\mathrm{e}(\operatorname{DPLL}(\mathrm{~T})) \approx \mathrm{e}(\mathrm{~T})
$$



## Join SMT-COMP!



## The OpenSMT Solver

■ Open-source solver developed at USI since $2008^{1}$

■ Based on MiniSAT, and Efficient (e.g., see SMT-COMP'10)

[^0]
## The OpenSMT Solver

■ Open-source solver developed at USI since $2008^{1}$

■ Based on MiniSAT, and Efficient (e.g., see SMT-COMP'10)

- Structured to be easily extended with new theory-solvers

[^1]
## The OpenSMT Solver

■ Open-source solver developed at USI since $2008^{1}$

■ Based on MiniSAT, and Efficient (e.g., see SMT-COMP'10)

■ Structured to be easily extended with new theory-solvers

■ Several algorithms for computing interpolants and manipulating proofs of unsatisfiability

[^2]
## The OpenSMT Solver

■ Open-source solver developed at USI since $2008^{1}$

■ Based on MiniSAT, and Efficient (e.g., see SMT-COMP'10)

■ Structured to be easily extended with new theory-solvers

- Several algorithms for computing interpolants and manipulating proofs of unsatisfiability

■ Coming soon: integration with model-checker MCMT (JWW F.Alberti, S. Ghilardi, S.Ranise)

[^3]
## Interpolants

## Quantifier-free Interpolation

A first-order theory $T$ has quantifier-free interpolation property

## Quantifier-free Interpolation

A first-order theory $T$ has quantifier-free interpolation property
iff
for every quantifier-free formulae $A, B$, such that $A \wedge B$ is $T$-unsatisfiable, there exists a quantifier-free formula $I$ such that:

## Quantifier-free Interpolation

A first-order theory $T$ has quantifier-free interpolation property
iff
for every quantifier-free formulae $A, B$, such that $A \wedge B$ is $T$-unsatisfiable, there exists a quantifier-free formula $I$ such that:
(i) $T \vdash A \rightarrow I$;
(ii) $B \wedge I$ is $T$-unsatisfiable;
(iii) $I$ is defined over common symbols of $A$ and $B$.

## Quantifier-free Interpolation

A first-order theory $T$ has quantifier-free interpolation property

## iff

for every quantifier-free formulae $A, B$, such that $A \wedge B$ is $T$-unsatisfiable, there exists a quantifier-free formula $I$ such that:
(i) $T \vdash A \rightarrow I$;
(ii) $B \wedge I$ is $T$-unsatisfiable;
(iii) $I$ is defined over common symbols of $A$ and $B$.

In short, $I$ is an overapproximation of $A$ that is still unsatisfiable with $B$, and that uses the common language

## Quantifier-free Interpolation

For $A \wedge B$ is $T$-unsatisfiable, $I$ is a quantifier-free formula such that:
(i) $T \vdash A \rightarrow I$;
(ii) $B \wedge I$ is $T$-unsatisfiable;
(iii) $I$ is defined over common symbols of $A$ and $B$.


## Quantifier-free Interpolation

For $A \wedge B$ is $T$-unsatisfiable, $I$ is a quantifier-free formula such that:
(i) $T \vdash A \rightarrow I$;
(ii) $B \wedge I$ is $T$-unsatisfiable;
(iii) $I$ is defined over common symbols of $A$ and $B$.


## Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free interpolants:

## Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free interpolants:


## Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free interpolants:

- Linear Real Arithmetic ( $\mathcal{L R} \mathcal{A}$ );

■ Linear Integer Arithmetic ( $\mathcal{L I} \mathcal{A}$ )

## Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free interpolants:

- Linear Real Arithmetic ( $\mathcal{L R} \mathcal{A}$ );
- Linear Integer Arithmetic ( $\mathcal{L I} \mathcal{A}$ ) (with help of $\left\{\equiv_{n}\right\}$ predicates);


## Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free interpolants:

- Linear Real Arithmetic ( $\mathcal{L R} \mathcal{A}$ );
- Linear Integer Arithmetic ( $\mathcal{L I} \mathcal{A}$ ) (with help of $\left\{\equiv_{n}\right\}$ predicates);

■ Equality with Uninterpreted Functions ( $\mathcal{E U \mathcal { F }})$;

## Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free interpolants:

- Linear Real Arithmetic ( $\mathcal{L R} \mathcal{A}$ );
- Linear Integer Arithmetic ( $\mathcal{L I} \mathcal{A}$ ) (with help of $\left\{\equiv_{n}\right\}$ predicates);

■ Equality with Uninterpreted Functions ( $\mathcal{E U \mathcal { F }})$;

- Arrays with extensionality $(\mathcal{A X})$


## Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free interpolants:

- Linear Real Arithmetic ( $\mathcal{L R} \mathcal{A}$ );
- Linear Integer Arithmetic ( $\mathcal{L I} \mathcal{A}$ ) (with help of $\left\{\equiv_{n}\right\}$ predicates);

■ Equality with Uninterpreted Functions ( $\mathcal{E U \mathcal { F }})$;

- Arrays with extensionality $(\mathcal{A X})$ (with help of diff function);


## Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free interpolants:

- Linear Real Arithmetic ( $\mathcal{L R} \mathcal{A}$ );
- Linear Integer Arithmetic ( $\mathcal{L I} \mathcal{A}$ ) (with help of $\left\{\equiv_{n}\right\}$ predicates);

■ Equality with Uninterpreted Functions ( $\mathcal{E U \mathcal { F }})$;

- Arrays with extensionality $(\mathcal{A X})$ (with help of diff function);

■ some combinations, like $(\mathcal{L} \mathcal{R} \mathcal{A} \cup \mathcal{E U F})$;

## Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free interpolants:

- Linear Real Arithmetic ( $\mathcal{L R} \mathcal{A}$ );
- Linear Integer Arithmetic ( $\mathcal{L I} \mathcal{A}$ ) (with help of $\left\{\equiv_{n}\right\}$ predicates);

■ Equality with Uninterpreted Functions ( $\mathcal{E U \mathcal { F }})$;

- Arrays with extensionality $(\mathcal{A X})$ (with help of diff function);
- some combinations, like $(\mathcal{L} \mathcal{R} \mathcal{A} \cup \mathcal{E U F})$;
- but not some other, like $(\mathcal{L I} \mathcal{A} \cup \mathcal{E U F})$.


## Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free interpolants:

- Linear Real Arithmetic ( $\mathcal{L R} \mathcal{A}$ );
- Linear Integer Arithmetic ( $\mathcal{L I} \mathcal{A}$ ) (with help of $\left\{\equiv_{n}\right\}$ predicates);

■ Equality with Uninterpreted Functions ( $\mathcal{E U \mathcal { F }})$;

- Arrays with extensionality $(\mathcal{A X})$ (with help of diff function);
- some combinations, like $(\mathcal{L} \mathcal{R} \mathcal{A} \cup \mathcal{E U F})$;

■ but not some other, like $(\mathcal{L I} \mathcal{A} \cup \mathcal{E} \mathcal{U F})$.
In general, those theories that admit Quantifier Elimination, also admit quantifier-free interpolants

## Some easy examples

## Example (Trivial cases)

If $A$ is unsatisfiable on its own (i.e., $A=\perp$ ), then $I=\perp$.

## Some easy examples

## Example (Trivial cases)

If $A$ is unsatisfiable on its own (i.e., $A=\perp$ ), then $I=\perp$. If $B$ is unsatisfiable on its own (i.e., $B=\perp$ ), then $I=\top$.

## Some easy examples

## Example (Trivial cases)

If $A$ is unsatisfiable on its own (i.e., $A=\perp$ ), then $I=\perp$. If $B$ is unsatisfiable on its own (i.e., $B=\perp$ ), then $I=\top$.

## Example (Boolean logic)

$$
\begin{aligned}
& A \equiv\left\{\neg a \wedge\left(a \vee c_{1}\right) \wedge\left(a \vee c_{2}\right)\right\} \\
& B \equiv\left\{\neg b \wedge\left(b \vee \neg c_{1}\right) \wedge\left(b \vee \neg c_{2}\right)\right\}
\end{aligned}
$$

## Some easy examples

## Example (Trivial cases)

If $A$ is unsatisfiable on its own (i.e., $A=\perp$ ), then $I=\perp$. If $B$ is unsatisfiable on its own (i.e., $B=\perp$ ), then $I=\top$.

## Example (Boolean logic)

$$
\begin{aligned}
& A \equiv\left\{\neg a \wedge\left(a \vee c_{1}\right) \wedge\left(a \vee c_{2}\right)\right\} \\
& B \equiv\left\{\neg b \wedge\left(b \vee \neg c_{1}\right) \wedge\left(b \vee \neg c_{2}\right)\right\} \\
& I=\left\{c_{1}\right\}
\end{aligned}
$$

## Some easy examples

## Example (Trivial cases)

If $A$ is unsatisfiable on its own (i.e., $A=\perp$ ), then $I=\perp$. If $B$ is unsatisfiable on its own (i.e., $B=\perp$ ), then $I=\top$.

## Example (Boolean logic)

$$
\begin{aligned}
& A \equiv\left\{\neg a \wedge\left(a \vee c_{1}\right) \wedge\left(a \vee c_{2}\right)\right\} \\
& B \equiv\left\{\neg b \wedge\left(b \vee \neg c_{1}\right) \wedge\left(b \vee \neg c_{2}\right)\right\} \\
& I=\left\{c_{1}\right\} \text { (one of the many possible, see later) }
\end{aligned}
$$

## Some easy examples

## Example (Trivial cases)

If $A$ is unsatisfiable on its own (i.e., $A=\perp$ ), then $I=\perp$. If $B$ is unsatisfiable on its own (i.e., $B=\perp$ ), then $I=\top$.

## Example (Boolean logic)

$$
\begin{aligned}
& A \equiv\left\{\neg a \wedge\left(a \vee c_{1}\right) \wedge\left(a \vee c_{2}\right)\right\} \\
& B \equiv\left\{\neg b \wedge\left(b \vee \neg c_{1}\right) \wedge\left(b \vee \neg c_{2}\right)\right\} \\
& I=\left\{c_{1}\right\} \text { (one of the many possible, see later) }
\end{aligned}
$$

## Example (Linear Real Arithmetic)

$$
\begin{aligned}
& A \equiv\{(x-y \leq 2) \wedge(y-z \leq 1)\} \\
& B \equiv\{(z-w \leq 0) \wedge(w-x \leq-10)\}
\end{aligned}
$$

## Some easy examples

## Example (Trivial cases)

If $A$ is unsatisfiable on its own (i.e., $A=\perp$ ), then $I=\perp$. If $B$ is unsatisfiable on its own (i.e., $B=\perp$ ), then $I=\top$.

## Example (Boolean logic)

$$
\begin{aligned}
& A \equiv\left\{\neg a \wedge\left(a \vee c_{1}\right) \wedge\left(a \vee c_{2}\right)\right\} \\
& B \equiv\left\{\neg b \wedge\left(b \vee \neg c_{1}\right) \wedge\left(b \vee \neg c_{2}\right)\right\} \\
& I=\left\{c_{1}\right\} \text { (one of the many possible, see later) }
\end{aligned}
$$

## Example (Linear Real Arithmetic)

$$
\begin{aligned}
& A \equiv\{(x-y \leq 2) \wedge(y-z \leq 1)\} \\
& B \equiv\{(z-w \leq 0) \wedge(w-x \leq-10)\} \\
& I=\{x-z \leq 8\}
\end{aligned}
$$

## Some easy examples

## Example (Trivial cases)

If $A$ is unsatisfiable on its own (i.e., $A=\perp$ ), then $I=\perp$. If $B$ is unsatisfiable on its own (i.e., $B=\perp$ ), then $I=\top$.

## Example (Boolean logic)

$$
\begin{aligned}
& A \equiv\left\{\neg a \wedge\left(a \vee c_{1}\right) \wedge\left(a \vee c_{2}\right)\right\} \\
& B \equiv\left\{\neg b \wedge\left(b \vee \neg c_{1}\right) \wedge\left(b \vee \neg c_{2}\right)\right\} \\
& I=\left\{c_{1}\right\} \text { (one of the many possible, see later) }
\end{aligned}
$$

## Example (Linear Real Arithmetic)

$$
\begin{aligned}
& A \equiv\{(x-y \leq 2) \wedge(y-z \leq 1)\} \\
& B \equiv\{(z-w \leq 0) \wedge(w-x \leq-10)\} \\
& I=\{x-z \leq 8\} \text { (one of the infinite possible) }
\end{aligned}
$$

## Computing interpolants with OpenSMT

SMT-LIB 2 Standard does not support (yet) interpolation commands

## Computing interpolants with OpenSMT

SMT-LIB 2 Standard does not support (yet) interpolation commands
OpenSMT supports non-standard interpolation commands

## Computing interpolants with OpenSMT

SMT-LIB 2 Standard does not support (yet) interpolation commands
OpenSMT supports non-standard interpolation commands

■ (set-option : produce-interpolants <bool>) tells OpenSMT to compute interpolants

## Computing interpolants with OpenSMT

SMT-LIB 2 Standard does not support (yet) interpolation commands
OpenSMT supports non-standard interpolation commands

■ (set-option :produce-interpolants <bool>) tells OpenSMT to compute interpolants

■ (assert-partition <formula>) tells OpenSMT about a partition

## Computing interpolants with OpenSMT

SMT-LIB 2 Standard does not support (yet) interpolation commands
OpenSMT supports non-standard interpolation commands

■ (set-option :produce-interpolants <bool>) tells OpenSMT to compute interpolants

■ (assert-partition <formula>) tells OpenSMT about a partition

- (get-interpolant <n>)
command to retrieve an interpolant

Derno
Itine

Application to Program Verification

## Application to Program Verification

So far we have considered interpolants between two partitions $A$ and $B$
A more general definition involves $n \geq 2$ partitions $A_{1}, \ldots, A_{n}$, whose conjunction is unsatisfiable

## Application to Program Verification

So far we have considered interpolants between two partitions $A$ and $B$
A more general definition involves $n \geq 2$ partitions $A_{1}, \ldots, A_{n}$, whose conjunction is unsatisfiable

Interpolants $I_{0}, \ldots, I_{n}$ are such that
(i) $I_{0}=\mathrm{T}, I_{n}=\perp$;
(ii) $T \vdash\left(I_{k} \wedge A_{k+1}\right) \rightarrow I_{k+1}$;
(iii) $I_{k}$ on shared symbols of $A_{k}$ and $A_{k+1}$.

For $n=2$, you get the previous definition for $A$ and $B$

## Application to Program Verification

Lazy Abstraction with Interpolants

> Original (Concrete) Program
> 1: $\mathrm{y}=\mathrm{x}$;
> 2: while $(\mathrm{x} \geq 1)$ \{
> 3: $\quad \mathrm{x}=\mathrm{x}-1$;
> 4: $\quad y=y-1$;
> 5: \}
> 6: if $(y \geq 1)$
> 7: ERROR;

## Application to Program Verification

Lazy Abstraction with Interpolants

## Original (Concrete) Program

1: $\mathrm{y}=\mathrm{x}$;
2: while $(\mathrm{x} \geq 1)$ \{
3: $\quad \mathrm{x}=\mathrm{x}-1$;
4: $\quad y=y-1$;
5: \}
6: if $(y \geq 1)$
7: ERROR;
Control Flow and Transitions

$T_{1}: \top \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=x\end{array}\right.$
$T_{2}: x \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x-1 \\ y^{\prime}:=y-1\end{array}\right.$
$T_{3}: x \leq 0 \wedge y \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=y\end{array}\right.$

## Application to Program Verification

Lazy Abstraction with Interpolants
(Abstract) Program Unwinding
Control Flow and Transitions

$$
\begin{aligned}
& T_{1}: \top \wedge\left\{\begin{array}{l}
x^{\prime}:=x \\
y^{\prime}:=x
\end{array}\right. \\
& T_{2}: x \geq 1 \wedge\left\{\begin{array}{l}
x^{\prime}:=x-1 \\
y^{\prime}:=y-1
\end{array}\right. \\
& T_{3}: x \leq 0 \wedge y \geq 1 \wedge\left\{\begin{array}{l}
x^{\prime}:=x \\
y^{\prime}:=y
\end{array}\right.
\end{aligned}
$$

## Application to Program Verification

Lazy Abstraction with Interpolants
(Abstract) Program Unwinding
Control Flow and Transitions

$T_{1}: \top \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=x\end{array}\right.$
$T_{2}: x \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x-1 \\ y^{\prime}:=y-1\end{array}\right.$
$T_{3}: x \leq 0 \wedge y \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=y\end{array}\right.$

## Application to Program Verification

Lazy Abstraction with Interpolants
(Abstract) Program Unwinding
Control Flow and Transitions


$$
\begin{aligned}
& \text { true } \\
& \mathrm{x}_{1}=\mathrm{x}_{0} \\
& \mathrm{y}_{1}=\mathrm{x}_{0} \\
& \mathrm{x}_{1} \leq 0 \\
& \mathrm{y}_{1} \geq 1 \\
& \mathrm{x}_{2}=\mathrm{x}_{1} \\
& \mathrm{y}_{2}=\mathrm{y}_{1}
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}: \top \wedge\left\{\begin{array}{l}
x^{\prime}:=x \\
y^{\prime}:=x
\end{array}\right. \\
& T_{2}: x \geq 1 \wedge\left\{\begin{array}{l}
x^{\prime}:=x-1 \\
y^{\prime}:=y-1
\end{array}\right. \\
& T_{3}: x \leq 0 \wedge y \geq 1 \wedge\left\{\begin{array}{l}
x^{\prime}:=x \\
y^{\prime}:=y
\end{array}\right.
\end{aligned}
$$

## Application to Program Verification

Lazy Abstraction with Interpolants
(Abstract) Program Unwinding
Control Flow and Transitions


$$
\begin{aligned}
& \left\{\begin{array}{l}
\top\} \\
\text { true }
\end{array}\right. \\
& \mathrm{x}_{1}=\mathrm{x}_{0} \\
& \mathrm{y}_{1}=\mathrm{x}_{0} \\
& \\
& \mathrm{x}_{1} \leq 0 \\
& \mathrm{y}_{1} \geq 1 \\
& \mathrm{x}_{2}=\mathrm{x}_{1} \\
& \mathrm{y}_{2}=\mathrm{y}_{1}
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}: \top \wedge\left\{\begin{array}{l}
x^{\prime}:=x \\
y^{\prime}:=x
\end{array}\right. \\
& T_{2}: x \geq 1 \wedge\left\{\begin{array}{l}
x^{\prime}:=x-1 \\
y^{\prime}:=y-1
\end{array}\right. \\
& T_{3}: x \leq 0 \wedge y \geq 1 \wedge\left\{\begin{array}{l}
x^{\prime}:=x \\
y^{\prime}:=y
\end{array}\right.
\end{aligned}
$$

## Application to Program Verification

Lazy Abstraction with Interpolants
(Abstract) Program Unwinding
Control Flow and Transitions


$$
\begin{aligned}
& \left\{\begin{array}{l}
\top\} \\
\text { true }
\end{array}\right. \\
& \mathrm{x}_{1}=\mathrm{x}_{0} \\
& \mathrm{y}_{1}=\mathrm{x}_{0} \\
& \left\{\mathrm{y}_{1}-\mathrm{x}_{1} \leq 0\right\} \\
& \mathrm{x}_{1} \leq 0 \\
& \mathrm{y}_{1} \geq 1 \\
& \mathrm{x}_{2}=\mathrm{x}_{1} \\
& \mathrm{y}_{2}=\mathrm{y}_{1}
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}: \top \wedge\left\{\begin{array}{l}
x^{\prime}:=x \\
y^{\prime}:=x
\end{array}\right. \\
& T_{2}: x \geq 1 \wedge\left\{\begin{array}{l}
x^{\prime}:=x-1 \\
y^{\prime}:=y-1
\end{array}\right. \\
& T_{3}: x \leq 0 \wedge y \geq 1 \wedge\left\{\begin{array}{l}
x^{\prime}:=x \\
y^{\prime}:=y
\end{array}\right.
\end{aligned}
$$

## Application to Program Verification

Lazy Abstraction with Interpolants
(Abstract) Program Unwinding
Control Flow and Transitions


$$
\begin{aligned}
& \left\{\begin{array}{l}
\top\} \\
\text { true }
\end{array}\right. \\
& \quad \mathrm{x}_{1}=\mathrm{x}_{0} \\
& \mathrm{y}_{1}=\mathrm{x}_{0} \\
& \left\{\mathrm{y}_{1}-\mathrm{x}_{1} \leq 0\right\} \\
& \mathrm{x}_{1} \leq 0 \\
& \mathrm{y}_{1} \geq 1 \\
& \mathrm{x}_{2}=\mathrm{x}_{1} \\
& \mathrm{y}_{2}=\mathrm{y}_{1} \\
& \{\perp\}
\end{aligned}
$$

## Application to Program Verification

Lazy Abstraction with Interpolants
(Abstract) Program Unwinding
Control Flow and Transitions


$$
\begin{aligned}
& \left\{\begin{array}{l}
\top\} \\
\text { true }
\end{array}\right. \\
& \mathrm{x}_{1}=\mathrm{x}_{0} \\
& \mathrm{y}_{1}=\mathrm{x}_{0} \\
& \left\{\begin{array}{l}
\left.\mathrm{y}_{1}-\mathrm{x}_{1} \leq 0\right\} \\
\mathrm{x}_{1} \leq 0 \\
\mathrm{y}_{1} \geq 1 \\
\mathrm{x}_{2}=\mathrm{x}_{1} \\
\mathrm{y}_{2}=\mathrm{y}_{1} \\
\{\perp\}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& T_{1}: \top \wedge\left\{\begin{array}{l}
x^{\prime}:=x \\
y^{\prime}:=x
\end{array}\right. \\
& T_{2}: x \geq 1 \wedge\left\{\begin{array}{l}
x^{\prime}:=x-1 \\
y^{\prime}:=y-1
\end{array}\right. \\
& T_{3}: x \leq 0 \wedge y \geq 1 \wedge\left\{\begin{array}{l}
x^{\prime}:=x \\
y^{\prime}:=y
\end{array}\right.
\end{aligned}
$$

## Application to Program Verification

Lazy Abstraction with Interpolants
(Abstract) Program Unwinding
Control Flow and Transitions

$$
\{T\}\{y-x \leq 0\}\{\perp\}
$$

true
$\mathrm{x}_{1}=\mathrm{x}_{0}$
$\mathrm{y}_{1}=\mathrm{x}_{0}$
$\mathrm{x}_{1} \geq 1$
$\mathrm{x}_{2}=\mathrm{x}_{1}-1$
$\mathrm{y}_{2}=\mathrm{y}_{1}-1$
$\mathrm{x}_{1} \geq 1$
$\mathrm{x}_{2}=\mathrm{x}_{1}-1$
$\mathrm{y}_{2}=\mathrm{y}_{1}-1$
$\mathrm{x}_{1} \geq 1$
$\mathrm{x}_{2}=\mathrm{x}_{1}-1$
$\mathrm{y}_{2}=\mathrm{y}_{1}-1$
$\mathrm{x}_{2} \leq 0$
$\mathrm{y}_{2} \geq 1$
$\mathrm{x}_{3}=\mathrm{x}_{2}$
$\mathrm{y}_{3}=\mathrm{y}_{2}$
$\mathrm{x}_{2} \leq 0$
$\mathrm{y}_{2} \geq 1$
$\mathrm{x}_{3}=\mathrm{x}_{2}$
$\mathrm{y}_{3}=\mathrm{y}_{2}$
$\mathrm{x}_{2} \leq 0$
$\mathrm{y}_{2} \geq 1$
$\mathrm{x}_{3}=\mathrm{x}_{2}$
$\mathrm{y}_{3}=\mathrm{y}_{2}$


$T_{1}: \top \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=x\end{array}\right.$
$T_{2}: x \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x-1 \\ y^{\prime}:=y-1\end{array}\right.$
$T_{3}: x \leq 0 \wedge y \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=y\end{array}\right.$

## Application to Program Verification

Lazy Abstraction with Interpolants
(Abstract) Program Unwinding
Control Flow and Transitions

| $\begin{gathered} \top\} \\ \text { true } \end{gathered}$ |  |
| :---: | :---: |
| $\begin{aligned} & \mathrm{x}_{1}=\mathrm{x}_{0} \\ & \mathrm{y}_{1}=\mathrm{x}_{0} \end{aligned}$ | $\{T\}$ \{T\} |
| $\mathrm{x}_{1} \geq 1$ |  |
| $\mathrm{x}_{2}=\mathrm{x}_{1}-1$ |  |
| $\mathrm{y}_{2}=\mathrm{y}_{1}-1$ |  |
| $\mathrm{x}_{2} \leq 0$ |  |
| $\mathrm{y}_{2} \geq 1$ |  |
| $\mathrm{x}_{3}=\mathrm{x}_{2}$ |  |
| $\mathrm{y}_{3}=\mathrm{y}_{2}$ |  |

$$
\begin{aligned}
& T_{1}: \top \wedge\left\{\begin{array}{l}
x^{\prime}:=x \\
y^{\prime}:=x
\end{array}\right. \\
& T_{2}: x \geq 1 \wedge\left\{\begin{array}{l}
x^{\prime}:=x-1 \\
y^{\prime}:=y-1
\end{array}\right. \\
& T_{3}: x \leq 0 \wedge y \geq 1 \wedge\left\{\begin{array}{l}
x^{\prime}:=x \\
y^{\prime}:=y
\end{array}\right.
\end{aligned}
$$

## Application to Program Verification

Lazy Abstraction with Interpolants
(Abstract) Program Unwinding
Control Flow and Transitions


$T_{1}: \top \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=x\end{array}\right.$
$T_{2}: x \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x-1 \\ y^{\prime}:=y-1\end{array}\right.$
$T_{3}: x \leq 0 \wedge y \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=y\end{array}\right.$

## Application to Program Verification

Lazy Abstraction with Interpolants
(Abstract) Program Unwinding

\{T\} $\{y-x \leq 0\}\{\perp\}$


Control Flow and Transitions

$T_{1}: \top \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=x\end{array}\right.$
$T_{2}: x \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x-1 \\ y^{\prime}:=y-1\end{array}\right.$
$T_{3}: x \leq 0 \wedge y \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=y\end{array}\right.$

## Application to Program Verification

Lazy Abstraction with Interpolants
(Abstract) Program Unwinding
Control Flow and Transitions
$\mathrm{y}_{1}=\mathrm{x}_{0}$
$\left\{\mathrm{y}_{1}-\mathrm{x}_{1} \leq 0\right\}$
$\mathrm{x}_{1} \geq 1$
$\mathrm{x}_{2}=\mathrm{x}_{1}-1$
$\mathrm{y}_{2}=\mathrm{y}_{1}-1$
$\left\{\mathrm{y}_{2}-\mathrm{x}_{2} \leq 0\right\}$
$\mathrm{x}_{2} \leq 0$
$\mathrm{y}_{2} \geq 1$
$\mathrm{x}_{3}=\mathrm{x}_{2}$
$\left\{\begin{array}{l}\mathrm{y}_{3}=\mathrm{y}_{2} \\ \perp \stackrel{\perp}{\perp}\}\end{array}\right.$
\{T\} $\{y-x \leq 0\}\{\perp\}$


$T_{1}: \top \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=x\end{array}\right.$
$T_{2}: x \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x-1 \\ y^{\prime}:=y-1\end{array}\right.$
$T_{3}: x \leq 0 \wedge y \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=y\end{array}\right.$

## Application to Program Verification

Lazy Abstraction with Interpolants
(Abstract) Program Unwinding
Control Flow and Transitions

$\{T\}\{y-x \leq 0\}\{\perp\}$


$T_{1}: \top \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=x\end{array}\right.$
$T_{2}: x \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x-1 \\ y^{\prime}:=y-1\end{array}\right.$
$T_{3}: x \leq 0 \wedge y \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=y\end{array}\right.$

## Application to Program Verification

Lazy Abstraction with Interpolants
(Abstract) Program Unwinding
Control Flow and Transitions
$\{T\}\{y-x \leq 0\}\{\perp\}$


Covered ${ }^{\text {' }}$


$T_{1}: \top \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=x\end{array}\right.$
$T_{2}: x \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x-1 \\ y^{\prime}:=y-1\end{array}\right.$
$T_{3}: x \leq 0 \wedge y \geq 1 \wedge\left\{\begin{array}{l}x^{\prime}:=x \\ y^{\prime}:=y\end{array}\right.$

Derno
Itine

Computing Interpolants

## Interpolants via Quantifier Elimination (QE)

If $T$ admits QE , then an interpolant for $A \wedge B$ can be computed as follows:

- Take $A$. Let $\vec{a}$ be the symbols local to $A$;


## Interpolants via Quantifier Elimination (QE)

If $T$ admits QE , then an interpolant for $A \wedge B$ can be computed as follows:

- Take $A$. Let $\vec{a}$ be the symbols local to $A$;

■ "Quantify-out" local symbols as $\exists \vec{a}$. $A$;

## Interpolants via Quantifier Elimination (QE)

If $T$ admits QE, then an interpolant for $A \wedge B$ can be computed as follows:

- Take $A$. Let $\vec{a}$ be the symbols local to $A$;

■ "Quantify-out" local symbols as $\exists \vec{a}$. $A$;

- Compute $I=\mathrm{QE}(\exists \vec{a} . A)$.


## Interpolants via Quantifier Elimination (QE)

If $T$ admits QE, then an interpolant for $A \wedge B$ can be computed as follows:

- Take $A$. Let $\vec{a}$ be the symbols local to $A$;

■ "Quantify-out" local symbols as $\exists \vec{a}$. $A$;

- Compute $I=\mathrm{QE}(\exists \vec{a} . A)$.


## Interpolants via Quantifier Elimination (QE)

If $T$ admits QE , then an interpolant for $A \wedge B$ can be computed as follows:

- Take $A$. Let $\vec{a}$ be the symbols local to $A$;

■ "Quantify-out" local symbols as $\exists \vec{a}$. $A$;

- Compute $I=\mathrm{QE}(\exists \vec{a} . A)$.

$$
\begin{aligned}
& \text { Example (Boolean logic) } \\
& A \equiv\left\{\neg a \wedge\left(a \vee c_{1}\right) \wedge\left(a \vee c_{2}\right)\right\} \\
& B \equiv\left\{\neg b \wedge\left(b \vee \neg c_{1}\right) \wedge\left(b \vee \neg c_{2}\right)\right\}
\end{aligned}
$$

## Interpolants via Quantifier Elimination (QE)

If $T$ admits QE , then an interpolant for $A \wedge B$ can be computed as follows:

- Take $A$. Let $\vec{a}$ be the symbols local to $A$;

■ "Quantify-out" local symbols as $\exists \vec{a}$. $A$;

- Compute $I=\mathrm{QE}(\exists \vec{a} . A)$.

$$
\begin{aligned}
& \text { Example (Boolean logic) } \\
& A \equiv\left\{\neg a \wedge\left(a \vee c_{1}\right) \wedge\left(a \vee c_{2}\right)\right\} \\
& B \equiv\left\{\neg b \wedge\left(b \vee \neg c_{1}\right) \wedge\left(b \vee \neg c_{2}\right)\right\} \\
& I=\mathrm{QE}(\exists a . A)
\end{aligned}
$$

## Interpolants via Quantifier Elimination (QE)

If $T$ admits QE , then an interpolant for $A \wedge B$ can be computed as follows:

- Take $A$. Let $\vec{a}$ be the symbols local to $A$;

■ "Quantify-out" local symbols as $\exists \vec{a}$. $A$;

- Compute $I=\mathrm{QE}(\exists \vec{a} . A)$.

$$
\begin{aligned}
& \text { Example (Boolean logic) } \\
& A \equiv\left\{\neg a \wedge\left(a \vee c_{1}\right) \wedge\left(a \vee c_{2}\right)\right\} \\
& B \equiv\left\{\neg b \wedge\left(b \vee \neg c_{1}\right) \wedge\left(b \vee \neg c_{2}\right)\right\} \\
& I=\mathrm{QE}(\exists a . A)=A(\mathrm{\top} / a) \vee A(\perp / a)
\end{aligned}
$$

## Interpolants via Quantifier Elimination (QE)

If $T$ admits QE , then an interpolant for $A \wedge B$ can be computed as follows:

- Take $A$. Let $\vec{a}$ be the symbols local to $A$;

■ "Quantify-out" local symbols as $\exists \vec{a}$. $A$;

- Compute $I=\mathrm{QE}(\exists \vec{a} . A)$.

$$
\begin{aligned}
& \text { Example (Boolean logic) } \\
& A \equiv\left\{\neg a \wedge\left(a \vee c_{1}\right) \wedge\left(a \vee c_{2}\right)\right\} \\
& B \equiv\left\{\neg b \wedge\left(b \vee \neg c_{1}\right) \wedge\left(b \vee \neg c_{2}\right)\right\} \\
& I=\operatorname{QE}(\exists a . A)=A(\mathrm{~T} / a) \vee A(\perp / a)=\perp \vee\left(c_{1} \wedge c_{2}\right)
\end{aligned}
$$

## Interpolants via Quantifier Elimination (QE)

If $T$ admits QE , then an interpolant for $A \wedge B$ can be computed as follows:

- Take $A$. Let $\vec{a}$ be the symbols local to $A$;

■ "Quantify-out" local symbols as $\exists \vec{a}$. $A$;

- Compute $I=\mathrm{QE}(\exists \vec{a} . A)$.

$$
\begin{aligned}
& \text { Example (Boolean logic) } \\
& A \equiv\left\{\neg a \wedge\left(a \vee c_{1}\right) \wedge\left(a \vee c_{2}\right)\right\} \\
& B \equiv\left\{\neg b \wedge\left(b \vee \neg c_{1}\right) \wedge\left(b \vee \neg c_{2}\right)\right\} \\
& I=\operatorname{QE}(\exists a . A)=A(\mathrm{~T} / a) \vee A(\perp / a)=\perp \vee\left(c_{1} \wedge c_{2}\right)=c_{1} \wedge c_{2}
\end{aligned}
$$

## Interpolants via Quantifier Elimination (QE)

If $T$ admits QE , then an interpolant for $A \wedge B$ can be computed as follows:

- Take $A$. Let $\vec{a}$ be the symbols local to $A$;

■ "Quantify-out" local symbols as $\exists \vec{a}$. $A$;

- Compute $I=\operatorname{QE}(\exists \vec{a} . A)$.


## Example (Boolean logic)

$$
\begin{aligned}
& A \equiv\left\{\neg a \wedge\left(a \vee c_{1}\right) \wedge\left(a \vee c_{2}\right)\right\} \\
& B \equiv\left\{\neg b \wedge\left(b \vee \neg c_{1}\right) \wedge\left(b \vee \neg c_{2}\right)\right\} \\
& I=\mathrm{QE}(\exists a . A)=A(\mathrm{~T} / a) \vee A(\perp / a)=\perp \vee\left(c_{1} \wedge c_{2}\right)=c_{1} \wedge c_{2}
\end{aligned}
$$

Interpolants computed this way are the "strongest" possible, as $T \vdash A \leftrightarrow I$

## Interpolants via Quantifier Elimination (QE)

If $T$ admits QE , then an interpolant for $A \wedge B$ can be computed as follows:

- Take $A$. Let $\vec{a}$ be the symbols local to $A$;

■ "Quantify-out" local symbols as $\exists \vec{a}$. $A$;

- Compute $I=\operatorname{QE}(\exists \vec{a} . A)$.


## Example (Boolean logic)

$$
\begin{aligned}
& A \equiv\left\{\neg a \wedge\left(a \vee c_{1}\right) \wedge\left(a \vee c_{2}\right)\right\} \\
& B \equiv\left\{\neg b \wedge\left(b \vee \neg c_{1}\right) \wedge\left(b \vee \neg c_{2}\right)\right\} \\
& I=\mathrm{QE}(\exists a . A)=A(\mathrm{~T} / a) \vee A(\perp / a)=\perp \vee\left(c_{1} \wedge c_{2}\right)=c_{1} \wedge c_{2}
\end{aligned}
$$

Interpolants computed this way are the "strongest" possible, as $T \vdash A \leftrightarrow I$ (remember that by definition $T \vdash A \rightarrow I$ is enough)

## Interpolants via Quantifier Elimination (QE)

If $T$ admits QE , then an interpolant for $A \wedge B$ can be computed as follows:

- Take $A$. Let $\vec{a}$ be the symbols local to $A$;

■ "Quantify-out" local symbols as $\exists \vec{a}$. $A$;

- Compute $I=\operatorname{QE}(\exists \vec{a} . A)$.


## Example (Boolean logic)

$$
\begin{aligned}
& A \equiv\left\{\neg a \wedge\left(a \vee c_{1}\right) \wedge\left(a \vee c_{2}\right)\right\} \\
& B \equiv\left\{\neg b \wedge\left(b \vee \neg c_{1}\right) \wedge\left(b \vee \neg c_{2}\right)\right\} \\
& I=\mathrm{QE}(\exists a . A)=A(\mathrm{~T} / a) \vee A(\perp / a)=\perp \vee\left(c_{1} \wedge c_{2}\right)=c_{1} \wedge c_{2}
\end{aligned}
$$

Interpolants computed this way are the "strongest" possible, as $T \vdash A \leftrightarrow I$ (remember that by definition $T \vdash A \rightarrow I$ is enough) This technique is computationally too expensive and is to be avoided

## Interpolants Computation in Practice

Several ways of describing interpolant computation:

## Interpolants Computation in Practice

Several ways of describing interpolant computation:

- By extending rules of an existing calculus with a set of "interpolating instructions"

$$
\frac{\Gamma, b_{1} \vdash \Delta \quad \Gamma, b_{2} \vdash \Delta}{\Gamma, b_{1} \vee b_{2} \vdash \Delta} \vee \text {-Left }
$$

## Interpolants Computation in Practice

Several ways of describing interpolant computation:

- By extending rules of an existing calculus with a set of "interpolating instructions"

$$
\frac{\Gamma, b_{1} \vdash \Delta\left\|I_{1} \quad \Gamma, b_{2} \vdash \Delta\right\| I_{2}}{\Gamma, b_{1} \vee b_{2} \vdash \Delta \| I_{1} \wedge I_{2}} \vee \text {-Left }
$$

## Interpolants Computation in Practice

Several ways of describing interpolant computation:

- By extending rules of an existing calculus with a set of "interpolating instructions"

$$
\frac{\Gamma, b_{1} \vdash \Delta\left\|I_{1} \quad \Gamma, b_{2} \vdash \Delta\right\| I_{2}}{\Gamma, b_{1} \vee b_{2} \vdash \Delta \| I_{1} \wedge I_{2}} \vee \text {-Left }
$$

$(+)$ Formally very clean
(-) Non-deterministic

## Interpolants Computation in Practice

Several ways of describing interpolant computation:

- By extending rules of an existing calculus with a set of "interpolating instructions"

$$
\frac{\Gamma, b_{1} \vdash \Delta\left\|I_{1} \quad \Gamma, b_{2} \vdash \Delta\right\| I_{2}}{\Gamma, b_{1} \vee b_{2} \vdash \Delta \| I_{1} \wedge I_{2}} \vee \text {-Left }
$$

$(+)$ Formally very clean
(-) Non-deterministic
■ By extending an existing algorithm, e.g., the Simplex: output the summaries of the constraints belonging to $A$ that are involved in the conflict

## Interpolants Computation in Practice

Several ways of describing interpolant computation:

- By extending rules of an existing calculus with a set of "interpolating instructions"

$$
\frac{\Gamma, b_{1} \vdash \Delta\left\|I_{1} \quad \Gamma, b_{2} \vdash \Delta\right\| I_{2}}{\Gamma, b_{1} \vee b_{2} \vdash \Delta \| I_{1} \wedge I_{2}} \vee \text {-Left }
$$

$(+)$ Formally very clean
(-) Non-deterministic
■ By extending an existing algorithm, e.g., the Simplex: output the summaries of the constraints belonging to $A$ that are involved in the conflict

| A | $x+y+z$ $\leq 0$ <br> $-2 y+3 z$ $\leq 0$ | $1 / 2$ |  |
| :--- | :---: | :--- | :--- |
|  |  |  |  |
| $B$ | $-\frac{3}{5} x-\frac{3}{2} z$ | $\leq-3$ | $5 / 3$ |

## Interpolants Computation in Practice

Several ways of describing interpolant computation:

- By extending rules of an existing calculus with a set of "interpolating instructions"

$$
\frac{\Gamma, b_{1} \vdash \Delta\left\|I_{1} \quad \Gamma, b_{2} \vdash \Delta\right\| I_{2}}{\Gamma, b_{1} \vee b_{2} \vdash \Delta \| I_{1} \wedge I_{2}} \vee \text {-Left }
$$

$(+)$ Formally very clean
(-) Non-deterministic

- By extending an existing algorithm, e.g., the Simplex: output the summaries of the constraints belonging to $A$ that are involved in the conflict

| A | $x+y+z$ $\leq 0$ <br> $-2 y+3 z$ $\leq 0$ | $1 / 2$ |  |
| :--- | ---: | :--- | :--- |
| $I$ | $x+\frac{5}{2} z$ | $\leq 0$ |  |
| $B$ | $-\frac{3}{5} x-\frac{3}{2} z$ | $\leq-3$ | $5 / 3$ |

## Interpolants Computation in Practice

Several ways of describing interpolant computation:

- By extending rules of an existing calculus with a set of "interpolating instructions"

$$
\frac{\Gamma, b_{1} \vdash \Delta\left\|I_{1} \quad \Gamma, b_{2} \vdash \Delta\right\| I_{2}}{\Gamma, b_{1} \vee b_{2} \vdash \Delta \| I_{1} \wedge I_{2}} \vee \text {-Left }
$$

$(+)$ Formally very clean
(-) Non-deterministic

- By extending an existing algorithm, e.g., the Simplex: output the summaries of the constraints belonging to $A$ that are involved in the conflict

| A | $x+y+z$ $\leq 0$ <br> $-2 y+3 z$ $\leq 0$ | $1 / 2$ |  |
| :--- | ---: | :--- | :--- |
| $I$ | $x+\frac{5}{2} z$ | $\leq 0$ |  |
| $B$ | $-\frac{3}{5} x-\frac{3}{2} z$ | $\leq-3$ | $5 / 3$ |

(+) Algorithmically precise
(-) Low flexibility

## Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any particular calculus or algorithm

## Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any particular calculus or algorithm

Two identical provers, one for $A$ and one for $B$ cooperate in turns to derive unsatisfiability (similarly to Nelson-Oppen framework). At any step provers either

| $A$ |
| :---: |
| $\gamma_{1}$ |
| $\gamma_{2}$ |$\quad$| $B$ |
| :---: |
| $\delta_{1}$ |
| $\delta_{2}$ |

## Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any particular calculus or algorithm

Two identical provers, one for $A$ and one for $B$ cooperate in turns to derive unsatisfiability (similarly to Nelson-Oppen framework). At any step provers either

- locally derive new facts

| $A$ |
| :---: |
| $\gamma_{1}$ |
| $\gamma_{2}$ |$\quad$| $B$ |
| :---: |
| $\delta_{1}$ |
| $\delta_{2}$ |

## Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any particular calculus or algorithm

Two identical provers, one for $A$ and one for $B$ cooperate in turns to derive unsatisfiability (similarly to Nelson-Oppen framework). At any step provers either

- locally derive new facts

| $A$ |
| :---: |
| $\gamma_{1}$ |
| $\gamma_{2}$ |
| $\gamma_{3}$ |$\quad$| $B$ |
| :---: |
| $\delta_{1}$ |
| $\delta_{2}$ |

$A \vdash \gamma_{3}$

## Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any particular calculus or algorithm

Two identical provers, one for $A$ and one for $B$ cooperate in turns to derive unsatisfiability (similarly to Nelson-Oppen framework). At any step provers either

- locally derive new facts
- exchange information on the shared language with the other

| $A$ |
| :---: |
| $\gamma_{1}$ |
| $\gamma_{2}$ |
| $\gamma_{3}$ |


| $B$ |
| :---: |
| $\delta_{1}$ |
| $\delta_{2}$ | prover

## Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any particular calculus or algorithm

Two identical provers, one for $A$ and one for $B$ cooperate in turns to derive unsatisfiability (similarly to Nelson-Oppen framework). At any step provers either

- locally derive new facts
- exchange information on the shared language with the other prover

| $A$ |
| :---: |
| $\gamma_{1}$ |
| $\gamma_{2}$ |
| $\gamma_{3}$ |$\rightarrow$| $B$ |
| :---: |
| $\delta_{1}$ |
| $\delta_{2}$ |
| $\gamma_{3}$ |

If $\gamma_{3}$ is on common language

## Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any particular calculus or algorithm

Two identical provers, one for $A$ and one for $B$ cooperate in turns to derive unsatisfiability (similarly to Nelson-Oppen framework). At any step provers either

- locally derive new facts
- exchange information on the shared language with the other

| $A$ |
| :---: |
| $\gamma_{1}$ |
| $\gamma_{2}$ |
| $\gamma_{3}$ |


| $B$ |
| :---: |
| $\delta_{1}$ |
| $\delta_{2}$ |
| $\gamma_{3}$ | prover

Repeat until either $A$ or $B$ derive $\perp$

## Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any particular calculus or algorithm

Two identical provers, one for $A$ and one for $B$ cooperate in turns to derive unsatisfiability (similarly to Nelson-Oppen framework). At any step provers either

- locally derive new facts
- exchange information on the shared language with the other

| $A$ |
| :---: |
| $\gamma_{1}$ |
| $\gamma_{2}$ |
| $\gamma_{3}$ |


| $B$ |
| :---: |
| $\delta_{1}$ |
| $\delta_{2}$ |
| $\gamma_{3}$ | prover

Repeat until either $A$ or $B$ derive $\perp$
Interpolant can be computed in backward manner

## Two-Provers Paradigm



## Example - Strategy 1

| $A$ |
| :---: |
| $a \vee c_{1}$ <br> $a \vee c_{2}$ <br> $\neg a$ | | $\quad B$ |
| :---: |
| $\neg c_{1} \vee b$ |
| $\neg c_{2} \vee b$ |
| $\neg b$ |

## Example - Strategy 1

$$
\begin{array}{|c|c|}
\hline A \\
\begin{array}{c}
a \vee c_{1} \\
a \vee c_{2} \\
\neg a
\end{array} \\
\begin{array}{c}
B \\
\neg c_{1} \vee b \\
\neg c_{2} \vee b \\
\neg b
\end{array} \\
\hline
\end{array} \stackrel{\begin{array}{c}
A^{\prime} \\
\hline a \vee c_{1} \\
a \vee c_{2} \\
c_{1}
\end{array}}{\begin{array}{c}
B^{\prime} \\
\hline
\end{array}} \begin{array}{|cc|}
\hline \neg c_{1} \vee b \\
\neg c_{2} \vee b \\
\neg b
\end{array}
$$

## Example - Strategy 1

## Example - Strategy 1

$$
\left.\begin{array}{|c|}
\hline A \\
\hline \begin{array}{c}
a \vee c_{1} \\
a \vee c_{2} \\
\neg a
\end{array} \\
\hline \begin{array}{c}
~ \\
\neg c_{1} \vee b \\
\neg c_{2} \vee b \\
\neg b
\end{array} \\
\hline b \\
\hline c_{1}
\end{array}\right] \stackrel{A^{\prime}}{\square} \quad \begin{array}{|c}
\hline \begin{array}{c}
B^{\prime} \\
a \vee c_{1} \\
\neg a \\
c_{1}
\end{array} \\
\begin{array}{c}
\neg c_{1} \vee b \\
\neg c_{2} \vee b \\
\neg b
\end{array} \\
\\
\hline
\end{array}
$$

$\left.\xrightarrow{\text { Der. }}{ }^{*} \quad$| $A^{\prime \prime \prime}$ |
| :---: |
| $a \vee c_{1}$ |
| $a \vee c_{2}$ |
| $\neg a$ |
| $c_{1}$ | \right\rvert\, | $B^{\prime \prime \prime}$ |
| :---: |
| $\neg c_{1} \vee b$ |
| $\neg c_{2} \vee b$ |
| $\neg b$ |
| $c_{1}$ |
| $\perp$ |

## Example - Strategy 1

$$
\begin{aligned}
& \left.\xrightarrow{\text { Der. }}{ }^{*} \quad \begin{array}{|c|}
\hline A^{\prime \prime \prime} \\
\hline a \vee c_{1} \\
a \vee c_{2} \\
\neg a \\
c_{1} \\
\hline
\end{array} \right\rvert\, \begin{array}{c}
B^{\prime \prime \prime} \\
\neg c_{1} \vee b \\
\neg c_{2} \vee b \\
\neg b \\
c_{1} \\
\perp \\
\hline
\end{array} \\
& I^{\prime \prime \prime} \equiv \top
\end{aligned}
$$

## Example - Strategy 1




$$
I^{\prime \prime \prime} \equiv \top
$$

## Example - Strategy 1

$$
I^{\prime \prime \prime} \equiv \top
$$

$$
\begin{aligned}
& \begin{array}{|c|}
\hline \begin{array}{c}
a \vee c_{1} \\
a \vee c_{2} \\
\neg a
\end{array} \\
\begin{array}{c}
-c_{1} \vee b \\
\neg c_{2} \vee b \\
\neg b
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& I^{\prime} \equiv c_{1} \wedge \top \\
& I^{\prime \prime} \equiv \top
\end{aligned}
$$

## Example - Strategy 1

$$
\xrightarrow{\text { Der.* }} \quad \begin{array}{c|c|}
\hline A^{\prime \prime \prime} \\
\cline { 1 - 3 } \\
a \vee c_{1} \\
a \vee c_{2} \\
\neg a \\
c_{1} \\
\hline
\end{array}
$$

$$
I^{\prime \prime \prime} \equiv \top
$$

$$
\begin{aligned}
& I \equiv c_{1} \wedge \top \\
& I^{\prime} \equiv c_{1} \wedge \top \\
& I^{\prime \prime} \equiv \top
\end{aligned}
$$

## Example - Strategy 1

$$
\xrightarrow{\text { Der.* }} \begin{array}{|c|c|}
\hline A^{\prime \prime \prime} \\
\cline { 1 - 3 } \\
a \vee c_{1} \\
a \vee c_{2} \\
\neg a \\
c_{1} \\
\hline
\end{array}
$$

$$
I^{\prime \prime \prime} \equiv \top
$$

$$
\begin{aligned}
& I \equiv c_{1} \wedge \top \equiv c_{1} \\
& I^{\prime} \equiv c_{1} \wedge \top
\end{aligned}
$$

$$
\begin{aligned}
& I^{\prime \prime} \equiv \top
\end{aligned}
$$

## Example - Strategy 2 (Strong interpolant)

| $A$ |
| :---: |
| $a \vee c_{1}$ |
| $a \vee c_{2}$ |
| $\neg a$ |$\quad$| $B$ |
| :---: |
| $\neg c_{1} \vee b$ |
| $\neg c_{2} \vee b$ |
| $\neg b$ |

## Example - Strategy 2 (Strong interpolant)



$$
I^{\prime} \equiv c_{1} \wedge c_{2} \wedge \top
$$



## Example - Strategy 2 (Strong interpolant)



$$
I \equiv c_{1} \wedge c_{2} \wedge \top
$$



$$
I^{\prime \prime \prime} \equiv \top
$$

$I^{\prime} \equiv c_{1} \wedge c_{2} \wedge \top$

## Example - Strategy 2 (Strong interpolant)

| $A$ |
| :---: |
| $a \vee c_{1}$ |
| $a \vee c_{2}$ |
| $\neg a$ |$\quad$|  |
| :---: |
| $\neg c_{1} \vee b$ |
| $\neg c_{2} \vee b$ |
| $\neg b$ |

$$
I \equiv c_{1} \wedge c_{2} \wedge \top \equiv c_{1} \wedge c_{2}
$$



$$
I^{\prime} \equiv c_{1} \wedge c_{2} \wedge \top
$$



## Example - Strategy 3 (weak interpolant)

| $A$ |
| :---: |
| $a \vee c_{1}$ |
| $a \vee c_{2}$ |
| $\neg a$ |$\quad$| $B$ |
| :---: |
| $\neg c_{1} \vee b$ |
| $\neg c_{2} \vee b$ |
| $\neg b$ |

## Example - Strategy 3 (weak interpolant)



## Example - Strategy 3 (weak interpolant)



## Example - Strategy 3 (weak interpolant)



艮

| $A^{\prime}$ |
| :---: |
| $a \vee c_{1}$ |
| $a \vee c_{2}$ |
| $\neg a$ |
| $\neg c_{1} \vee b$ |
| $\neg c_{2} \vee b$ |
| $\neg b$ |
| $\neg c_{1}$ |
| $\neg c_{2}$ |



## Example - Strategy 3 (weak interpolant)



## Example - Strategy 3 (weak interpolant)



$$
\underset{\square}{\text { Der. }_{\sim}^{*}} \quad \begin{array}{|c|}
\hline a \vee c_{1} \\
a \vee c_{2} \\
\neg a \\
\\
\\
\hline \neg c_{1} \vee b \\
\neg c_{2} \vee b \\
\neg b \\
\neg c_{1} \\
\neg c_{2} \\
\hline
\end{array}
$$



## Example - Strategy 3 (weak interpolant)



## Example - Strategy 3 (weak interpolant)



$$
I \equiv\left(\neg c_{1} \wedge \neg c_{2}\right) \rightarrow \perp
$$

| $A^{\prime \prime}$ | $B^{\prime \prime}$ |
| :---: | :---: |
| ${ }^{a \vee} c_{1}$ | ${ }^{c_{1} \vee b}$ |
| $a \vee c_{2}$ |  |
| $\checkmark$ ¢ |  |
| $c_{2}$ | $c_{2}$ |

$I^{\prime \prime} \equiv \perp$

$$
\xrightarrow{\text { Der.* }} \begin{array}{|c|}
\hline a \vee c_{1} \\
a \vee c_{2} \\
\neg a \\
\\
\hline
\end{array}\left|\begin{array}{cc|}
\hline \neg c_{1} \vee b \\
\neg c_{2} \vee b \\
\neg b \\
\neg c_{1} \\
\neg c_{2}
\end{array}\right|
$$

$$
I^{\prime} \equiv\left(\neg c_{1} \wedge \neg c_{2}\right) \rightarrow \perp
$$

$$
I^{\prime \prime \prime} \equiv \perp
$$

## Example - Strategy 3 (weak interpolant)

$$
\begin{aligned}
& I \equiv\left(\neg c_{1} \wedge \neg c_{2}\right) \rightarrow \perp \equiv c_{1} \vee c_{2}
\end{aligned}
$$

$$
\begin{aligned}
& I^{\prime} \equiv\left(\neg c_{1} \wedge \neg c_{2}\right) \rightarrow \perp
\end{aligned}
$$

# Proof Transformation (for interpolation and reduction) 

## Proof Transformation and Reduction

Motivation

- Resolution proofs find application in several ambits


## Proof Transformation and Reduction

## Motivation

- Resolution proofs find application in several ambits
- Interpolation-based model checking
- Abstraction techniques
- Unsatisfiable core extraction in SAT/SMT
- Automatic theorem proving


## Proof Transformation and Reduction

## Motivation

- Resolution proofs find application in several ambits
- Interpolation-based model checking
- Abstraction techniques
- Unsatisfiable core extraction in SAT/SMT
- Automatic theorem proving

■ Problems

## Proof Transformation and Reduction

## Motivation

- Resolution proofs find application in several ambits
- Interpolation-based model checking
- Abstraction techniques
- Unsatisfiable core extraction in SAT/SMT
- Automatic theorem proving
- Problems
- Clean structure of proofs is required for interpolation generation


## Proof Transformation and Reduction

## Motivation

- Resolution proofs find application in several ambits
- Interpolation-based model checking
- Abstraction techniques
- Unsatisfiable core extraction in SAT/SMT
- Automatic theorem proving
- Problems
- Clean structure of proofs is required for interpolation generation
- Size affects efficiency
- Size can be exponential w.r.t. input formula


## Interpolation

Generation for Boolean logic

■ Interpolant $I$ for unsatisfiable conjunction of formulae $A \wedge B$

## Interpolation

Generation for Boolean logic

■ Interpolant $I$ for unsatisfiable conjunction of formulae $A \wedge B$

- State-of-the-art approach [Pudlák97, McMillan04]


## Interpolation

Generation for Boolean logic

- Interpolant $I$ for unsatisfiable conjunction of formulae $A \wedge B$

■ State-of-the-art approach [Pudlák97, McMillan04]

- Derivation of unsatisfiability resolution proof of $A \wedge B$


## Interpolation

Generation for Boolean logic

■ Interpolant $I$ for unsatisfiable conjunction of formulae $A \wedge B$

- State-of-the-art approach [Pudlák97, McMillan04]
- Derivation of unsatisfiability resolution proof of $A \wedge B$
- Computation of $I$ from proof structure in linear time


## Resolution System

Background

■ Literal $p \bar{p}$

## Resolution System

Background

- Literal
p $\bar{p}$
- Clause
$p \vee \bar{q} \vee r \vee \ldots \rightarrow p \bar{q} r \ldots$
Empty clause
$\perp$


## Resolution System

Background
■ Literal

$$
p \quad \bar{p}
$$

- Clause

$$
p \vee \bar{q} \vee r \vee \ldots \rightarrow p \bar{q} r \ldots
$$

Empty clause
$\perp$

- Input formula

$$
(p \vee q) \wedge(r \vee \bar{p}) \ldots \rightarrow\{p q, r \bar{p}\}
$$

## Resolution System

## Background

■ Literal

$$
p \quad \bar{p}
$$

■ Clause $p \vee \bar{q} \vee r \vee \ldots \rightarrow p \bar{q} r \ldots$

Empty clause
$\perp$

■ Input formula $\quad(p \vee q) \wedge(r \vee \bar{p}) \ldots \rightarrow\{p q, r \bar{p}\}$

- Resolution rule

$$
\frac{p C \quad \bar{p} D}{C D} p
$$

Antecedents: $p C \bar{p} D$ Resolvent: $C D$ Pivot: $p$

## Resolution System

## Background

- Literal

$$
p \quad \bar{p}
$$

- Clause $p \vee \bar{q} \vee r \vee \ldots \rightarrow p \bar{q} r \ldots \quad$ Empty clause $\perp$
$■$ Input formula $\quad(p \vee q) \wedge(r \vee \bar{p}) \ldots \rightarrow\{p q, r \bar{p}\}$

■ Resolution rule

$$
\frac{p C \quad \bar{p} D}{C D} p
$$

Antecedents: $p C \bar{p} D$ Resolvent: $C D$ Pivot: $p$

■ Resolution proof of unsatisfiability of a set of clauses $S$

## Resolution System

## Background

- Literal

$$
p \quad \bar{p}
$$

- Clause $p \vee \bar{q} \vee r \vee \ldots \rightarrow p \bar{q} r \ldots \quad$ Empty clause $\perp$

■ Input formula $\quad(p \vee q) \wedge(r \vee \bar{p}) \ldots \rightarrow\{p q, r \bar{p}\}$

■ Resolution rule

$$
\frac{p C \quad \bar{p} D}{C D} p
$$

Antecedents: $p C \bar{p} D$ Resolvent: $C D$ Pivot: $p$
■ Resolution proof of unsatisfiability of a set of clauses $S$

- Tree
- Leaves as clauses of $S$
- Intermediate nodes as resolvents
- Root as unique empty clause


## Resolution Proofs

## SAT

- $A \equiv\{\overline{p q}, p \bar{q}\} \quad B \equiv\{q \bar{r}, q r\}$


## Resolution Proofs

## SAT

- $A \equiv\{\overline{p q}, p \bar{q}\} \quad B \equiv\{q \bar{r}, q r\}$

■ Proof of unsatisfiability


## Interpolant Generation

 SAT [Pudlák97]■ Computation of interpolant $I$ for $A \wedge B$ from proof structure

## Interpolant Generation

 SAT [Pudlák97]- Computation of interpolant $I$ for $A \wedge B$ from proof structure

■ Partial interpolant for leaf

## Interpolant Generation SAT [Pudlák97]

- Computation of interpolant $I$ for $A \wedge B$ from proof structure

■ Partial interpolant for leaf

- Partial interpolant for resolvent
- Pivot
- Partial interpolants for antecedents


## Interpolant Generation SAT [Pudlák97]

- Computation of interpolant $I$ for $A \wedge B$ from proof structure

■ Partial interpolant for leaf

- Partial interpolant for resolvent
- Pivot
- Partial interpolants for antecedents
- Partial interpolant for $\perp$ is $I$


## Interpolant Generation

SAT [Pudlák97]

- $A \equiv\{\overline{p q}, p \bar{q}\} \quad B \equiv\{q \bar{r}, q r\}$
- Proof of unsatisfiability



## Interpolant Generation

 SAT [Pudlák97]- $A \equiv\{\overline{p q}, p \bar{q}\} \quad B \equiv\{q \bar{r}, q r\}$
- Proof of unsatisfiability



## Interpolant Generation

SAT [Pudlák97]

- $A \equiv\{\overline{p q}, p \bar{q}\} \quad B \equiv\{q \bar{r}, q r\}$
- Proof of unsatisfiability



## Interpolant Generation

 SAT [Pudlák97]- $A \equiv\{\overline{p q}, p \bar{q}\} \quad B \equiv\{q \bar{r}, q r\}$
- Proof of unsatisfiability



## Interpolant Generation

 SAT [Pudlák97]- $A \equiv\{\overline{p q}, p \bar{q}\} \quad B \equiv\{q \bar{r}, q r\}$
- Proof of unsatisfiability



## Interpolant Generation

 SAT [Pudlák97]- $A \equiv\{\overline{p q}, p \bar{q}\} \quad B \equiv\{q \bar{r}, q r\}$
- Proof of unsatisfiability
$\frac{\overline{p q}\{\perp\} \quad p \bar{q}\{\perp\}}{\frac{\bar{q}\{\perp\}}{} p \frac{q \bar{r}\{\top\}}{} \frac{q r\{\top\}}{}} r$


## Interpolant Generation

 SAT [Pudlák97]- $A \equiv\{\overline{p q}, p \bar{q}\} \quad B \equiv\{q \bar{r}, q r\}$
- Proof of unsatisfiability



## Interpolant Generation

 SAT [Pudlák97]- $A \equiv\{\overline{p q}, p \bar{q}\} \quad B \equiv\{q \bar{r}, q r\}$

■ Proof of unsatisfiability

$$
\begin{aligned}
& \frac{\overline{p q}\{\perp\} \quad p \bar{q}\{\perp\}}{\bar{q}\{\perp\}} p \frac{q \bar{r}\{\top\} \quad q r\{\top\}}{q\{\top\}} r \\
& \perp\{(\perp \vee \bar{q}) \wedge(T \vee q)\}
\end{aligned}
$$

## Interpolant Generation

SAT [Pudlák97]

- $A \equiv\{\overline{p q}, p \bar{q}\} \quad B \equiv\{q \bar{r}, q r\}$

■ Proof of unsatisfiability

$$
\begin{aligned}
& \overline{p q}\{\perp\} \quad p \bar{q}\{\perp\} \quad q \bar{r}\{\top\} \quad q r\{T\} \\
& \longrightarrow p \\
& \bar{q}\{\perp\} \\
& q\{T\} \\
& \perp\{\bar{q}\}
\end{aligned}
$$

## Resolution Proofs

## SMT

■ $A \equiv\{\overbrace{(5 x-y \leq 1)}^{p}, \overbrace{(y-5 x \leq-1)}, ~ B \equiv\{\overbrace{(y-5 z \leq 3)}^{q}, \overbrace{(5 z-y \leq-2)}^{r}\}$

## Resolution Proofs

## SMT

■ $A \equiv\{\overbrace{(5 x-y \leq 1)}^{p}, \overbrace{(y-5 x \leq-1)}^{q}\}, B \equiv\{\overbrace{(y-5 z \leq 3)}^{q}, \overbrace{(5 z-y \leq-2)}^{r}\}$

- Theory lemmata


## Resolution Proofs

## SMT

■ $A \equiv\{\overbrace{(5 x-y \leq 1)}^{p}, \overbrace{(y-5 x \leq-1)}^{q}\}, B \equiv\{\overbrace{(y-5 z \leq 3)}^{q}, \overbrace{(5 z-y \leq-2)}\}$

- Theory lemmata
- $\mathcal{L I A}: \overbrace{(x-z \leq 0)} \overbrace{(x-z \geq 1)}$


## Resolution Proofs

## SMT

■ $A \equiv\{\overbrace{(5 x-y \leq 1)}^{p}, \overbrace{(y-5 x \leq-1)}^{q}\}, B \equiv\{\overbrace{(y-5 z \leq 3)}^{q}, \overbrace{(5 z-y \leq-2)}^{r}\}$

- Theory lemmata
- $\mathcal{L I \mathcal { A }}: \overbrace{(x-z \leq 0)}^{(x-z \geq 1)}$
- $\mathcal{L R \mathcal { A }}:(5 x-y \not \leq 1)(y-5 z \not \leq 3)(x-z \nsupseteq 1)$


## Resolution Proofs

## SMT

■ $A \equiv\{\overbrace{(5 x-y \leq 1)}^{p}, \overbrace{(y-5 x \leq-1)}\}, B \equiv\{\overbrace{(y-5 z \leq 3)}^{q}, \overbrace{(5 z-y \leq-2)}^{r}\}$

- Theory lemmata
- $\mathcal{L I A}: \overbrace{(x-z \leq 0)} \overbrace{(x-z \geq 1)}$
- $\mathcal{L R} \mathcal{A}: \overparen{(5 x-y \not \leq 1)} \overbrace{(y-5 z \not \leq 3)}^{(x-z \nsupseteq 1)}$
- $\mathcal{L R \mathcal { A }}:(y-5 x \not \leq-1)(5 z-y \not \leq-2)(x-z \not \leq 0)$


## Resolution Proofs

## SMT

- $A \equiv\{p, q\} \quad B \equiv\{r, s\} \quad L \equiv\{t u, \overline{p r u}, \overline{q s} \bar{t}\}$


## Resolution Proofs

## SMT

- $A \equiv\{p, q\} \quad B \equiv\{r, s\} \quad L \equiv\{t u, \overline{p r u}, \overline{q s} \bar{t}\}$
- Proof of unsatisfiability



## Interpolant Generation

 SMT- $A \equiv\{p, q\} \quad B \equiv\{r, s\} \quad L \equiv\{t u, \overline{p r} u, \overline{q s} \bar{t}\}$
- Proof of unsatisfiability



## Interpolant Generation

 SMT$$
\square A \equiv\{p, q\} \quad B \equiv\{r, s\} \quad L \equiv\{t u, \overline{p r} \bar{u}, \overline{q s} \bar{t}\}
$$

- Proof of unsatisfiability



## Interpolant Generation

## SMT

■ $A \equiv\{p, q\} \quad B \equiv\{r, s\} \quad L \equiv\{t u, \overline{p r u}, \overline{q s} \bar{t}\}$

- Proof of unsatisfiability
$p\{\perp\} \quad \overline{p r u}$
$\overline{r u} \quad r\{T\}$


$$
s\{丁\}
$$

## Interpolant Generation

## SMT

■ $A \equiv\{p, q\} \quad B \equiv\{r, s\} \quad L \equiv\{t u, \overline{p r u}, \overline{q s} \bar{t}\}$

- Proof of unsatisfiability
$p\{\perp\} \quad \overline{p r u}$
$\overline{r u} \quad r\{T\}$


$$
s\{T\}
$$

## Interpolation

Challenge

■ State-of-the-art approach [Pudlák97, McMillan04]

## Interpolation

Challenge

- State-of-the-art approach [Pudlák97, McMillan04]
- Derivation of unsatisfiability proof of $A \wedge B$
- Computation of interpolant from proof structure in linear time


## Interpolation

Challenge

- State-of-the-art approach [Pudlák97, McMillan04]
- Derivation of unsatisfiability proof of $A \wedge B$
- Computation of interpolant from proof structure in linear time
- Restriction


## Interpolation

Challenge

- State-of-the-art approach [Pudlák97, McMillan04]
- Derivation of unsatisfiability proof of $A \wedge B$
- Computation of interpolant from proof structure in linear time

■ Restriction

- Need for proof not to contain AB-mixed predicates
A-local
B-local
AB-common


## Interpolation

Challenge

- State-of-the-art approach [Pudlák97, McMillan04]
- Derivation of unsatisfiability proof of $A \wedge B$
- Computation of interpolant from proof structure in linear time

■ Restriction

- Need for proof not to contain AB-mixed predicates

$$
\begin{array}{lc}
\text { A-local } \quad \text { B-local } & \text { AB-common } \quad \text { AB-mixed } \\
A \equiv\{(5 x-y \leq 1), \ldots\} & B \equiv\{(y-5 z \leq 3), \ldots\}
\end{array}
$$

## Interpolation

## Challenge

- State-of-the-art approach [Pudlák97, McMillan04]
- Derivation of unsatisfiability proof of $A \wedge B$
- Computation of interpolant from proof structure in linear time
- Restriction
- Need for proof not to contain AB-mixed predicates

$$
\begin{array}{lc}
\text { A-local B-local } & \text { AB-common AB-mixed } \\
A \equiv\{(5 x-y \leq 1), \ldots\} & B \equiv\{(y-5 z \leq 3), \ldots\} \\
L \equiv\{(x-z \leq 0), \ldots\} &
\end{array}
$$

## Interpolation

Possible Solutions

■ Need for proof not to contain AB-mixed predicates

## Interpolation

Possible Solutions

■ Need for proof not to contain AB-mixed predicates

- Tune solvers to avoid generating AB-mixed predicates [Cimatti08,Beyer08]


## Interpolation

Possible Solutions

■ Need for proof not to contain AB-mixed predicates

- Tune solvers to avoid generating AB-mixed predicates [Cimatti08,Beyer08]
- Transform proof to remove AB-mixed predicates


## Proof Transformation

Motivation

- Proof transformation approach


## Proof Transformation

Motivation

- Proof transformation approach

■ Motivation: more flexibility by decoupling SMT solving and interpolant generation

## Proof Transformation

## Motivation

- Proof transformation approach

■ Motivation: more flexibility by decoupling SMT solving and interpolant generation

- Motivation: standard SMT techniques can require addition of AB-mixed predicates


## Proof Transformation

## Motivation

- Proof transformation approach

■ Motivation: more flexibility by decoupling SMT solving and interpolant generation

- Motivation: standard SMT techniques can require addition of AB-mixed predicates

■ Theory reduction via Lemma on Demand [DeMoura02, Barrett06]
Reduction of $\mathcal{A X}$ to $\mathcal{E U F}$
Reduction of $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$
Ackermann's Expansion

- Theory combination via DTC [Bozzano05]


## Proof Transformation Framework

■ Proof rewriting framework based on local rules

## Proof Transformation Framework

■ Proof rewriting framework based on local rules

■ Isolation of AB-mixed predicates into subtrees

## Proof Transformation Framework

■ Proof rewriting framework based on local rules

■ Isolation of AB-mixed predicates into subtrees

- Removal of AB-mixed subtrees


## Proof Transformation Framework

■ Proof rewriting framework based on local rules

■ Isolation of AB-mixed predicates into subtrees

■ Removal of AB-mixed subtrees

■ No more AB-mixed predicates, proof still valid

## Proof Transformation

## Effect

(a) Initial proof: A-local, B-local, AB-common, AB-mixed
(b) Transformed proof: AB-mixed predicates isolated into subtrees
(c) Final proof: AB-mixed subtrees removed, new leaves are theory lemmata


## Proof Transformation

Advantages

- No more AB-mixed predicates, new leaves are theory lemmata


## Proof Transformation

Advantages

- No more AB-mixed predicates, new leaves are theory lemmata

■ Easy combination of SMT and interpolation techniques

## Proof Transformation

Advantages

- No more AB-mixed predicates, new leaves are theory lemmata

■ Easy combination of SMT and interpolation techniques

- Theory reduction, theory combination without restrictions


## Proof Transformation

Advantages

- No more AB-mixed predicates, new leaves are theory lemmata

■ Easy combination of SMT and interpolation techniques

- Theory reduction, theory combination without restrictions
- Interpolant generation for propositional resolution proofs of unsatisfiability [Pudlák97]


## Proof Transformation

## Advantages

■ No more AB-mixed predicates, new leaves are theory lemmata
■ Easy combination of SMT and interpolation techniques

- Theory reduction, theory combination without restrictions
- Interpolant generation for propositional resolution proofs of unsatisfiability [Pudlák97]
- (Partial) interpolant generation for theory (combination) lemmata [Yorsh05]


## Proof Transformation Framework

Features

- Local rewriting rules


## Proof Transformation Framework

Features

- Local rewriting rules
- Rule context



## Proof Transformation Framework

Features

- Local rewriting rules
- Rule context


■ Exhaustiveness up to symmetry

## Proof Transformation Framework

Local Rewriting Rules


## Proof Transformation Framework

Local Rewriting Rules


- Pivots swapping


## Proof Transformation Framework

Local Rewriting Rules


- Pivots swapping
- AB-mixed predicates isolation into subtrees


## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

■ $A \equiv\{p, q\} \quad B \equiv\{r, s\} \quad L \equiv\{t u, \overline{p r u}, \overline{q s} \bar{t}\}$

- Proof of unsatisfiability



## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

■ Proof of unsatisfiability


## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

- Proof of unsatisfiability



## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

- Proof of unsatisfiability



## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

- Proof of unsatisfiability



## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

- Proof of unsatisfiability



## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

- Proof of unsatisfiability

- 



## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

- Proof of unsatisfiability



## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

- Proof of unsatisfiability



## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

- Proof of unsatisfiability



## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

- Proof of unsatisfiability



## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

- Proof of unsatisfiability



## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

- Proof of unsatisfiability



## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

- Proof of unsatisfiability



## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

- Proof of unsatisfiability

- 



## Reduction $\mathcal{L I} \mathcal{A}$ to $\mathcal{L R} \mathcal{A}$

Transformation

- Proof of unsatisfiability



## Proof Transformation Framework

Considerations

■ Potential drawbacks

## Proof Transformation Framework

Considerations

■ Potential drawbacks

■ Overhead w.r.t. solving time

## Proof Transformation Framework

Considerations

■ Potential drawbacks

■ Overhead w.r.t. solving time

- Increase of proof size


## Transformation Framework

Features

■ Local rewriting rules

## Transformation Framework

Features

■ Local rewriting rules

- B reduction
- A perturbation


## Transformation Framework

Features

■ Local rewriting rules

- B reduction
- A perturbation

■ Rule context

| $p q C \quad \bar{p} D$ |  |
| :--- | :--- |
| $q C D$ |  |
| $C D E$ |  |
| $\bar{q} E$ |  |$q$

## Transformation Framework

Features

■ Local rewriting rules

- B reduction
- A perturbation

■ Rule context

| $\frac{p q C \quad \bar{p} D}{} p$ |  |
| :--- | :---: |
| $q C D$ |  |
| $C D E$ |  |

■ Exhaustiveness up to symmetry

## Transformation Framework

Local rewriting rules

- B rules



## Transformation Framework

Local rewriting rules

- B rules

- Redundancy as reintroduction variable after elimination


## Transformation Framework

Local rewriting rules

- B rules

- Redundancy as reintroduction variable after elimination
- Subproof simplification


## Transformation Framework

Local rewriting rules

- B rules

- Redundancy as reintroduction variable after elimination
- Subproof simplification
- Subproof root strengthening


## Transformation Framework

Local rewriting rules

■ A rules


## Transformation Framework

Local rewriting rules

■ A rules


- Pivots swapping


## Transformation Framework

Local rewriting rules

- A rules

- Pivots swapping
- Topology perturbation


## Transformation Framework

Local rewriting rules

■ A rules


- Pivots swapping
- Topology perturbation
- Redundancies exposure


## Local rewriting rules



## Evaluation

Framework and Benchmarks

- OpenSMT


## Evaluation

Framework and Benchmarks

- OpenSMT
- C++ open-source SMT solver developed at USI

■ Fastest open-source solver in SMT-comp 2009, 2010 for various logics

## Evaluation

Framework and Benchmarks

- OpenSMT
- C++ open-source SMT solver developed at USI

■ Fastest open-source solver in SMT-comp 2009, 2010 for various logics

■ Benchmarks

## Evaluation

Framework and Benchmarks

- OpenSMT
- C++ open-source SMT solver developed at USI

■ Fastest open-source solver in SMT-comp 2009, 2010 for various logics

■ Benchmarks

- SMT: SMT-LIB library
- Academic and industrial problems


## Experimental results over QF _UFIDL

| Group | $\#$ | $\# A B$ | $\%_{\text {time }}$ | $\%_{\text {nodes }}$ | $\%_{\text {edges }}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| RDS | 2 | 7 | $84 \%$ | $-16 \%$ | $-19 \%$ |
| EufLaAr | 2 | 74 | $18 \%$ | $187 \%$ | $193 \%$ |
| pete | 15 | 20 | $16 \%$ | $66 \%$ | $68 \%$ |
| pete2 | 52 | 13 | $6 \%$ | $73 \%$ | $80 \%$ |
| uclid | 11 | 12 | $29 \%$ | $87 \%$ | $90 \%$ |
| Overall | 82 | 16 | $13 \%$ | $74 \%$ | $79 \%$ |

■ \# - number of benchmarks solved
■ \# $A B$ - average number of $A B$-mixed predicates in proof
■ \% time - average time overhead
■ $\%_{\text {nodes }}, \%_{\text {edges }}$ - average difference in proof size

## Comparison

- RecyclePivots (closest related work) [Strichman'08]


## Comparison

■ RecyclePivots (closest related work) [Strichman'08]

- Pros

Global information
Fast and effective

- Cons

Cannot expose redundancies

## Comparison

■ RecyclePivots (closest related work) [Strichman'08]

- Pros

Global information
Fast and effective

- Cons

Cannot expose redundancies

■ Rule-based approach

## Comparison

- RecyclePivots (closest related work) [Strichman'08]
- Pros

Global information
Fast and effective

- Cons

Cannot expose redundancies

■ Rule-based approach

- Pros

Flexibility in rules application
Flexibility in amount of transformation
Can expose redundancies

- Cons

Local information

## Implementation

Reduction Algorithm

■ Based on a sequence of proof traversals (e.g. topological order)

## Implementation

Reduction Algorithm

■ Based on a sequence of proof traversals (e.g. topological order)

- Parameterized in number of traversals and time limit


## Implementation

Reduction Algorithm

■ Based on a sequence of proof traversals (e.g. topological order)

- Parameterized in number of traversals and time limit

■ Examination non-leaf clauses

## Implementation

Reduction Algorithm

■ Based on a sequence of proof traversals (e.g. topological order)

■ Parameterized in number of traversals and time limit

- Examination non-leaf clauses
- Pivot in both antecedents $\rightarrow$ update, match context, apply rule

$$
\left.\frac{q C^{\prime} D^{\prime} \bar{q} E^{\prime}}{C D E} q \Rightarrow \frac{q C^{\prime} D^{\prime} \quad \bar{q} E^{\prime}}{C^{\prime} D^{\prime} E^{\prime}} q \Rightarrow \frac{p q C^{\prime} \bar{p} D^{\prime}}{\frac{q C^{\prime} D^{\prime}}{C^{\prime} D^{\prime} E^{\prime}} p} \bar{q} E^{\prime}\right]
$$

## Implementation

Reduction Algorithm

■ Based on a sequence of proof traversals (e.g. topological order)

■ Parameterized in number of traversals and time limit

- Examination non-leaf clauses
- Pivot in both antecedents $\rightarrow$ update, match context, apply rule

$$
\left.\frac{q C^{\prime} D^{\prime} \bar{q} E^{\prime}}{C D E} q \Rightarrow \frac{q C^{\prime} D^{\prime} \bar{q} E^{\prime}}{C^{\prime} D^{\prime} E^{\prime}} q \Rightarrow \frac{p q C^{\prime} \bar{p} D^{\prime}}{\frac{q C^{\prime} D^{\prime}}{C^{\prime} D^{\prime} E^{\prime}} p} \bar{q} E^{\prime}\right]
$$

- Pivot not in both antecedents $\rightarrow$ remove resolution step

$$
\frac{C^{\prime} D^{\prime} \bar{q} E^{\prime}}{C D E} q \Rightarrow \quad C^{\prime} D^{\prime}
$$

## Implementation

Reduction Algorithm

■ Based on a sequence of proof traversals (e.g. topological order)

■ Parameterized in number of traversals and time limit

- Examination non-leaf clauses
- Pivot in both antecedents $\rightarrow$ update, match context, apply rule

$$
\left.\frac{q C^{\prime} D^{\prime} \quad \bar{q} E^{\prime}}{C D E} q \Rightarrow \frac{q C^{\prime} D^{\prime} \bar{q} E^{\prime}}{C^{\prime} D^{\prime} E^{\prime}} q \Rightarrow \frac{p q C^{\prime} \bar{p} D^{\prime}}{\frac{q C^{\prime} D^{\prime}}{C^{\prime} D^{\prime} E^{\prime}} p} \bar{q} E^{\prime}\right]
$$

- Pivot not in both antecedents $\rightarrow$ remove resolution step

$$
\frac{C^{\prime} D^{\prime} \bar{q} E^{\prime}}{C D E} q \Rightarrow \quad C^{\prime} D^{\prime}
$$

■ Easy combination with RecyclePivots

## Evaluation

Framework and Benchmarks

■ Implemented in C++ and integrated with OpenSMT
■ Available at www.inf.usi.ch/phd/rollini/hvc.html

## Evaluation

Framework and Benchmarks

■ Implemented in C++ and integrated with OpenSMT
■ Available at www.inf.usi.ch/phd/rollini/hvc.html

■ Benchmarks

## Evaluation

■ Implemented in C++ and integrated with OpenSMT
■ Available at www.inf.usi.ch/phd/rollini/hvc.html

■ Benchmarks

- SMT: SMT-LIB library
- SAT: SAT competition
- Academic and industrial problems


## Combined Approach Evaluation

## Experimental results over SMT: QF_UF, QF_IDL, QF_LRA, QF_RDL

|  | \# | Avg ${ }_{\text {node }}$. | Avgedge ${ }_{\text {d }}$ | Avg ${ }_{\text {core }}$ | $T(s)$ | Max nodks Max $_{\text {edg }{ }_{\text {d }}}$ Max $_{\text {cor }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RP | 1370 | 6.7\% | 7.5\% | 1.3\% | 1.7 | 65.1\% | 68.9\% | $39.1 \%$ |


| Ratio |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.01 | 1366 | $8.9 \%$ | $10.7 \%$ | $1.4 \%$ | 3.4 | $66.3 \%$ | $70.2 \%$ | $45.7 \%$ |
| 0.025 | 1366 | $9.8 \%$ | $11.9 \%$ | $1.5 \%$ | 3.6 | $77.2 \%$ | $79.9 \%$ | $45.7 \%$ |
| 0.05 | 1366 | $10.7 \%$ | $13.0 \%$ | $1.6 \%$ | 4.1 | $78.5 \%$ | $81.2 \%$ | $45.7 \%$ |
| 0.075 | 1366 | $11.4 \%$ | $13.8 \%$ | $1.7 \%$ | 4.5 | $78.5 \%$ | $81.2 \%$ | $45.7 \%$ |
| 0.1 | 1364 | $11.8 \%$ | $14.4 \%$ | $1.7 \%$ | 5.0 | $78.8 \%$ | $83.6 \%$ | $45.7 \%$ |
| 0.25 | 1359 | $13.6 \%$ | $16.6 \%$ | $1.9 \%$ | 7.6 | $79.6 \%$ | $84.4 \%$ | $45.7 \%$ |
| 0.5 | 1348 | $15.0 \%$ | $18.4 \%$ | $2.0 \%$ | 11.5 | $79.1 \%$ | $85.2 \%$ | $45.7 \%$ |
| 0.75 | 1341 | $16.0 \%$ | $19.5 \%$ | $2.1 \%$ | 15.1 | $79.9 \%$ | $86.1 \%$ | $45.7 \%$ |
| 1 | 1337 | $16.7 \%$ | $20.4 \%$ | $2.2 \%$ | 18.8 | $79.9 \%$ | $86.1 \%$ | $45.7 \%$ |

■ Ratio - time threshold as fraction of solving time
■ \# - number of benchmarks solved

- $A v g_{\text {nodes }}, A v g_{\text {edges }}, A v g_{\text {core }}$ - average reduction in proof size

■ $T(s)$ - average transformation time in seconds

- Max $_{\text {nodes }}, M a x_{\text {edges }}$, Max $_{\text {core }}$ - max reduction in proof size


## Combined Approach Evaluation

Experimental results over SMT: QF_UF, QF_IDL, QF_LRA, QF_RDL

|  | $\#$ | Avg $_{\text {node. }}$ Avg $_{\text {edge. }}$ |  | Avg $_{\text {core }}$ | T(s) | Max $_{\text {nod }}$ Max $_{\text {edgqs }}$ Max |  |  |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| RP | 1370 | $6.7 \%$ | $7.5 \%$ | $1.3 \%$ | 1.7 | $65.1 \%$ | $68.9 \%$ | $39.1 \%$ |
| Ratio |  |  |  |  |  |  |  |  |
| 0.01 | 1366 | $8.9 \%$ | $10.7 \%$ | $1.4 \%$ | 3.4 | $66.3 \%$ | $70.2 \%$ | $45.7 \%$ |
| 0.025 | 1366 | $9.8 \%$ | $11.9 \%$ | $1.5 \%$ | 3.6 | $77.2 \%$ | $79.9 \%$ | $45.7 \%$ |
| 0.05 | 1366 | $10.7 \%$ | $13.0 \%$ | $1.6 \%$ | 4.1 | $78.5 \%$ | $81.2 \%$ | $45.7 \%$ |
| 0.075 | 1366 | $11.4 \%$ | $13.8 \%$ | $1.7 \%$ | 4.5 | $78.5 \%$ | $81.2 \%$ | $45.7 \%$ |
| 0.1 | 1364 | $11.8 \%$ | $14.4 \%$ | $1.7 \%$ | 5.0 | $78.8 \%$ | $83.6 \%$ | $45.7 \%$ |
| 0.25 | 1359 | $13.6 \%$ | $16.6 \%$ | $1.9 \%$ | 7.6 | $79.6 \%$ | $84.4 \%$ | $45.7 \%$ |
| 0.5 | 1348 | $15.0 \%$ | $18.4 \%$ | $2.0 \%$ | 11.5 | $79.1 \%$ | $85.2 \%$ | $45.7 \%$ |
| 0.75 | 1341 | $16.0 \%$ | $19.5 \%$ | $2.1 \%$ | 15.1 | $79.9 \%$ | $86.1 \%$ | $45.7 \%$ |
| 1 | 1337 | $16.7 \%$ | $20.4 \%$ | $2.2 \%$ | 18.8 | $79.9 \%$ | $86.1 \%$ | $45.7 \%$ |

- Ratio - time threshold as fraction of solving time

■ \# - number of benchmarks solved

- Avgnodes $, A v g_{\text {edges }}, A v g_{\text {core }}$ - average reduction in proof size
- $T(s)$ - average transformation time in seconds

■ Max ${ }_{\text {nodes }}, M a x_{\text {edges }}, M a x_{\text {core }}$ - max reduction in proof size

## Combined Approach Evaluation

Experimental results over SMT: QF_UF, QF_IDL, QF_LRA, QF_RDL

|  | \# | Avg ${ }_{\text {node }}$ | Avg ${ }_{\text {edge }}$ | Avg ${ }_{\text {core }}$ | $T(s)$ | Max ${ }_{\text {nod }}{ }_{\text {s }}$ Max $_{\text {edg\&s }}$ Max $_{\text {cors }}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RP | 1370 | 6.7\% | 7.5\% | 1.3\% | 1.7 | 65.1\% | 68.9\% | 39.1\% |
| Ratio |  |  |  |  |  |  |  |  |
| 0.01 | 1366 | 8.9\% | 10.7\% | 1.4\% | 3.4 | 66.3\% | 70.2\% | 45.7\% |
| 0.025 | 1366 | 9.8\% | 11.9\% | 1.5\% | 3.6 | 77.2\% | 79.9\% | 45.7\% |
| 0.05 | 1366 | 10.7\% | 13.0\% | 1.6\% | 4.1 | 78.5\% | 81.2\% | 45.7\% |
| 0.075 | 1366 | 11.4\% | 13.8\% | 1.7\% | 4.5 | 78.5\% | 81.2\% | 45.7\% |
| 0.1 | 1364 | 11.8\% | 14.4\% | 1.7\% | 5.0 | 78.8\% | 83.6\% | 45.7\% |
| 0.25 | 1359 | 13.6\% | 16.6\% | 1.9\% | 7.6 | 79.6\% | 84.4\% | 45.7\% |
| 0.5 | 1348 | 15.0\% | 18.4\% | 2.0\% | 11.5 | 79.1\% | 85.2\% | 45.7\% |
| 0.75 | 1341 | 16.0\% | 19.5\% | 2.1\% | 15.1 | 79.9\% | 86.1\% | 45.7\% |
| 1 | 1337 | 16.7\% | 20.4\% | 2.2\% | 18.8 | 79.9\% | 86.1\% | 45.7\% |

- Ratio - time threshold as fraction of solving time

■ \# - number of benchmarks solved

- $A v g_{\text {nodes }}, A v g_{\text {edges }}, A v g_{\text {core }}$ - average reduction in proof size
- $T(s)$ - average transformation time in seconds

■ Max ${ }_{\text {nodes }}, M a x_{\text {edges }}, M a x_{\text {core }}$ - max reduction in proof size

## Combined Approach Evaluation

## Experimental results over SAT

|  | \# | $A v g_{\text {node }}$ | Avgedges | Avg ${ }_{\text {core }}$ | $T(s)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RP | 25 | 5.9\% | 6.5\% | 1.7\% | 10.8 | 33.1\% | 33.4\% | $30.3 \%$ |
| Ratio |  |  |  |  |  |  |  |  |
| 0.01 | 25 | 6.8\% | 7.9\% | 1.7\% | 32.3 | 34.0\% | 34.4\% | 30.5\% |
| 0.025 | 25 | 6.8\% | 7.9\% | 1.7\% | 32.3 | 34.0\% | 34.4\% | 30.5\% |
| 0.05 | 25 | 7.0\% | 8.2\% | 1.8\% | 40.0 | 34.0\% | 34.4\% | 30.5\% |
| 0.075 | 25 | 7.2\% | 8.4\% | 1.8\% | 49.3 | 34.7\% | 35.1\% | 30.5\% |
| 0.1 | 25 | 7.3\% | 8.4\% | 1.8\% | 60.2 | 34.7\% | 35.1\% | 30.5\% |
| 0.25 | 25 | 7.6\% | 8.8\% | 1.9\% | 125.3 | 39.8\% | 40.6\% | 31.7\% |
| 0.5 | 25 | 7.8\% | 9.1\% | 1.9\% | 243.5 | 41.0\% | 41.9\% | 32.1\% |
| 0.75 | 25 | 7.9\% | 9.3\% | 1.9\% | 360.0 | 41.6\% | 42.6\% | 32.1\% |
| 1 | 23 | 8.4\% | 9.9\% | 2.1\% | 175.6 | 33.1\% | 33.4\% | $30.6 \%$ |

- Ratio - time threshold as fraction of solving time

■ \# - number of benchmarks solved
■ $A v g_{\text {nodes }}, A v g_{\text {edges }}, A v g_{\text {core }}$ - average reduction in proof size
■ $T(s)$ - average transformation time in seconds
■ Max nodes $, M a x_{\text {edges }}, M a x_{\text {core }}$ - max reduction in proof size

## Combined Approach Evaluation

## Experimental results over SAT

|  | \# | Avg ${ }_{\text {node }}$ | Avgedge ${ }^{\text {d }}$ | Avg ${ }_{\text {core }}$ | $T(s)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RP | 25 | 5.9\% | 6.5\% | 1.7\% | 10.8 | $33.1 \%$ | $33.4 \%$ | $30.3 \%$ |
| Ratio |  |  |  |  |  |  |  |  |
| 0.01 | 25 | 6.8\% | 7.9\% | 1.7\% | 32.3 | 34.0\% | 34.4\% | 30.5\% |
| 0.025 | 25 | 6.8\% | 7.9\% | 1.7\% | 32.3 | 34.0\% | 34.4\% | 30.5\% |
| 0.05 | 25 | 7.0\% | 8.2\% | 1.8\% | 40.0 | 34.0\% | 34.4\% | 30.5\% |
| 0.075 | 25 | 7.2\% | 8.4\% | 1.8\% | 49.3 | 34.7\% | 35.1\% | 30.5\% |
| 0.1 | 25 | 7.3\% | 8.4\% | 1.8\% | 60.2 | 34.7\% | 35.1\% | 30.5\% |
| 0.25 | 25 | 7.6\% | 8.8\% | 1.9\% | 125.3 | 39.8\% | 40.6\% | 31.7\% |
| 0.5 | 25 | 7.8\% | 9.1\% | 1.9\% | 243.5 | 41.0\% | 41.9\% | 32.1\% |
| 0.75 | 25 | 7.9\% | 9.3\% | 1.9\% | 360.0 | 41.6\% | 42.6\% | 32.1\% |

- Ratio - time threshold as fraction of solving time
- \# - number of benchmarks solved
- $A v g_{\text {nodes }}, A v g_{\text {edges }}, A v g_{\text {core }}$ - average reduction in proof size
$\square T(s)$ - average transformation time in seconds
■ Max $_{\text {nodes }}$, Max $_{\text {edges }}$, Max $_{\text {core }}$
- max reduction in proof size


## Combined Approach Evaluation

## Experimental results over SAT

|  | \# | Avg ${ }_{\text {node }}$ | Avg ${ }_{\text {edge }}$ | Avg ${ }_{\text {core }}$ | $T(s)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RP | 25 | 5.9\% | 6.5\% | 1.7\% | 10.8 | 33.1\% | $33.4 \%$ | 30.3\% |
| Ratio |  |  |  |  |  |  |  |  |
| 0.01 | 25 | 6.8\% | 7.9\% | 1.7\% | 32.3 | 34.0\% | 34.4\% | 30.5\% |
| 0.025 | 25 | 6.8\% | 7.9\% | 1.7\% | 32.3 | 34.0\% | 34.4\% | 30.5\% |
| 0.05 | 25 | 7.0\% | 8.2\% | 1.8\% | 40.0 | 34.0\% | 34.4\% | 30.5\% |
| 0.075 | 25 | 7.2\% | 8.4\% | 1.8\% | 49.3 | 34.7\% | 35.1\% | 30.5\% |
| 0.1 | 25 | 7.3\% | 8.4\% | 1.8\% | 60.2 | 34.7\% | 35.1\% | 30.5\% |
| 0.25 | 25 | 7.6\% | 8.8\% | 1.9\% | 125.3 | 39.8\% | 40.6\% | 31.7\% |
| 0.5 | 25 | 7.8\% | 9.1\% | 1.9\% | 243.5 | 41.0\% | 41.9\% | 32.1\% |
| 0.75 | 25 | 7.9\% | 9.3\% | 1.9\% | 360.0 | 41.6\% | 42.6\% | 32.1\% |

- Ratio - time threshold as fraction of solving time
- \# - number of benchmarks solved
- $A v g_{\text {nodes }}, A v g_{\text {edges }}, A v g_{\text {core }}$ - average reduction in proof size
$\square T(s)$ - average transformation time in seconds
■ Max $_{\text {nodes }}$, Max $_{\text {edges }}$, Max $_{\text {core }}$
- max reduction in proof size


## Conclusion

- OpenSMT Solver
- Application to Lazy Abstraction with Interpolants
- Proof Manipulation for Interpolation and Reduction

■ http://verify.inf.usi.ch

## Thanks

## References

R. Bruttomesso, S. Rollini, N. Sharygina, and A. Tsitovich.

Flexible Interpolation with Local Proof Transformations. In ICCAD, 2010.
R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich.

The OpenSMT Solver.
In TACAS, pages 150153, 2010.
S. Rollini, R. Bruttomesso, and N. Sharygina.

An Efficient and Flexible Approach to Resolution Proof Reduction. In HVC, 2010.

## References

[Pudlák97 ] P. Pudlák. Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computations. J. Symb. Log. 1997.
[McMillan04 ] K. L. McMillan. An Interpolating Theorem Prover. TACAS. 2004.
[Cimatti08 ] A. Cimatti, A. Griggio, R. Sebastiani. Efficient Interpolant Generation in SMT. TACAS. 2008.
[Beyer08 ] D. Beyer, D. Zufferey, R. Majumdar. CSIsat: Interpolation for $L A+E U F$. CAV. 2008.
[Bozzano05 ] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. Van Rossum, S. Ranise, R. Sebastiani. Efficient Satisfiability Modulo Theories via Delayed Theory Combination. CAV. 2005.
[Yorsh05 ] G. Yorsh, M. Musuvathi. A Combination Method for Generating Interpolants. CADE. 2005.


[^0]:    ${ }^{1}$ Available at http://www.verify.usi.ch/opensmt

[^1]:    ${ }^{1}$ Available at http://www.verify.usi.ch/opensmt

[^2]:    ${ }^{1}$ Available at http://www.verify.usi.ch/opensmt

[^3]:    ${ }^{1}$ Available at http://www.verify.usi.ch/opensmt

