OPENSMT and Applications to Interpolation and Proof Manipulation

Roberto Bruttomesso, Natasha Sharygina

USI Lugano

MIT - June 16, 2011

- **1** The OpenSMT Solver
- 2 Interpolants
- **3** Application to Program Verification
- **4** Computing Interpolants
- **5** Proof Transformation (for interpolation and reduction)

The OpenSMT Solver

$$e(DPLL(T)) = e(DPLL) + e(T) + e(COMM)$$

$$e(DPLL(T)) = e(DPLL) + e(T) + e(COMM)$$

Introduction

 $e(DPLL(T)) \approx e(T)$

Join SMT-COMP !

- Open-source solver developed at USI since 2008¹
- Based on MiniSAT, and Efficient (e.g., see SMT-COMP'10)

¹Available at http://www.verify.usi.ch/opensmt

- \blacksquare Open-source solver developed at USI since 2008^1
- Based on MiniSAT, and Efficient (e.g., see SMT-COMP'10)
- Structured to be easily extended with new theory-solvers

¹Available at http://www.verify.usi.ch/opensmt

- Open-source solver developed at USI since 2008¹
- Based on MiniSAT, and Efficient (e.g., see SMT-COMP'10)
- Structured to be easily extended with new theory-solvers
- Several algorithms for computing interpolants and manipulating proofs of unsatisfiability

¹Available at http://www.verify.usi.ch/opensmt

- Open-source solver developed at USI since 2008¹
- Based on MiniSAT, and Efficient (e.g., see SMT-COMP'10)
- Structured to be easily extended with new theory-solvers
- Several algorithms for computing interpolants and manipulating proofs of unsatisfiability
- Coming soon: integration with model-checker MCMT (JWW F.Alberti, S. Ghilardi, S.Ranise)

¹Available at http://www.verify.usi.ch/opensmt

Interpolants

iff

for every quantifier-free formulae A, B, such that $A \wedge B$ is T-unsatisfiable, there exists a quantifier-free formula I such that:

iff

for every quantifier-free formulae A, B, such that $A \wedge B$ is T-unsatisfiable, there exists a quantifier-free formula I such that:

(i) $T \vdash \mathbf{A} \to I$;

- (*ii*) $B \wedge I$ is *T*-unsatisfiable;
- (*iii*) I is defined over common symbols of A and B.

iff

for every quantifier-free formulae A, B, such that $A \wedge B$ is T-unsatisfiable, there exists a quantifier-free formula I such that:

(i) $T \vdash \mathbf{A} \to I$;

- (*ii*) $B \wedge I$ is *T*-unsatisfiable;
- (*iii*) I is defined over common symbols of A and B.

In short, I is an **overapproximation** of A that is still unsatisfiable with B, and that uses the common language

For $A \wedge B$ is *T*-unsatisfiable, *I* is a quantifier-free formula such that:

- $(i) \ T \vdash \pmb{A} \to I;$
- (*ii*) $B \wedge I$ is *T*-unsatisfiable;
- (*iii*) I is defined over common symbols of A and B.

For $A \wedge B$ is *T*-unsatisfiable, *I* is a quantifier-free formula such that:

- $(i) \ T \vdash \pmb{A} \to I;$
- (*ii*) $B \wedge I$ is *T*-unsatisfiable;
- (*iii*) I is defined over common symbols of A and B.

Many useful theories used in software verification admit quantifier-free interpolants:

• Linear Real Arithmetic (\mathcal{LRA}) ;

- Linear Real Arithmetic (\mathcal{LRA}) ;
- Linear Integer Arithmetic (\mathcal{LIA})

- Linear Real Arithmetic (\mathcal{LRA}) ;
- Linear Integer Arithmetic (\mathcal{LIA}) (with help of $\{\equiv_n\}$ predicates);

- Linear Real Arithmetic (\mathcal{LRA}) ;
- Linear Integer Arithmetic (\mathcal{LIA}) (with help of $\{\equiv_n\}$ predicates);
- Equality with Uninterpreted Functions (\mathcal{EUF}) ;

- Linear Real Arithmetic (\mathcal{LRA}) ;
- Linear Integer Arithmetic (\mathcal{LIA}) (with help of $\{\equiv_n\}$ predicates);
- Equality with Uninterpreted Functions (\mathcal{EUF}) ;
- Arrays with extensionality (\mathcal{AX})

- Linear Real Arithmetic (\mathcal{LRA}) ;
- Linear Integer Arithmetic (\mathcal{LIA}) (with help of $\{\equiv_n\}$ predicates);
- Equality with Uninterpreted Functions (\mathcal{EUF}) ;
- Arrays with extensionality (*AX*) (with help of diff function);

- Linear Real Arithmetic (\mathcal{LRA}) ;
- Linear Integer Arithmetic (\mathcal{LIA}) (with help of $\{\equiv_n\}$ predicates);
- Equality with Uninterpreted Functions (\mathcal{EUF}) ;
- Arrays with extensionality (AX) (with help of diff function);
- some combinations, like $(\mathcal{LRA} \cup \mathcal{EUF})$;

- Linear Real Arithmetic (\mathcal{LRA}) ;
- Linear Integer Arithmetic (\mathcal{LIA}) (with help of $\{\equiv_n\}$ predicates);
- Equality with Uninterpreted Functions (\mathcal{EUF}) ;
- Arrays with extensionality (AX) (with help of diff function);
- some combinations, like $(\mathcal{LRA} \cup \mathcal{EUF})$;
- but not some other, like $(\mathcal{LIA} \cup \mathcal{EUF})$.

Many useful theories used in software verification admit quantifier-free interpolants:

- Linear Real Arithmetic (\mathcal{LRA}) ;
- Linear Integer Arithmetic (\mathcal{LIA}) (with help of $\{\equiv_n\}$ predicates);
- Equality with Uninterpreted Functions (\mathcal{EUF}) ;
- Arrays with extensionality (*AX*) (with help of diff function);
- some combinations, like $(\mathcal{LRA} \cup \mathcal{EUF})$;
- but not some other, like $(\mathcal{LIA} \cup \mathcal{EUF})$.

In general, those theories that admit **Quantifier Elimination**, also admit quantifier-free interpolants

If A is unsatisfiable on its own (i.e., $A = \bot$), then $I = \bot$.

If A is unsatisfiable on its own (i.e., $A = \bot$), then $I = \bot$. If B is unsatisfiable on its own (i.e., $B = \bot$), then $I = \top$.

If A is unsatisfiable on its own (i.e., $A = \bot$), then $I = \bot$. If B is unsatisfiable on its own (i.e., $B = \bot$), then $I = \top$.

Example (Boolean logic)

If A is unsatisfiable on its own (i.e., $A = \bot$), then $I = \bot$. If B is unsatisfiable on its own (i.e., $B = \bot$), then $I = \top$.

Example (Boolean logic)

If A is unsatisfiable on its own (i.e., $A = \bot$), then $I = \bot$. If B is unsatisfiable on its own (i.e., $B = \bot$), then $I = \top$.

Example (Boolean logic)

 $A \equiv \{\neg a \land (a \lor c_1) \land (a \lor c_2)\}$ $B \equiv \{\neg b \land (b \lor \neg c_1) \land (b \lor \neg c_2)\}$

 $I = \{c_1\}$ (one of the many possible, see later)

If A is unsatisfiable on its own (i.e., $A = \bot$), then $I = \bot$. If B is unsatisfiable on its own (i.e., $B = \bot$), then $I = \top$.

Example (Boolean logic)

$$A \equiv \{\neg a \land (a \lor c_1) \land (a \lor c_2)\}$$
$$B \equiv \{\neg b \land (b \lor \neg c_1) \land (b \lor \neg c_2)\}$$

 $I = \{c_1\}$ (one of the many possible, see later)

Example (Linear Real Arithmetic)

If A is unsatisfiable on its own (i.e., $A = \bot$), then $I = \bot$. If B is unsatisfiable on its own (i.e., $B = \bot$), then $I = \top$.

Example (Boolean logic)

$$A \equiv \{\neg a \land (a \lor c_1) \land (a \lor c_2)\}$$
$$B \equiv \{\neg b \land (b \lor \neg c_1) \land (b \lor \neg c_2)\}$$

 $I = \{c_1\}$ (one of the many possible, see later)

Example (Linear Real Arithmetic)

$$A \equiv \{(x - y \le 2) \land (y - z \le 1)\}$$

$$B \equiv \{(z - w \le 0) \land (w - x \le -10)\}$$

$$I = \{x - z \le 8\}$$

If A is unsatisfiable on its own (i.e., $A = \bot$), then $I = \bot$. If B is unsatisfiable on its own (i.e., $B = \bot$), then $I = \top$.

Example (Boolean logic)

$$A \equiv \{\neg a \land (a \lor c_1) \land (a \lor c_2)\}$$
$$B \equiv \{\neg b \land (b \lor \neg c_1) \land (b \lor \neg c_2)\}$$

 $I = \{c_1\}$ (one of the many possible, see later)

Example (Linear Real Arithmetic)

$$A \equiv \{(x - y \le 2) \land (y - z \le 1)\}$$

$$B \equiv \{(z - w \le 0) \land (w - x \le -10)\}$$

$$I = \{x - z \le 8\} \text{ (one of the infinite possible)}$$

SMT-LIB 2 Standard does not support (yet) interpolation commands

SMT-LIB 2 Standard does not support (yet) interpolation commands

OPENSMT supports **non-standard** interpolation commands

SMT-LIB 2 Standard does not support (yet) interpolation commands

OPENSMT supports **non-standard** interpolation commands

• (set-option :produce-interpolants <bool>) tells OPENSMT to compute interpolants

SMT-LIB 2 Standard does not support (yet) interpolation commands

OPENSMT supports **non-standard** interpolation commands

- (set-option :produce-interpolants <bool>)
 tells OPENSMT to compute interpolants
- (assert-partition <formula>) tells OPENSMT about a partition

SMT-LIB 2 Standard does not support (yet) interpolation commands

OPENSMT supports **non-standard** interpolation commands

- (set-option :produce-interpolants <bool>)
 tells OPENSMT to compute interpolants
- (assert-partition <formula>) tells OPENSMT about a partition
- (get-interpolant <n>)
 command to retrieve an interpolant

So far we have considered interpolants between two partitions A and B

A more **general definition** involves $n \ge 2$ partitions A_1, \ldots, A_n , whose conjunction is unsatisfiable

So far we have considered interpolants between two partitions A and B

A more **general definition** involves $n \ge 2$ partitions A_1, \ldots, A_n , whose conjunction is unsatisfiable

Interpolants I_0, \ldots, I_n are such that

(i)
$$I_0 = \top, I_n = \bot;$$

(*ii*) $T \vdash (I_k \land A_{k+1}) \to I_{k+1};$

(*iii*) I_k on shared symbols of A_k and A_{k+1} .

For n=2, you get the previous definition for A and B

Original (Concrete) Program	
1: $y = x;$ 2: while $(x \ge 1)$ { 3: $x = x - 1;$ 4: $y = y - 1;$ 5: } 6: if $(y \ge 1)$ 7: ERROR;	

Original (Concrete) Program	Control Flow and Transitions
1: $y = x;$ 2: while $(x \ge 1) \{$ 3: $x = x - 1;$ 4: $y = y - 1;$ 5: $\}$ 6: if $(y \ge 1)$ 7: ERROR;	T_{2} $T_{1}: \top \land \begin{cases} x' := x \\ y' := x \end{cases}$ $T_{2}: x \ge 1 \land \begin{cases} x' := x - 1 \\ y' := y - 1 \end{cases}$ $T_{3}: x \le 0 \land y \ge 1 \land \begin{cases} x' := x \\ y' := y \end{cases}$

(Abstract) Program Unwinding	Control Flow and Transitions
	T
	$ \begin{array}{c} T_{2} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
	$T_1: \ op \land \left\{ egin{array}{l} x' := x \ y' := x \ y' := x \end{array} ight.$
	$T_2: \ x \geq 1 \wedge \left\{ egin{array}{c} x' := x - 1 \ y' := y - 1 \end{array} ight.$
	$T_3: \ x \leq 0 \land y \geq 1 \land \left\{ egin{array}{c} x' := x \ y' := y \end{array} ight.$

Computing Interpolants

If T admits QE, then an interpolant for $A \wedge B$ can be computed as follows:

• Take \underline{A} . Let $\underline{\vec{a}}$ be the symbols local to \underline{A} ;

If T admits QE, then an interpolant for $A \wedge B$ can be computed as follows:

- Take A. Let \vec{a} be the symbols local to A;
- "Quantify-out" local symbols as $\exists \vec{a}. A$;

If T admits QE, then an interpolant for $A \wedge B$ can be computed as follows:

- Take A. Let \vec{a} be the symbols local to A;
- "Quantify-out" local symbols as $\exists \vec{a}. A$;
- Compute $I = QE(\exists \vec{a}. A)$.

If T admits QE, then an interpolant for $A \wedge B$ can be computed as follows:

- Take A. Let \vec{a} be the symbols local to A;
- "Quantify-out" local symbols as $\exists \vec{a}. A$;
- Compute $I = QE(\exists \vec{a}. A)$.

If T admits QE, then an interpolant for $A \wedge B$ can be computed as follows:

- Take A. Let \vec{a} be the symbols local to A;
- "Quantify-out" local symbols as $\exists \vec{a}. A$;
- Compute $I = QE(\exists \vec{a}. A)$.

Example (Boolean logic)

If T admits QE, then an interpolant for $A \wedge B$ can be computed as follows:

- Take A. Let \vec{a} be the symbols local to A;
- "Quantify-out" local symbols as $\exists \vec{a}. A$;
- Compute $I = QE(\exists \vec{a}. A)$.

Example (Boolean logic)

 $A \equiv \{\neg a \land (a \lor c_1) \land (a \lor c_2)\}$ $B \equiv \{\neg b \land (b \lor \neg c_1) \land (b \lor \neg c_2)\}$ $I = QE(\exists a. A)$

If T admits QE, then an interpolant for $A \wedge B$ can be computed as follows:

- Take A. Let \vec{a} be the symbols local to A;
- "Quantify-out" local symbols as $\exists \vec{a}. A$;
- Compute $I = QE(\exists \vec{a}. A)$.

Example (Boolean logic)

$$A \equiv \{\neg a \land (a \lor c_1) \land (a \lor c_2)\}$$

$$B \equiv \{\neg b \land (b \lor \neg c_1) \land (b \lor \neg c_2)\}$$

$$I = QE(\exists a. \ A) = A(\top/a) \lor A(\bot/a)$$

If T admits QE, then an interpolant for $A \wedge B$ can be computed as follows:

- Take A. Let \vec{a} be the symbols local to A;
- "Quantify-out" local symbols as $\exists \vec{a}. A$;
- Compute $I = QE(\exists \vec{a}. A)$.

Example (Boolean logic)

$$A \equiv \{\neg a \land (a \lor c_1) \land (a \lor c_2)\}$$

$$B \equiv \{\neg b \land (b \lor \neg c_1) \land (b \lor \neg c_2)\}$$

$$I = QE(\exists a. A) = A(\top/a) \lor A(\bot/a) = \bot \lor (c_1 \land c_2)$$

If T admits QE, then an interpolant for $A \wedge B$ can be computed as follows:

- Take A. Let \vec{a} be the symbols local to A;
- "Quantify-out" local symbols as $\exists \vec{a}. A$;
- Compute $I = QE(\exists \vec{a}. A)$.

Example (Boolean logic)

$$A \equiv \{\neg a \land (a \lor c_1) \land (a \lor c_2)\}$$

$$B \equiv \{\neg b \land (b \lor \neg c_1) \land (b \lor \neg c_2)\}$$

$$I = QE(\exists a. A) = A(\top/a) \lor A(\perp/a) = \bot \lor (c_1 \land c_2) = c_1 \land c_2$$

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for $A \wedge B$ can be computed as follows:

- Take \underline{A} . Let $\underline{\vec{a}}$ be the symbols local to \underline{A} ;
- "Quantify-out" local symbols as $\exists \vec{a}. A$;
- Compute $I = QE(\exists \vec{a}. A)$.

Example (Boolean logic)

$$A \equiv \{\neg a \land (a \lor c_1) \land (a \lor c_2)\}$$

$$B \equiv \{\neg b \land (b \lor \neg c_1) \land (b \lor \neg c_2)\}$$

$$I = QE(\exists a. A) = A(\top/a) \lor A(\perp/a) = \bot \lor (c_1 \land c_2) = c_1 \land c_2$$

Interpolants computed this way are the "strongest" possible, as $T \vdash A \leftrightarrow I$

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for $A \wedge B$ can be computed as follows:

- Take A. Let \vec{a} be the symbols local to A;
- "Quantify-out" local symbols as $\exists \vec{a}. A$;
- Compute $I = QE(\exists \vec{a}. A)$.

Example (Boolean logic)

$$A \equiv \{\neg a \land (a \lor c_1) \land (a \lor c_2)\}$$

$$B \equiv \{\neg b \land (b \lor \neg c_1) \land (b \lor \neg c_2)\}$$

$$I = QE(\exists a. A) = A(\top/a) \lor A(\perp/a) = \bot \lor (c_1 \land c_2) = c_1 \land c_2$$

Interpolants computed this way are the "strongest" possible, as $T \vdash A \leftrightarrow I$ (remember that by definition $T \vdash A \rightarrow I$ is enough)

Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for $A \wedge B$ can be computed as follows:

- Take \underline{A} . Let $\underline{\vec{a}}$ be the symbols local to \underline{A} ;
- "Quantify-out" local symbols as $\exists \vec{a}. A$;
- Compute $I = QE(\exists \vec{a}. A)$.

Example (Boolean logic)

$$A \equiv \{\neg a \land (a \lor c_1) \land (a \lor c_2)\}$$

$$B \equiv \{\neg b \land (b \lor \neg c_1) \land (b \lor \neg c_2)\}$$

$$I = QE(\exists a. A) = A(\top/a) \lor A(\perp/a) = \bot \lor (c_1 \land c_2) = c_1 \land c_2$$

Interpolants computed this way are the "strongest" possible, as $T \vdash A \leftrightarrow I$ (remember that by definition $T \vdash A \rightarrow I$ is enough) This technique is computationally **too expensive** and is to be avoided

Several ways of describing interpolant computation:

Several ways of describing interpolant computation:

 By extending rules of an existing calculus with a set of "interpolating instructions"

$$\frac{\Gamma, b_1 \vdash \Delta}{\Gamma, b_1 \lor b_2 \vdash \Delta} \lor \text{-Left}$$

Several ways of describing interpolant computation:

 By extending rules of an existing calculus with a set of "interpolating instructions"

$$\frac{\Gamma, b_1 \vdash \Delta \parallel I_1 \qquad \Gamma, b_2 \vdash \Delta \parallel I_2}{\Gamma, b_1 \lor b_2 \vdash \Delta \parallel I_1 \land I_2} \lor \text{-Left}$$

Several ways of describing interpolant computation:

 By extending rules of an existing calculus with a set of "interpolating instructions"

$$\frac{\Gamma, b_1 \vdash \Delta \parallel I_1}{\Gamma, b_1 \lor b_2 \vdash \Delta \parallel I_1 \land I_2} \lor \text{-Left}$$

(+) Formally very clean (-) Non-deterministic

Several ways of describing interpolant computation:

 By extending rules of an existing calculus with a set of "interpolating instructions"

$$\frac{\Gamma, \boldsymbol{b_1} \vdash \Delta \parallel I_1 \qquad \Gamma, \boldsymbol{b_2} \vdash \Delta \parallel I_2}{\Gamma, \boldsymbol{b_1} \lor \boldsymbol{b_2} \vdash \Delta \parallel I_1 \land I_2} \lor \text{-Left}$$

(+) Formally very clean (-) Non-deterministic

■ By extending an existing algorithm, e.g., the Simplex: output the summaries of the constraints belonging to *A* that are involved in the conflict

Several ways of describing interpolant computation:

 By extending rules of an existing calculus with a set of "interpolating instructions"

$$\frac{\Gamma, b_1 \vdash \Delta \parallel I_1 \qquad \Gamma, b_2 \vdash \Delta \parallel I_2}{\Gamma, b_1 \lor b_2 \vdash \Delta \parallel I_1 \land I_2} \lor-\text{Left}$$

 $\begin{array}{ll} (+) \ \, \mbox{Formally very clean} \\ (-) \ \, \mbox{Non-deterministic} \end{array}$

\blacksquare By extending an existing algorithm, e.g., the Simplex: output the summaries of the constraints belonging to A that are involved in the conflict

	-2y + 3z	≤ 0	1/2
<u> </u>	3 3	< -3	5/3

Several ways of describing interpolant computation:

 By extending rules of an existing calculus with a set of "interpolating instructions"

$$\frac{\Gamma, b_1 \vdash \Delta \parallel I_1 \qquad \Gamma, b_2 \vdash \Delta \parallel I_2}{\Gamma, b_1 \lor b_2 \vdash \Delta \parallel I_1 \land I_2} \lor-\text{Left}$$

 $\begin{array}{ll} (+) \ \, \mbox{Formally very clean} \\ (-) \ \, \mbox{Non-deterministic} \end{array}$

\blacksquare By extending an existing algorithm, e.g., the Simplex: output the summaries of the constraints belonging to A that are involved in the conflict

Δ	x + y + z	≤ 0	1
A	-2y + 3z	≤ 0	1/2
Ι	$x + \frac{5}{2}z$	≤ 0	
B	$-\frac{3}{5}x - \frac{3}{2}z$	≤ -3	5/3

Several ways of describing interpolant computation:

 By extending rules of an existing calculus with a set of "interpolating instructions"

$$\frac{\Gamma, b_1 \vdash \Delta \parallel I_1 \qquad \Gamma, b_2 \vdash \Delta \parallel I_2}{\Gamma, b_1 \lor b_2 \vdash \Delta \parallel I_1 \land I_2} \lor-\text{Left}$$

(+) Formally very clean (-) Non-deterministic

\blacksquare By extending an existing algorithm, e.g., the Simplex: output the summaries of the constraints belonging to A that are involved in the conflict

Δ	x + y + z	≤ 0	1
Π	-2y + 3z	≤ 0	1/2
Ι	$x + \frac{5}{2}z$	≤ 0	
B	$-\frac{3}{5}x - \frac{3}{2}z$	≤ -3	5/3

(+) Algorithmically precise(-) Low flexibility

Two identical provers, one for A and one for B cooperate in turns to derive unsatisfiability (similarly to Nelson-Oppen framework). At any step provers either

$$\begin{array}{c|c} A \\ \hline \gamma_1 \\ \gamma_2 \end{array} \end{array} \begin{array}{c} B \\ \hline \delta_1 \\ \delta_2 \end{array}$$

Two identical provers, one for A and one for B cooperate in turns to derive unsatisfiability (similarly to Nelson-Oppen framework). At any step provers either

$$\begin{array}{c|c} A \\ \hline \gamma_1 \\ \gamma_2 \end{array} \qquad \begin{array}{c} B \\ \hline \delta_1 \\ \delta_2 \end{array}$$

Two identical provers, one for A and one for B cooperate in turns to derive unsatisfiability (similarly to Nelson-Oppen framework). At any step provers either

$$\begin{array}{c|c} A \\ \hline \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{array} \end{array} \begin{array}{c} B \\ \hline \delta_1 \\ \delta_2 \end{array}$$

 $A \vdash \gamma_3$

Two identical provers, one for A and one for B cooperate in turns to derive unsatisfiability (similarly to Nelson-Oppen framework). At any step provers either

locally derive new facts
 exchange information on the shared language with the other prover

A	B
γ_1	δ_1
γ_2	δ_2
γ_3	

Two identical provers, one for A and one for B cooperate in turns to derive unsatisfiability (similarly to Nelson-Oppen framework). At any step provers either

- locally derive new facts
 exchange information on the
 - shared language with the other prover

If γ_3 is on common language

Two identical provers, one for A and one for B cooperate in turns to derive unsatisfiability (similarly to Nelson-Oppen framework). At any step provers either

■ locally **derive** new facts **exchange** information on the shared language with the other prover

$$\begin{array}{c|c} \underline{A} \\ \hline \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{array} \qquad \begin{array}{c} B \\ \delta_1 \\ \delta_2 \\ \gamma_3 \end{array}$$

Α

Repeat until either A or B derive \perp

Two identical provers, one for A and one for B cooperate in turns to derive unsatisfiability (similarly to Nelson-Oppen framework). At any step provers either

■ locally **derive** new facts **exchange** information on the shared language with the other prover

$$\begin{array}{c|c} \underline{A} \\ \hline \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{array} \qquad \begin{array}{c} B \\ \delta_1 \\ \delta_2 \\ \gamma_3 \end{array}$$

A

 γ_1

Repeat until either A or B derive \perp

Interpolant can be computed in backward manner

<i>A'''</i>	<i>B'''</i>
$a \lor c_1$	$\neg c_1 \lor b$
$a \lor c_2$	$\neg c_2 \lor b$
$\neg a$	<mark>b</mark>
c_1	c_1
	1

$A^{\prime\prime\prime}$	<i>B'''</i>
$a \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor \mathbf{b}$
$\neg a$	$\neg b$
c_1	c_1
	1

$$I^{\prime\prime\prime}\equiv\top$$

 $I''\equiv \top$

Der.*

 $I^{\prime\prime\prime}\equiv\top$

 $I' \equiv c_1 \wedge \top$

 $I'' \equiv \top$

Der.*

 $I^{\prime\prime\prime}\equiv\top$

$$I \equiv c_1 \wedge \top$$

Der.*

$$I^{\prime\prime\prime}\equiv\top$$

$$I \equiv c_1 \land \top \equiv c_1$$

$$I' \equiv c_1 \wedge \top$$

$$I'' \equiv \top$$

$$I^{\prime\prime\prime}\equiv\top$$

A'	B'
$\mathbf{a} \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor \mathbf{b}$
$\neg a$	¬ b
c_1	
c_2	

 $\xrightarrow{\text{Ex.}}$

A'	B'
$a \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor \mathbf{b}$
¬ a	¬ b
c_1	
c_2	

A'	B'
$a \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor \mathbf{b}$
¬ a	¬ b
c_1	
c_2	

$$I'' \equiv \top$$

 $\xrightarrow{\text{Ex.}}$

A'	B'
$a \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor \mathbf{b}$
$\neg a$	⊸b
c_1	
c_2	

 $I' \equiv c_1 \wedge c_2 \wedge \top$

 $I'' \equiv \top$

Ex.

A'	B'
$a \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor \mathbf{b}$
$\neg a$	$\neg b$
c_1	
c_2	

 $I \equiv c_1 \wedge c_2 \wedge \top$

Ex.

 $I' \equiv c_1 \wedge c_2 \wedge \top$

B'''

 $\neg c_1 \lor \mathbf{b}$

 $\neg c_2 \lor \mathbf{b}$

 $\neg b$

 c_1

 c_2

 \bot

$$I'' \equiv \top$$

A'	B'
$a \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor \mathbf{b}$
$\neg a$	¬ b
c_1	
c_2	

$$I \equiv c_1 \wedge c_2 \wedge \top \equiv c_1 \wedge c_2$$

Ex.

 $I' \equiv c_1 \wedge c_2 \wedge \top$

 $I'' \equiv \top$

A'	B'
$\mathbf{a} \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$\mathbf{a} \lor c_2$	$\neg c_2 \lor \mathbf{b}$
$\neg a$	$\neg b$
	$\neg c_1$
	$\neg c_2$

B'

 $\neg c_1 \lor \mathbf{b}$

 $\neg c_2 \lor \mathbf{b}$

 $\neg b$

 $\neg c_1$ $\neg c_2$

A''	B''
$a \lor c_1$	$\neg c_1 \lor b$
$a \lor c_2$	$\neg c_2 \lor b$
¬ <mark>a</mark>	$\neg b$
$\neg c_1$	$\neg c_1$
$\neg c_2$	$\neg c_2$

A'	B'
$a \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor b$
¬ <u>a</u>	$\neg b$
	$\neg c_1$
	$\neg c_2$

ſ	$A^{\prime\prime}$	B''
Γ	$\mathbf{a} \lor c_1$	$\neg c_1 \lor \mathbf{b}$
	$\mathbf{a} \lor c_2$	$\neg c_2 \lor \mathbf{b}$
	¬ a	$\neg b$
	$\neg c_1$	$\neg c_1$
	$\neg c_2$	$\neg c_2$

 $\stackrel{\mathrm{Der.}^*}{\Longrightarrow}$

A'''	$B^{\prime\prime\prime}$
$\mathbf{a} \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor \mathbf{b}$
¬ a	¬ b
$\neg c_1$	$\neg c_1$
$\neg c_2$	$\neg c_2$
\perp	

	A'	B'
Der.*	$a \lor c_1$ $a \lor c_2$	$ \begin{array}{c} \neg c_1 \lor \mathbf{b} \\ \neg c_2 \lor \mathbf{b} \end{array} $
\Rightarrow	$\neg a$	$\neg c_2 \lor b$ $\neg b$
		$\neg c_1$
		$\neg c_2$

A ''	<i>B</i> ″
<u></u>	$\neg c_1 \lor b$
$a \lor c_1$	
$a \lor c_2$	$\neg c_2 \lor b$
¬ <mark>a</mark>	$\neg b$
$\neg c_1$	$\neg c_1$
$\neg c_2$	$\neg c_2$

 $\xrightarrow{\text{Der.}^*}$

A'''	<i>B'''</i>
$a \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor \mathbf{b}$
¬ a	$\neg b$
$\neg c_1$	$\neg c_1$
$\neg c_2$	$\neg c_2$
\perp	

 $I''' \equiv \bot$

<i>A</i> ′	B'
$a \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor \mathbf{b}$
¬ a	$\neg b$
	$\neg c_1$
	$\neg c_2$

A'''	$B^{\prime\prime\prime\prime}$
$a \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor \mathbf{b}$
¬ a	$\neg b$
$\neg c_1$	$\neg c_1$
$\neg c_2$	$\neg c_2$
\perp	

 $I'' \equiv \bot$

 $I^{\prime\prime\prime} \equiv \bot$

A'	B'
$\mathbf{a} \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$\mathbf{a} \vee c_2$	$\neg c_2 \lor b$
¬ a	¬ b
	$\neg c_1$
	$\neg c_2$

$$I' \equiv (\neg c_1 \land \neg c_2) \to \bot$$

 $B^{\prime\prime\prime}$

 $\neg c_1 \lor \mathbf{b}$

 $\neg c_2 \lor \mathbf{b}$

 $\neg b$

 $\neg c_1$

 $\neg c_2$

 $I'' \equiv \bot$

 $I^{\prime\prime\prime}\equiv\bot$

Ex.

A'	B'
$\mathbf{a} \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor \mathbf{b}$
$\neg a$	$\neg b$
	$\neg c_1$
	$\neg c_2$

$$I \equiv (\neg c_1 \land \neg c_2) \to \bot$$

Ex.

 $I' \equiv (\neg c_1 \land \neg c_2) \to \bot$

 $\begin{array}{c|c} A'' & B'' \\ \hline a \lor c_1 \\ a \lor c_2 \\ \neg a \\ \neg c_1 \\ \neg c_2 \\ \hline \neg c_2 \\ \hline \end{array}$

A'''	$B^{\prime\prime\prime\prime}$
$\mathbf{a} \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor \frac{b}{b}$
$\neg a$	$\neg b$
$\neg c_1$	$\neg c_1$
$\neg c_2$	$\neg c_2$
\perp	

 $I'' \equiv \bot$

 $I^{\prime\prime\prime}\equiv\bot$

 $\overset{\mathrm{Der.}^*}{\Longrightarrow}$

A'	B'
$a \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$a \lor c_2$	$\neg c_2 \lor \mathbf{b}$
$\neg a$	$\neg b$
	$\neg c_1$
	$\neg c_2$

$$I \equiv (\neg c_1 \land \neg c_2) \to \bot \equiv c_1 \lor c_2$$

B''

 $\neg c_1 \lor b$

 $\neg c_2 \lor \mathbf{b}$

 $\neg b$

 $\neg c_1$

 $\neg c_2$

$$I' \equiv (\neg c_1 \land \neg c_2) \to \bot$$

 $\begin{array}{c}
A'' \\
a \lor c_1 \\
a \lor c_2 \\
\neg a \\
\neg c_1 \\
\neg c_2
\end{array}$

Ex.

1	Der	*

A'''	<i>B'''</i>
$\mathbf{a} \lor c_1$	$\neg c_1 \lor \mathbf{b}$
$\mathbf{a} \lor c_2$	$\neg c_2 \lor b$
$\neg a$	¬ b
$\neg c_1$	$\neg c_1$
$\neg c_2$	$\neg c_2$
\perp	

 $I'' \equiv \bot$

 $I^{\prime\prime\prime} \equiv \bot$

Proof Transformation (for interpolation and reduction)

- Interpolation-based model checking
- Abstraction techniques
- Unsatisfiable core extraction in SAT/SMT
- Automatic theorem proving

- Interpolation-based model checking
- Abstraction techniques
- Unsatisfiable core extraction in SAT/SMT
- Automatic theorem proving
- Problems

- Interpolation-based model checking
- Abstraction techniques
- Unsatisfiable core extraction in SAT/SMT
- Automatic theorem proving
- Problems
 - Clean structure of proofs is required for interpolation generation

- Interpolation-based model checking
- Abstraction techniques
- Unsatisfiable core extraction in SAT/SMT
- Automatic theorem proving
- Problems
 - Clean structure of proofs is required for interpolation generation
 - Size affects efficiency
 - Size can be exponential w.r.t. input formula

\blacksquare Interpolant I for unsatisfiable conjunction of formulae $A \wedge B$

\blacksquare Interpolant I for unsatisfiable conjunction of formulae $A \wedge B$

State-of-the-art approach [Pudlák97, McMillan04]

- Interpolant I for unsatisfiable conjunction of formulae $A \wedge B$
- State-of-the-art approach [Pudlák97, McMillan04]
 - \blacksquare Derivation of unsatisfiability resolution proof of $A \wedge B$

- \blacksquare Interpolant I for unsatisfiable conjunction of formulae $A \wedge B$
- State-of-the-art approach [Pudlák97, McMillan04]
 - Derivation of unsatisfiability resolution proof of $A \wedge B$
 - Computation of I from proof structure in linear time

Background

• Literal $p \overline{p}$

Background

- Literal $p \overline{p}$
- Clause $p \lor \overline{q} \lor r \lor \ldots \to p\overline{q}r \ldots$ Empty clause \bot

Background

- Literal $p \ \overline{p}$
- $\blacksquare Clause \qquad p \lor \overline{q} \lor r \lor \ldots \to p\overline{q}r \ldots \qquad \text{Empty clause} \qquad \bot$
- Input formula $(p \lor q) \land (r \lor \overline{p}) \ldots \rightarrow \{pq, r\overline{p}\}$

Background

- Literal $p \ \overline{p}$
- Clause $p \lor \overline{q} \lor r \lor \ldots \to p\overline{q}r \ldots$ Empty clause \bot
- Input formula $(p \lor q) \land (r \lor \overline{p}) \ldots \rightarrow \{pq, r\overline{p}\}$
- Resolution rule $\frac{pC \quad \overline{p}D}{CD} p$

Antecedents: $pC \ \overline{p}D$ Resolvent: CD Pivot: p

Resolution System

Background

- Literal $p \ \overline{p}$
- $\blacksquare Clause \qquad p \lor \overline{q} \lor r \lor \ldots \to p\overline{q}r \ldots \qquad \text{Empty clause} \qquad \bot$
- Input formula $(p \lor q) \land (r \lor \overline{p}) \ldots \rightarrow \{pq, r\overline{p}\}$
- Resolution rule $\frac{pC \quad \overline{p}D}{CD} p$

Antecedents: $pC \ \overline{p}D$ Resolvent: CD Pivot: p

 \blacksquare Resolution proof of unsatisfiability of a set of clauses S

Resolution System

Background

- Literal $p \ \overline{p}$
- Clause $p \lor \overline{q} \lor r \lor \ldots \to p\overline{q}r \ldots$ Empty clause \bot
- Input formula $(p \lor q) \land (r \lor \overline{p}) \ldots \rightarrow \{pq, r\overline{p}\}$
- Resolution rule $\frac{pC \quad \overline{p}D}{CD} p$

Antecedents: $pC \ \overline{p}D$ Resolvent: CD Pivot: p

- Resolution proof of unsatisfiability of a set of clauses S
 - Tree
 - \blacksquare Leaves as clauses of S
 - Intermediate nodes as resolvents
 - Root as unique empty clause

$\bullet \ A \equiv \{ \overline{pq}, p\overline{q} \} \qquad B \equiv \{ q\overline{r}, qr \}$

- $\bullet \ A \equiv \{\overline{pq}, p\overline{q}\} \qquad B \equiv \{q\overline{r}, qr\}$
- Proof of unsatisfiability

• Computation of interpolant I for $A \wedge B$ from proof structure

- Computation of interpolant I for $A \wedge B$ from proof structure
- Partial interpolant for leaf

- Computation of interpolant I for $A \wedge B$ from proof structure
- Partial interpolant for leaf
- Partial interpolant for resolvent
 - Pivot
 - Partial interpolants for antecedents

- Computation of interpolant I for $A \wedge B$ from proof structure
- Partial interpolant for leaf
- Partial interpolant for resolvent
 - Pivot
 - Partial interpolants for antecedents
- \blacksquare Partial interpolant for \bot is I

- $\bullet \ A \equiv \{ \overline{pq}, p\overline{q} \} \qquad B \equiv \{ q\overline{r}, qr \}$
- Proof of unsatisfiability

$\underset{\text{SMT}}{\text{Resolution Proofs}}$

$$A \equiv \{ \overbrace{(5x-y\leq 1)}^{p}, \overbrace{(y-5x\leq -1)}^{q} \}, B \equiv \{ \overbrace{(y-5z\leq 3)}^{r}, \overbrace{(5z-y\leq -2)}^{s} \}$$

$$A \equiv \{ \overbrace{(5x - y \le 1)}^{p}, \overbrace{(y - 5x \le -1)}^{q} \}, B \equiv \{ \overbrace{(y - 5z \le 3)}^{r}, \overbrace{(5z - y \le -2)}^{s} \}$$

$$A \equiv \{ \overbrace{(5x - y \le 1)}^{p}, \overbrace{(y - 5x \le -1)}^{q} \}, B \equiv \{ \overbrace{(y - 5z \le 3)}^{r}, \overbrace{(5z - y \le -2)}^{s} \}$$

•
$$\mathcal{LIA}$$
: $(x-z \le 0)$ $(x-z \ge 1)$

$$A \equiv \{ \overbrace{(5x - y \le 1)}^{p}, \overbrace{(y - 5x \le -1)}^{q} \}, B \equiv \{ \overbrace{(y - 5z \le 3)}^{r}, \overbrace{(5z - y \le -2)}^{s} \}$$

•
$$\mathcal{LIA}$$
: $(x-z \le 0)$ $(x-z \ge 1)$

$$\mathcal{LRA}: \overbrace{(5x-y \leq 1)}^{\overline{p}} \overbrace{(y-5z \leq 3)}^{\overline{r}} \overbrace{(x-z \geq 1)}^{\overline{u}}$$

$$A \equiv \{ \overbrace{(5x - y \le 1)}^{p}, \overbrace{(y - 5x \le -1)}^{q} \}, B \equiv \{ \overbrace{(y - 5z \le 3)}^{r}, \overbrace{(5z - y \le -2)}^{s} \}$$

•
$$\mathcal{LIA}$$
: $(x-z \le 0)$ $(x-z \ge 1)$

$$\mathcal{LRA}: \overbrace{(5x-y \nleq 1)}^{\overline{p}} \overbrace{(y-5z \nleq 3)}^{\overline{r}} \overbrace{(x-z \nsucceq 1)}^{\overline{u}}$$

$$\mathcal{LRA}: \underbrace{\left(y - 5x \nleq -1\right)}^{\overline{q}} \underbrace{\left(5z - y \nleq -2\right)}^{\overline{s}} \underbrace{\left(x - z \nleq 0\right)}^{\overline{t}}$$

•
$$A \equiv \{p,q\}$$
 $B \equiv \{r,s\}$ $L \equiv \{tu, \overline{pru}, \overline{qst}\}$

State-of-the-art approach [Pudlák97, McMillan04]

- State-of-the-art approach [Pudlák97, McMillan04]
 - \blacksquare Derivation of unsatisfiability proof of $A \wedge B$
 - Computation of interpolant from proof structure in linear time

- State-of-the-art approach [Pudlák97, McMillan04]
 - \blacksquare Derivation of unsatisfiability proof of $A \wedge B$
 - Computation of interpolant from proof structure in linear time
- Restriction

- State-of-the-art approach [Pudlák97, McMillan04]
 - \blacksquare Derivation of unsatisfiability proof of $A \wedge B$
 - Computation of interpolant from proof structure in linear time
- Restriction
 - Need for proof not to contain AB-mixed predicates
 - A-local B-local AB-common AB-mixed

- State-of-the-art approach [Pudlák97, McMillan04]
 - \blacksquare Derivation of unsatisfiability proof of $A \wedge B$
 - Computation of interpolant from proof structure in linear time
- Restriction
 - Need for proof not to contain AB-mixed predicates

A-localB-localAB-commonAB-mixed $A \equiv \{ (5x - y \le 1), \ldots \}$ $B \equiv \{ (y - 5z \le 3), \ldots \}$

- State-of-the-art approach [Pudlák97, McMillan04]
 - \blacksquare Derivation of unsatisfiability proof of $A \wedge B$
 - Computation of interpolant from proof structure in linear time
- Restriction
 - Need for proof not to contain AB-mixed predicates

A-local B-local AB-common AB-mixed $A \equiv \{ (5x - y \le 1), \ldots \}$ $B \equiv \{ (y - 5z \le 3), \ldots \}$ $L \equiv \{ (x - z \le 0), \ldots \}$

• Need for proof not to contain AB-mixed predicates

• Need for proof not to contain AB-mixed predicates

 Tune solvers to avoid generating AB-mixed predicates [Cimatti08,Beyer08] • Need for proof not to contain AB-mixed predicates

 Tune solvers to avoid generating AB-mixed predicates [Cimatti08,Beyer08]

Transform proof to remove AB-mixed predicates

Proof Transformation

Motivation

Proof transformation approach

Proof Transformation Motivation

- Proof transformation approach
- Motivation: more flexibility by decoupling SMT solving and interpolant generation

Proof Transformation Motivation

- Proof transformation approach
- Motivation: more flexibility by decoupling SMT solving and interpolant generation
- Motivation: standard SMT techniques can require addition of AB-mixed predicates

Proof Transformation Motivation

- Proof transformation approach
- Motivation: more flexibility by decoupling SMT solving and interpolant generation
- Motivation: standard SMT techniques can require addition of AB-mixed predicates
 - Theory reduction via Lemma on Demand [DeMoura02, Barrett06]
 Reduction of AX to EUF
 Reduction of LIA to LRA
 Ackermann's Expansion
 - Theory combination via DTC [Bozzano05]

Isolation of AB-mixed predicates into subtrees

- Isolation of AB-mixed predicates into subtrees
- Removal of AB-mixed subtrees

Isolation of AB-mixed predicates into subtrees

Removal of AB-mixed subtrees

• No more AB-mixed predicates, proof still valid

$\begin{array}{l} Proof \ Transformation \\ {}_{\rm Effect} \end{array}$

- (a) Initial proof: A-local, B-local, AB-common, AB-mixed
- (b) Transformed proof: AB-mixed predicates isolated into subtrees
- (c) Final proof: AB-mixed subtrees removed, new leaves are theory lemmata

Advantages

■ No more AB-mixed predicates, new leaves are theory lemmata

- No more AB-mixed predicates, new leaves are theory lemmata
- Easy combination of SMT and interpolation techniques

- No more AB-mixed predicates, new leaves are theory lemmata
- Easy combination of SMT and interpolation techniques
 - Theory reduction, theory combination without restrictions

- No more AB-mixed predicates, new leaves are theory lemmata
- Easy combination of SMT and interpolation techniques
 - Theory reduction, theory combination without restrictions
 - Interpolant generation for propositional resolution proofs of unsatisfiability [Pudlák97]

- No more AB-mixed predicates, new leaves are theory lemmata
- Easy combination of SMT and interpolation techniques
 - Theory reduction, theory combination without restrictions
 - Interpolant generation for propositional resolution proofs of unsatisfiability [Pudlák97]
 - (Partial) interpolant generation for theory (combination) lemmata [Yorsh05]

Features

Local rewriting rules

Features

Local rewriting rules

Rule context

Features

Local rewriting rules

Rule context

• Exhaustiveness up to symmetry

Local Rewriting Rules

Local Rewriting Rules

Pivots swapping

Local Rewriting Rules

Pivots swapping

AB-mixed predicates isolation into subtrees

Reduction \mathcal{LIA} to \mathcal{LRA} Transformation

- Proof of unsatisfiability

Transformation

Reduction \mathcal{LIA} to \mathcal{LRA}

Transformation

Proof of unsatisfiability

Proof Transformation Framework

Considerations

Potential drawbacks

Proof Transformation Framework

Considerations

Potential drawbacks

• Overhead w.r.t. solving time

Proof Transformation Framework

Considerations

Potential drawbacks

- Overhead w.r.t. solving time
- Increase of proof size

Features

Local rewriting rules

Features

- Local rewriting rules
 - \blacksquare B reduction
 - \blacksquare A perturbation

Features

- Local rewriting rules
 - **B** reduction
 - A perturbation

Rule context

Features

- Local rewriting rules
 - **B** reduction
 - A perturbation

Rule context

• Exhaustiveness up to symmetry

Local rewriting rules

B rules

Local rewriting rules

B rules

Redundancy as reintroduction variable after elimination

Local rewriting rules

B rules

Redundancy as reintroduction variable after elimination

Subproof simplification

Local rewriting <u>rules</u>

B rules

Redundancy as reintroduction variable after elimination

Subproof simplification

Subproof root strengthening

Local rewriting rules

A rules

Local rewriting rules

A rules

Pivots swapping

Local rewriting rules

A rules

Pivots swapping

Topology perturbation

Local rewriting rules

A rules

Pivots swapping

- Topology perturbation
- Redundancies exposure

Local rewriting rules

A1	$ \begin{array}{c c} \hline pqC & \overline{p}qD \\ \hline qCD & p \\ \hline \hline qCD & \overline{q}E \\ \hline CDE & q \end{array} $	⇒	$ \begin{array}{c c} \underline{pqC} & \overline{q}E \\ \hline \\ \underline{pCE} & \overline{pDE} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\$
A2	$\frac{pqC \overline{p}D}{qCD} p \overline{q}E}{CDE} q$	⇒	$\frac{-\frac{pqC}{\overline{q}E}}{\frac{pCE}{CDE}}q - \frac{\overline{p}D}{\overline{p}D}p$
<i>B</i> 1	$\frac{pqC \overline{p}qD}{qCD p} p \\ \frac{qCD p\overline{q}E}{pCDE} q$	⇒	$\frac{pqC}{pCE} \frac{p\overline{q}E}{q} q$
B2	$ \begin{array}{ccc} \underline{pqC} & \overline{pD} & p \\ \hline & qDC & p\overline{qE} \\ \hline & pCDE & q \end{array} $	\Rightarrow	$\frac{\underline{pqC} p\overline{q}E}{\underline{pCE}} q \\ \overline{pD} \\ CDE} p$
B2′	$\frac{pqC \overline{p}D}{qDC p\overline{q}E p\overline{q}E pCDE} q$	⇒	$\frac{pqC}{pCE} \frac{p\overline{q}E}{q} q$
<i>B</i> 3	$\frac{pqC \overline{p}D}{qCD p}p \\ \frac{qCD \overline{pqE}}{\overline{p}CDE}q$	\Rightarrow	$\overline{p}D$

- C++ open-source SMT solver developed at USI
- Fastest open-source solver in SMT-comp 2009, 2010 for various logics

- \blacksquare C++ open-source SMT solver developed at USI
- Fastest open-source solver in SMT-comp 2009, 2010 for various logics

Benchmarks

- \blacksquare C++ open-source SMT solver developed at USI
- Fastest open-source solver in SMT-comp 2009, 2010 for various logics

Benchmarks

- SMT: SMT-LIB library
- Academic and industrial problems

Experimental results over QF_UFIDL

Group	#	#AB	$\%_{time}$	$\%_{nodes}$	$\%_{edges}$
RDS	2	7	84%	-16%	-19%
EufLaAı	: 2	74	18%	187%	193%
pete	15	20	16%	66%	68%
pete2	52	13	6%	73%	80%
uclid	11	12	29%	87%	90%
Overall	82	16	13%	74%	79%

- \blacksquare # number of benchmarks solved
- #AB average number of AB-mixed predicates in proof
- $\%_{time}$ average time overhead
- \blacksquare %_nodes, %_edges average difference in proof size

Pros

Global information Fast and effective

Cons

Cannot expose redundancies

Pros

Global information Fast and effective

Cons

Cannot expose redundancies

Rule-based approach

Pros

Global information Fast and effective

Cons

Cannot expose redundancies

Rule-based approach

Pros

Flexibility in rules application Flexibility in amount of transformation Can expose redundancies

Cons

Local information

Based on a sequence of proof traversals (e.g. topological order)

- Based on a sequence of proof traversals (e.g. topological order)
- Parameterized in number of traversals and time limit

- Based on a sequence of proof traversals (e.g. topological order)
- Parameterized in number of traversals and time limit
- Examination non-leaf clauses

- Based on a sequence of proof traversals (e.g. topological order)
- Parameterized in number of traversals and time limit
- Examination non-leaf clauses

 \blacksquare Pivot in both antecedents \rightarrow update, match context, apply rule

$$\frac{qC'D'}{CDE}q \Rightarrow \frac{qC'D'}{C'D'E'}q \Rightarrow \frac{pqC'}{qE'} q \Rightarrow \frac{pqC'}{qC'D'} q = \frac{pqC'}{qC'D'} q = \frac{pqC'}{qC'D'} q = \frac{pqC'}{qE'} q = \frac{pqC'}{qE'}$$

- Based on a sequence of proof traversals (e.g. topological order)
- Parameterized in number of traversals and time limit
- Examination non-leaf clauses
 - \blacksquare Pivot in both antecedents \rightarrow update, match context, apply rule

$$\frac{qC'D'}{CDE}q \Rightarrow \frac{qC'D'}{C'D'E'}q \Rightarrow \frac{qC'D'}{Q'D'E'}q \Rightarrow \frac{pqC'}{qC'D'} q = \frac{pqC'}{qC'D'} q = \frac{qC'D'}{qE'}q$$

 \blacksquare Pivot not in both antecedents \rightarrow remove resolution step

$$\frac{C'D' \quad \overline{q}E'}{CDE} q \quad \Rightarrow \qquad \qquad C'D$$

- Based on a sequence of proof traversals (e.g. topological order)
- Parameterized in number of traversals and time limit
- Examination non-leaf clauses
 - \blacksquare Pivot in both antecedents \rightarrow update, match context, apply rule

$$\frac{qC'D'}{CDE} \begin{array}{c} \overline{q}E' \\ \overline{q}E' \\ C'D'E' \end{array} q \quad \Rightarrow \quad \frac{qC'D'}{C'D'E'} \begin{array}{c} \overline{q}E' \\ \overline{q}E' \\ \overline{q}E' \\ C'D'E' \end{array} q \quad \Rightarrow \quad \frac{qC'D'}{Q'D'} \begin{array}{c} \overline{p}D' \\ \overline{q}E' \\ \overline{q}E$$

 \blacksquare Pivot not in both antecedents \rightarrow remove resolution step

$$\frac{C'D'}{CDE} \begin{array}{c} \overline{q}E' \\ q \end{array} \Rightarrow \qquad C'D'$$

• Easy combination with RecyclePivots

- Implemented in C++ and integrated with OpenSMT
- Available at www.inf.usi.ch/phd/rollini/hvc.html

- Implemented in C++ and integrated with OpenSMT
- Available at www.inf.usi.ch/phd/rollini/hvc.html
- Benchmarks

- Implemented in C++ and integrated with OpenSMT
- Available at www.inf.usi.ch/phd/rollini/hvc.html
- Benchmarks
 - SMT: SMT-LIB library
 - SAT: SAT competition
 - Academic and industrial problems

Experimental results over SMT: QF_UF, QF_IDL, QF_LRA, QF_RDL

	#	Avg_{node}	, Avg _{edges}	Avg_{core}	T(s)	Maxnod	$_{es}Max_{edge}$	$_{s}Max_{core}$
RP	1370	6.7%	7.5%	1.3%	1.7	65.1%	68.9%	39.1%
Ratio								
0.01	1366	8.9%	10.7%	1.4%	3.4	66.3%	70.2%	45.7%
0.025	1366	9.8%	11.9%	1.5%	3.6	77.2%	79.9%	45.7%
0.05	1366	10.7%	13.0%	1.6%	4.1	78.5%	81.2%	45.7%
0.075	1366	11.4%	13.8%	1.7%	4.5	78.5%	81.2%	45.7%
0.1	1364	11.8%	14.4%	1.7%	5.0	78.8%	83.6%	45.7%
0.25	1359	13.6%	16.6%	1.9%	7.6	79.6%	84.4%	45.7%
0.5	1348	15.0%	18.4%	2.0%	11.5	79.1%	85.2%	45.7%
0.75	1341	16.0%	19.5%	2.1%	15.1	79.9%	86.1%	45.7%
1	1337	16.7%	20.4%	2.2%	18.8	79.9%	86.1%	45.7%

■ *Ratio* — time threshold as fraction of solving time

- \blacksquare # number of benchmarks solved
- Avg_{nodes}, Avg_{edges}, Avg_{core} average reduction in proof size
 T(s) average transformation time in seconds
- \blacksquare $Max_{nodes},$ $Max_{edges},$ Max_{core} max reduction in proof size

Experimental results over SMT: QF_UF, QF_IDL, QF_LRA, QF_RDL

	#	Avg_{node}	, Avg _{edges}	Avg_{core}	T(s)	Maxnod	$esMax_{edge}$	$_{s}Max_{core}$
RP	1370	6.7%	7.5%	1.3%	1.7	65.1%	68.9%	39.1%
Ratio								
0.01	1366	8.9%	10.7%	1.4%	3.4	66.3%	70.2%	45.7%
0.025	1366	9.8%	11.9%	1.5%	3.6	77.2%	79.9%	45.7%
0.05	1366	10.7%	13.0%	1.6%	4.1	78.5%	81.2%	45.7%
0.075	1366	11.4%	13.8%	1.7%	4.5	78.5%	81.2%	45.7%
0.1	1364	11.8%	14.4%	1.7%	5.0	78.8%	83.6%	45.7%
0.25	1359	13.6%	16.6%	1.9%	7.6	79.6%	84.4%	45.7%
0.5	1348	15.0%	18.4%	2.0%	11.5	79.1%	85.2%	45.7%
0.75	1341	16.0%	19.5%	2.1%	15.1	79.9%	86.1%	45.7%
1	1337	16.7%	20.4%	2.2%	18.8	79.9%	86.1%	45.7%

■ *Ratio* — time threshold as fraction of solving time

- \blacksquare # number of benchmarks solved
- Avg_{nodes}, Avg_{edges}, Avg_{core} average reduction in proof size
 T(s) average transformation time in seconds
- $Max_{nodes}, Max_{edges}, Max_{core}$ max reduction in proof size

Experimental results over SMT: QF_UF, QF_IDL, QF_LRA, QF_RDL

	#	Avg_{node}	, Avg _{edges}	Avg_{core}	T(s)	Maxnod	$_{es}Max_{edg}$	$_{s} Max_{core}$
RP	1370	6.7%	7.5%	1.3%	1.7	65.1%	68.9%	39.1%
Ratio								
0.01	1366	8.9%	10.7%	1.4%	3.4	66.3%	70.2%	45.7%
0.025	1366	9.8%	11.9%	1.5%	3.6	77.2%	79.9%	45.7%
0.05	1366	10.7%	13.0%	1.6%	4.1	78.5%	81.2%	45.7%
0.075	1366	11.4%	13.8%	1.7%	4.5	78.5%	81.2%	45.7%
0.1	1364	11.8%	14.4%	1.7%	5.0	78.8%	83.6%	45.7%
0.25	1359	13.6%	16.6%	1.9%	7.6	79.6%	84.4%	45.7%
0.5	1348	15.0%	18.4%	2.0%	11.5	79.1%	85.2%	45.7%
0.75	1341	16.0%	19.5%	2.1%	15.1	79.9%	86.1%	45.7%
1	1337	16.7%	20.4%	2.2%	18.8	79.9%	86.1%	45.7%

- *Ratio* time threshold as fraction of solving time
- # number of benchmarks solved
- $Avg_{nodes}, Avg_{edges}, Avg_{core}$ average reduction in proof size
- T(s) average transformation time in seconds
- \blacksquare $Max_{nodes},$ $Max_{edges},$ Max_{core} max reduction in proof size

Experimental results over SAT

	#	Avgnode	, Avg _{edges}	Avg_{core}	T(s)	Maxnod	$_{es}Max_{edge}$	$_{s}Max_{core}$
RP	25	5.9%	6.5%	1.7%	10.8	33.1%	33.4%	30.3%
Ratio								
0.01	25	6.8%	7.9%	1.7%	32.3	34.0%	34.4%	30.5%
0.025	25	6.8%	7.9%	1.7%	32.3	34.0%	34.4%	30.5%
0.05	25	7.0%	8.2%	1.8%	40.0	34.0%	34.4%	30.5%
0.075	25	7.2%	8.4%	1.8%	49.3	34.7%	35.1%	30.5%
0.1	25	7.3%	8.4%	1.8%	60.2	34.7%	35.1%	30.5%
0.25	25	7.6%	8.8%	1.9%	125.3	39.8%	40.6%	31.7%
0.5	25	7.8%	9.1%	1.9%	243.5	41.0%	41.9%	32.1%
0.75	25	7.9%	9.3%	1.9%	360.0	41.6%	42.6%	32.1%
1	23	8.4%	9.9%	2.1%	175.6	33.1%	33.4%	30.6%

■ *Ratio* — time threshold as fraction of solving time

- # number of benchmarks solved
- Avg_{nodes}, Avg_{edges}, Avg_{core} average reduction in proof size
 T(s) average transformation time in seconds
- $Max_{nodes}, Max_{edges}, Max_{core}$ max reduction in proof size

Experimental results over SAT

	#	Avg_{node}	, Avg _{edges}	Avg_{core}	T(s)	Maxnod	$_{es}Max_{edge}$	$_{s}Max_{core}$
RP	25	5.9%	6.5%	1.7%	10.8	33.1%	33.4%	30.3%
Ratio								
0.01	25	6.8%	7.9%	1.7%	32.3	34.0%	34.4%	30.5%
0.025	25	6.8%	7.9%	1.7%	32.3	34.0%	34.4%	30.5%
0.05	25	7.0%	8.2%	1.8%	40.0	34.0%	34.4%	30.5%
0.075	25	7.2%	8.4%	1.8%	49.3	34.7%	35.1%	30.5%
0.1	25	7.3%	8.4%	1.8%	60.2	34.7%	35.1%	30.5%
0.25	25	7.6%	8.8%	1.9%	125.3	39.8%	40.6%	31.7%
0.5	25	7.8%	9.1%	1.9%	243.5	41.0%	41.9%	32.1%
0.75	25	7.9%	9.3%	1.9%	360.0	41.6%	42.6%	32.1%

■ *Ratio* — time threshold as fraction of solving time

- \blacksquare # number of benchmarks solved
- Avg_{nodes}, Avg_{edges}, Avg_{core} average reduction in proof size
 T(s) average transformation time in seconds
- \blacksquare Max_{nodes}, Max_{edges}, Max_{core} max reduction in proof size

Experimental results over SAT

	#	Avg_{node}	$s Avg_{edges}$	Avg_{core}	T(s)	Maxnod	$_{es}Max_{edge}$	$_{s}Max_{core}$
RP	25	5.9%	6.5%	1.7%	10.8	33.1%	33.4%	30.3%
Ratio								
0.01	25	6.8%	7.9%	1.7%	32.3	34.0%	34.4%	30.5%
0.025	25	6.8%	7.9%	1.7%	32.3	34.0%	34.4%	30.5%
0.05	25	7.0%	8.2%	1.8%	40.0	34.0%	34.4%	30.5%
0.075	25	7.2%	8.4%	1.8%	49.3	34.7%	35.1%	30.5%
0.1	25	7.3%	8.4%	1.8%	60.2	34.7%	35.1%	30.5%
0.25	25	7.6%	8.8%	1.9%	125.3	39.8%	40.6%	31.7%
0.5	25	7.8%	9.1%	1.9%	243.5	41.0%	41.9%	32.1%
0.75	25	7.9%	9.3%	1.9%	360.0	41.6%	42.6%	32.1%

- *Ratio* time threshold as fraction of solving time
- \blacksquare # number of benchmarks solved
- Avg_{nodes}, Avg_{edges}, Avg_{core} average reduction in proof size
 T(s) average transformation time in seconds
- $Max_{nodes}, Max_{edges}, Max_{core}$ max reduction in proof size

- OpenSMT Solver
- Application to Lazy Abstraction with Interpolants
- Proof Manipulation for Interpolation and Reduction
- http://verify.inf.usi.ch

Thanks

R. Bruttomesso, S. Rollini, N. Sharygina, and A. Tsitovich. *Flexible Interpolation with Local Proof Transformations*. In ICCAD, 2010.

R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. *The OpenSMT Solver*. In TACAS, pages 150153, 2010.

S. Rollini, R. Bruttomesso, and N. Sharygina. An Efficient and Flexible Approach to Resolution Proof Reduction. In HVC, 2010. [Pudlák97] P. Pudlák. Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computations. J. Symb. Log. 1997.

[McMillan04] K. L. McMillan. An Interpolating Theorem Prover. TACAS. 2004.

[Cimatti08] A. Cimatti, A. Griggio, R. Sebastiani. Efficient Interpolant Generation in SMT. TACAS. 2008.

[Beyer08] D. Beyer, D. Zufferey, R. Majumdar. CSIsat: Interpolation for LA+EUF. CAV. 2008.

[Bozzano05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. Van Rossum, S. Ranise, R. Sebastiani. Efficient Satisfiability Modulo Theories via Delayed Theory Combination. CAV. 2005.

[Yorsh05] G. Yorsh, M. Musuvathi. A Combination Method for Generating Interpolants. CADE. 2005.