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The OpenSMT Solver

Open-source solver developed at USI since 20081

Based on MiniSAT, and Efficient (e.g., see SMT-COMP’10)

Structured to be easily extended with new theory-solvers

Several algorithms for computing interpolants and manipulating
proofs of unsatisfiability

Coming soon: integration with model-checker MCMT
(JWW F.Alberti, S. Ghilardi, S.Ranise)

1Available at http://www.verify.usi.ch/opensmt
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Interpolants



Quantifier-free Interpolation

A first-order theory T has quantifier-free interpolation property

iff

for every quantifier-free formulae A, B, such that A ∧B is
T -unsatisfiable, there exists a quantifier-free formula I such that:

(i) T ` A→ I;

(ii) B ∧ I is T -unsatisfiable;

(iii) I is defined over common symbols of A and B.

In short, I is an overapproximation of A that is still unsatisfiable
with B, and that uses the common language
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Theories with Quantifier-free Interpolation

Many useful theories used in software verification admit quantifier-free
interpolants:

Linear Real Arithmetic (LRA);

Linear Integer Arithmetic (LIA)

(with help of {≡n} predicates);

Equality with Uninterpreted Functions (EUF);

Arrays with extensionality (AX )

(with help of diff function);

some combinations, like (LRA ∪ EUF);

but not some other, like (LIA ∪ EUF).

In general, those theories that admit Quantifier Elimination , also
admit quantifier-free interpolants
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Some easy examples

Example (Trivial cases)

If A is unsatisfiable on its own (i.e., A = ⊥), then I = ⊥.

If B is unsatisfiable on its own (i.e., B = ⊥), then I = >.

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = {c1} (one of the many possible, see later)

Example (Linear Real Arithmetic)

A ≡ {(x− y ≤ 2) ∧ (y − z ≤ 1)}
B ≡ {(z − w ≤ 0) ∧ (w − x ≤ −10)}
I = {x− z ≤ 8} (one of the infinite possible)
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Computing interpolants with OpenSMT

SMT-LIB 2 Standard does not support (yet) interpolation commands

OpenSMT supports non-standard interpolation commands

(set-option :produce-interpolants <bool>)

tells OpenSMT to compute interpolants

(assert-partition <formula>)

tells OpenSMT about a partition

(get-interpolant <n>)

command to retrieve an interpolant
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Application to Program Verification

So far we have considered interpolants between two partitions A and B

A more general definition involves n ≥ 2 partitions A1, . . . , An,
whose conjunction is unsatisfiable

Interpolants I0, . . . , In are such that

(i) I0 = >, In = ⊥;

(ii) T ` (Ik ∧Ak+1)→ Ik+1;

(iii) Ik on shared symbols of Ak and Ak+1.

For n = 2 , you get the previous definition for A and B
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Application to Program Verification
Lazy Abstraction with Interpolants

Original (Concrete) Program

Control Flow and Transitions

1: y = x;
2: while ( x ≥ 1 ) {
3: x = x - 1;
4: y = y - 1;
5: }
6: if ( y ≥ 1 )
7: ERROR;

0 2 7
T1 T3

T2

T1: > ∧
{
x′ := x
y′ := x

T2: x ≥ 1 ∧
{
x′ := x− 1
y′ := y − 1

T3: x ≤ 0 ∧ y ≥ 1 ∧
{
x′ := x
y′ := y
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Computing Interpolants



Interpolants via Quantifier Elimination (QE)

If T admits QE, then an interpolant for A ∧B can be computed as
follows:

Take A. Let ~a be the symbols local to A;

“Quantify-out” local symbols as ∃~a. A;

Compute I = QE(∃~a. A).

Example (Boolean logic)

A ≡ {¬a ∧ (a ∨ c1) ∧ (a ∨ c2)}
B ≡ {¬b ∧ (b ∨ ¬c1) ∧ (b ∨ ¬c2)}
I = QE(∃a. A) = A(>/a) ∨A(⊥/a) = ⊥ ∨ (c1 ∧ c2) = c1 ∧ c2

Interpolants computed this way are the “strongest” possible, as
T ` A↔ I (remember that by definition T ` A→ I is enough)

This technique is computationally too expensive and is to be
avoided
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Interpolants Computation in Practice

Several ways of describing interpolant computation:

By extending rules of an existing calculus with a set of “interpolating
instructions”

Γ, b1 ` ∆ Γ, b2 ` ∆
∨-Left

Γ, b1 ∨ b2 ` ∆

(+) Formally very clean
(−) Non-deterministic

By extending an existing algorithm, e.g., the Simplex: output the summaries
of the constraints belonging to A that are involved in the conflict

A
x+ y + z ≤ 0 1

(+) Algorithmically precise
(−) Low flexibility
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Two-Provers Paradigm

Abstract way of describing interpolation process, detached from any
particular calculus or algorithm

Two identical provers, one for A and one for B cooperate in turns to
derive unsatisfiability (similarly to Nelson-Oppen framework). At any
step provers either

locally derive new facts

exchange information on the
shared language with the other
prover

A B
γ1 δ1
γ2 δ2

γ3 → γ3

If α1 ∧ α2 ` α3

Repeat until either A or B derive ⊥

Interpolant can be computed in backward manner
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Size can be exponential w.r.t. input formula
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Proof Transformation
Effect

(a) Initial proof: A-local, B-local, AB-common, AB-mixed

(b) Transformed proof: AB-mixed predicates isolated into subtrees

(c) Final proof: AB-mixed subtrees removed, new leaves are theory
lemmata

(a) (b) (c)
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Reduction LIA to LRA
Transformation

A ≡ {p, q} B ≡ {r, s} L ≡ {tu, pru, qst}

Proof of unsatisfiability

p pru
p

ru r
r

u tu
u

t qst
t

qs q
q

s s
s

⊥
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Experimental results over QF UFIDL

Group # #AB %time %nodes %edges

RDS 2 7 84% -16% -19%
EufLaAr 2 74 18% 187% 193%
pete 15 20 16% 66% 68%
pete2 52 13 6% 73% 80%
uclid 11 12 29% 87% 90%

Overall 82 16 13% 74% 79%

# — number of benchmarks solved

#AB — average number of AB-mixed predicates in proof

%time — average time overhead

%nodes, %edges — average difference in proof size
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Combined Approach Evaluation
Experimental results over SMT: QF UF, QF IDL, QF LRA, QF RDL

# Avgnodes Avgedges Avgcore T (s) MaxnodesMaxedgesMaxcore

RP 1370 6.7% 7.5% 1.3% 1.7 65.1% 68.9% 39.1%

Ratio

0.01 1366 8.9% 10.7% 1.4% 3.4 66.3% 70.2% 45.7%
0.025 1366 9.8% 11.9% 1.5% 3.6 77.2% 79.9% 45.7%
0.05 1366 10.7% 13.0% 1.6% 4.1 78.5% 81.2% 45.7%
0.075 1366 11.4% 13.8% 1.7% 4.5 78.5% 81.2% 45.7%
0.1 1364 11.8% 14.4% 1.7% 5.0 78.8% 83.6% 45.7%
0.25 1359 13.6% 16.6% 1.9% 7.6 79.6% 84.4% 45.7%
0.5 1348 15.0% 18.4% 2.0% 11.5 79.1% 85.2% 45.7%
0.75 1341 16.0% 19.5% 2.1% 15.1 79.9% 86.1% 45.7%
1 1337 16.7% 20.4% 2.2% 18.8 79.9% 86.1% 45.7%

Ratio — time threshold as fraction of solving time

# — number of benchmarks solved

Avgnodes, Avgedges, Avgcore — average reduction in proof size

T (s) — average transformation time in seconds

Maxnodes, Maxedges, Maxcore — max reduction in proof size
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Combined Approach Evaluation
Experimental results over SAT

# Avgnodes Avgedges Avgcore T (s) MaxnodesMaxedgesMaxcore

RP 25 5.9% 6.5% 1.7% 10.8 33.1% 33.4% 30.3%

Ratio
0.01 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5%
0.025 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5%
0.05 25 7.0% 8.2% 1.8% 40.0 34.0% 34.4% 30.5%
0.075 25 7.2% 8.4% 1.8% 49.3 34.7% 35.1% 30.5%
0.1 25 7.3% 8.4% 1.8% 60.2 34.7% 35.1% 30.5%
0.25 25 7.6% 8.8% 1.9% 125.3 39.8% 40.6% 31.7%
0.5 25 7.8% 9.1% 1.9% 243.5 41.0% 41.9% 32.1%
0.75 25 7.9% 9.3% 1.9% 360.0 41.6% 42.6% 32.1%
1 23 8.4% 9.9% 2.1% 175.6 33.1% 33.4% 30.6%

Ratio — time threshold as fraction of solving time

# — number of benchmarks solved

Avgnodes, Avgedges, Avgcore — average reduction in proof size

T (s) — average transformation time in seconds

Maxnodes, Maxedges, Maxcore — max reduction in proof size
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Maxnodes, Maxedges, Maxcore — max reduction in proof size



Combined Approach Evaluation
Experimental results over SAT

# Avgnodes Avgedges Avgcore T (s) MaxnodesMaxedgesMaxcore

RP 25 5.9% 6.5% 1.7% 10.8 33.1% 33.4% 30.3%

Ratio
0.01 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5%
0.025 25 6.8% 7.9% 1.7% 32.3 34.0% 34.4% 30.5%
0.05 25 7.0% 8.2% 1.8% 40.0 34.0% 34.4% 30.5%
0.075 25 7.2% 8.4% 1.8% 49.3 34.7% 35.1% 30.5%
0.1 25 7.3% 8.4% 1.8% 60.2 34.7% 35.1% 30.5%
0.25 25 7.6% 8.8% 1.9% 125.3 39.8% 40.6% 31.7%
0.5 25 7.8% 9.1% 1.9% 243.5 41.0% 41.9% 32.1%

0.75 25 7.9% 9.3% 1.9% 360.0 41.6% 42.6% 32.1%

Ratio — time threshold as fraction of solving time

# — number of benchmarks solved

Avgnodes, Avgedges, Avgcore — average reduction in proof size

T (s) — average transformation time in seconds

Maxnodes, Maxedges, Maxcore — max reduction in proof size



Conclusion

OpenSMT Solver

Application to Lazy Abstraction with Interpolants

Proof Manipulation for Interpolation and Reduction

http://verify.inf.usi.ch
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