SAT-based Model-Checking

Armin Biere

Institute for Formal Models and Verification
 Johannes Kepler University
 Linz, Austria

$1^{\text {st }}$ International SAT/SMT Summer School 2011
MIT, Cambridge, USA

Tuesday, June 14, 2011

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

[ClarkeEmerson'82] [QuielleSifakis'82] Turing Award 2007

- check algorithmically temporal / sequential properties
- systems are originally finite state
e.g. circuits
- simple model: finite state automaton
- comparison of automata can be seen as model checking
- check that the output streams of two finite state systems "match"
- process algebra: simulation and bisimulation checking
- temporal logics as specification mechanism: LTL, CTL
- safety, liveness and more general temporal operators, fairness
- fixpoint algorithms with symbolic representations:
- software, cyber physical systems
- termination guaranteed if finite quotient structure exists
- key to success: abstract interpretation, e.g. predicate abstraction
- otherwise drop completeness
- simply run model checker for some time
- hope that model checking algorithm still converges
- trade completeness for scalability: bounded model checking
- actually in practice: complexity is an issue not decidability

the two traffic lights should never show a green light at the same time
- state space is the set of assignments to variables of the system
- state space is finite if the range of variables is finite
- this notion works for inifinite state spaces as well
- TLC example:
- single assignment $\sigma:\{$ southnorth, eastwest $\} \rightarrow\{$ green, yellow, red $\}$
- set of assignments is isomorphic to $\{\text { green, yellow, red }\}^{2}$
- eg state space is isomorphic to the crossproduct of variable ranges
- not all states are reachable: (green, green)
- safety properties specify invariants of the system
- simple generic algorithm for checking safety properties:

1. iteratively generate all reachable states
2. check for violation of invariant for newly reached states
3. terminate if all newly reached states can be found

- compare with assertions
- used in run time checking: assert in C and VHDL
- contract checking: require, ensure, etc. in Eiffel
- set of states S, initial states I, transition relation T
- bad states B reachable from I via T ?
- symbolic representation of T (ciruit, program, parallel product)
- avoid explicit matrix representations, because of the
- state space explosion problem, e.g. n-bit counter: $\quad|T|=O(n), \quad|S|=O\left(2^{n}\right)$
- makes reachability PSPACE complete [Savitch'70]
- on-the-fly [Holzmann'81'] for protocols
- restrict search to reachable states
- simulate and hash reached concrete states

initial states I, \quad transition relation T, \quad bad states B

$$
\begin{aligned}
& \text { model-check }_{\text {forward }}^{\mu}(I, T, B) \\
& \begin{array}{l}
S_{C}=\emptyset ; S_{N}=I ; \\
\text { while } S_{C} \neq S_{N} \text { do } \\
\text { if } B \cap S_{N} \neq \emptyset \text { then } \\
\quad \text { return "found error trace to bad states"; } \\
S_{C}=S_{N} ; \\
S_{N}=S_{C} \cup \operatorname{Img}\left(S_{C}\right) ; \\
\text { done; } \\
\text { return "no bad state reachable"; }
\end{array} .
\end{aligned}
$$

```
MODULE trafficlight (enable)
VAR
    light : { green, yellow, red };
    back : boolean;
ASSIGN
    init (light) := red;
    next (light) :=
        case
            light = red & !enable : red;
            light = red & enable : yellow;
            light = yellow & back : red;
            light = yellow & !back : green;
            TRUE : yellow;
        esac;
next (back) :=
    case
        light = red & enable : FALSE;
        light = green : TRUE;
        TRUE : back;
        esac;
MODULE main
VAR
    southnorth : trafficlight (TRUE);
    eastwest : trafficlight (TRUE);
SPEC
    AG !(southnorth.light = green & eastwest.light = green)
```

```
*** This is NuSMV 2.5.2 (compiled on Mon May 30 11:42:23 UTC 2011)
*** Copyright (c) 2010, Fondazione Bruno Kessler
-- specification AG !(southnorth.light = green & eastwest.light = green) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
    enablesouthnorth = FALSE
    enableeastwest = FALSE
    southnorth.light = red
    southnorth.back= FALSE
    eastwest.light = red
    eastwest.back=FALSE
-> State: 1.2 <-
    enablesouthnorth = TRUE
    enableeastwest = TRUE
-> State: 1.3 <-
    enablesouthnorth = FALSE
    enableeastwest = FALSE
    southnorth.light = yellow
    eastwest.light = yellow
-> State: 1.4 <-
    southnorth.light = green
    eastwest.light = green
```

- symbolic model checker implemented by Ken McMillan at CMU (early 90'ies)
- input language: finite models + temporal specification (CTL + fairness)
- hierarchical description, similar to hardward description language (HDL)
- integer and enumeration types, arithmetic operations
- original version relies on Binary Decision Diagrams (BDDs)
- NuSMV an up-to-date version from FBK, Trento
- also uses SAT/SMT technology
- additionally LTL

- compilation of finite model into pure propositional domain
- first step is to flatten the hierarchy
- recursive instantiation of all submodules
- name and parameter substitution
- may increase program size exponentially
- second step is to encode variables with boolean variables

light		light@1	light@0
green	\mapsto	0	0
yellow	\mapsto	0	1
red	\mapsto	1	0

logarithmic/binary encoding

MODULE main

VAR

enablesouthnorth : boolean;
enableeastwest : boolean;
southnorth.light : \{green, red, yellow\};
southnorth.back : boolean;
eastwest.light : \{green, red, yellow\};
eastwest.back: boolean;

ASSIGN

init(southnorth.light) $:=r e d ;$
next (southnorth.light) :=
case
southnorth.light $=$ red $\&$!enablesouthnorth : red; southnorth.light $=$ red \& enablesouthnorth : yellow; southnorth.light $=$ yellow \& southnorth.back : red; southnorth.light $=$ yellow \& ! southnorth.back : green; 1 : yellow;
next (southnorth.back) :=
case
southnorth.light $=$ red \& enablesouthnorth : 0; southnorth.light $=$ green : 1;
1 : southnorth.back;

esac;

init(eastwest.light) $:=r e d ;$
next (eastwest.light) : =

case

eastwest.light $=$ red $\&$!enableeastwest : red; eastwest.light $=$ red \& enableeastwest : yellow; eastwest.light $=$ yellow \& eastwest.back : red; eastwest.light $=$ yellow \& !eastwest.back : green; 1 : yellow;

```
next(eastwest.back) :=
```

 case
 eastwest.light \(=\) red \& enableeastwest : 0;
 eastwest.light \(=\) green : 1;
 1 : eastwest.back;
 esac;
 SPEC
AG ! (southnorth.light = green \& eastwest.light = green)

- initial state predicate I represented as boolean formula

```
!eastwest.light@0 & eastwest.light@1
(equivalent to init(eastwest.light) := red)
```

- transition relation T represented as boolean formula
- encoding of atomic predicates p as boolean formulae

```
!eastwest.light@1 & !eastwest.light@0
(equivalent to eastwest.light != green)
```


VAR

enablesouthnorth : boolean;
enableeastwest : boolean;
southnorth.light@1 : boolean; --TYPE-- green red yellow
southnorth.light@0 : boolean;
southnorth.back : boolean;
eastwest.light@1 : boolean; --TYPE-- green red yellow
eastwest.light@0 : boolean;
eastwest.back : boolean;

DEFINE

.MACRO1 := southnorth.light@1 | !southnorth.light@0;
.MACROO := enablesouthnorth | .MACRO1;
.MACRO2 : $=$! southnorth.light@1 | southnorth.light@0;
.MACRO3 := !southnorth.light@1 \& !southnorth.light@0;
.MACRO5 := eastwest.light@1 | !eastwest.light@0;
.MACRO4 := enableeastwest | .MACRO5;
.MACRO6 := !eastwest.light@1 | eastwest.light@0;
.MACRO7 := !eastwest.light@1 \& !eastwest.light@0;
ASSIGN
init(southnorth.light@1) := FALSE;
init(southnorth.light@0) := TRUE;
next(southnorth.light@1) := .MACROO \& .MACRO2;
next (southnorth.light@0) := !.MACROO | southnorth.back \& !.MACRO2;
next (southnorth.back) $:=$ (!enablesouthnorth | . MACRO1) \& (southnorth.back | . MACRO3);
init(eastwest.light@1) := FALSE;
init(eastwest.light@0) := TRUE;
next (eastwest.light@1) $:=$. MACRO4 \& .MACRO6;
next (eastwest.light@0) $:=$!.MACRO4 | eastwest.back \& !. MACRO6;
next (eastwest.back) $:=(!$ enableeastwest | .MACRO5) \& (eastwest.back | .MACRO7);

INVAR

(!southnorth.light@1 | !southnorth.light@0) \&
(!eastwest.light@1 | !eastwest.light@0)

SPEC

AG (!.MACRO3 | !. MACRO 7)

[BiereCimattiClarkeZhu-TACAS'99]

- uses SAT for model checking
- historically not the first symbolic model checking approach
- scales better than original BDD based techniques
[CouterBerthetMadre'89] [BurchClarkeMcMillanDillHwang'90] [McMillan'93]
- mostly incomplete in practice
- validity of a formula can often not be proven
- focus on counter example generation
- only counter example up to certain length (the bound k) are searched

0: terminate? $\quad S_{C}^{0}=S_{N}^{0} \quad \forall s_{0}\left[\neg I\left(s_{0}\right)\right]$
0: bad state? $B \cap S_{N}^{0} \neq \emptyset \quad \exists s_{0}\left[I\left(s_{0}\right) \wedge B\left(s_{0}\right)\right]$

1: terminate? $\quad S_{C}^{1}=S_{N}^{1} \quad \forall s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \rightarrow I\left(s_{1}\right)\right]$
1: bad state? $B \cap S_{N}^{1} \neq \emptyset \quad \exists s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge B\left(s_{1}\right)\right]$

2: terminate? $\quad S_{C}^{2}=S_{N}^{2} \quad \forall s_{0}, s_{1}, s_{2}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \rightarrow\right.$ $\left.I\left(s_{2}\right) \vee \exists t_{0}\left[I\left(t_{0}\right) \wedge T\left(t_{0}, s_{2}\right)\right]\right]$
2: bad state? $B \cap S_{N}^{1} \neq \emptyset \quad \exists s_{0}, s_{1}, s_{2}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge B\left(s_{2}\right)\right]$

0: terminate? $\quad S_{C}^{0}=S_{N}^{0} \quad \forall s_{0}\left[\neg I\left(s_{0}\right)\right]$
0 : bad state? $\quad B \cap S_{N}^{0} \neq \emptyset \quad \exists s_{0}\left[I\left(s_{0}\right) \wedge B\left(s_{0}\right)\right]$
1: terminate? $\quad S_{C}^{1}=S_{N}^{1} \quad \forall s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \rightarrow I\left(s_{1}\right)\right]$
1: bad state? $\quad B \cap S_{N}^{1} \neq \emptyset \quad \exists s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge B\left(s_{1}\right)\right]$
2: terminate? $\quad S_{C}^{2}=S_{N}^{2} \quad \forall s_{0}, s_{1}, s_{2}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \rightarrow\right.$ $\left.I\left(s_{2}\right) \vee \exists t_{0}\left[I\left(t_{0}\right) \wedge T\left(t_{0}, s_{2}\right)\right]\right]$
2: bad state? $B \cap S_{N}^{1} \neq \emptyset \quad \exists s_{0}, s_{1}, s_{2}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge B\left(s_{2}\right)\right]$
checking safety property $\quad \mathbf{G} p$ for a bound k as SAT problem:

check occurrence of B in the first k states with $B \equiv \neg p$

$$
I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right) \wedge B\left(s_{k}\right)
$$

in incremental check only last state can be bad

$$
\begin{aligned}
I & \equiv \bar{x} \bar{y} \\
T & \equiv\left(x \rightarrow x^{\prime}\right)\left(y \rightarrow y^{\prime}\right) \\
B & \equiv x y
\end{aligned}
$$

$$
\begin{array}{cccccc}
I\left(s_{0}\right) & \wedge & T\left(s_{0}, s_{1}\right) & \wedge & T\left(s_{1}, s_{2}\right) & \wedge B\left(s_{2}\right) \\
\bar{x}_{0} \bar{y}_{0} & \wedge\left(x_{0} \rightarrow x_{1}\right)\left(y_{0} \rightarrow y_{1}\right) & \wedge & \left(x_{1} \rightarrow x_{2}\right)\left(y_{1} \rightarrow y_{2}\right) & \wedge x_{2} y_{2}
\end{array}
$$

satisfying assignment: $\quad\left(x_{0}, y_{0}\right)=(0,0), \quad\left(x_{1}, y_{1}\right)=(1,0), \quad\left(x_{2}, y_{2}\right)=(1,1)$

traffic lights showing red should eventually show green

traffic lights showing red should eventually show green

traffic lights showing red should eventually show green
generic counter example trace of length k for liveness $\quad \mathbf{F} p$

$$
I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \cdots \wedge T\left(s_{k}, s_{k+1}\right) \wedge \bigvee_{l=0}^{k} s_{l}=s_{k+1} \wedge \bigwedge_{i=0}^{k} \neg p\left(s_{i}\right)
$$

for finite systems liveness can always be reformulated as safety [BiereArthoSchuppan02]

sequential circuit

break sequential loop

find inputs for which failed becomes true

$(\mathbf{G F} f) \wedge(\mathbf{G F} g)$
path $\pi=\left(s_{0}, s_{1}, s_{2}, \ldots\right)$ is fair iff all fairness constraints occur infinitely often on π

$$
I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \cdots \wedge T\left(s_{k}, s_{k+1}\right) \wedge \bigvee_{l=0}^{k}\left(s_{l}=s_{k+1} \wedge \bigvee_{j=l}^{k} f\left(s_{j}\right) \wedge \bigvee_{j=l}^{k} g\left(s_{j}\right)\right)
$$

- find bounds on the maximal length of counter examples
[BiereCimattiClarkeZhu99]
- also called completeness threshold
- exact bounds are hard to find \Rightarrow approximations
- induction
- try to find inductive invariants (algorithmically and/or manually)
- algorithmic generalization of inductive invariants: k-induction
- use of SAT for quantifier elimination as with BDDs
- then model checking becomes fixpoint calculation
- interpolation as approximation of quantifier elimination
- relative inductive reasoning as in IC3 by Aaron Bradley

Distance: length of shortest path between two states

$$
\delta(s, t) \equiv \min \left\{n \mid \exists s_{0}, \ldots, s_{n}\left[s=s_{0}, t=s_{n} \text { and } T\left(s_{i}, s_{i+1}\right) \text { for } 0 \leq i<n\right]\right\}
$$

Diameter: maximal distance between two connected states

$$
d(T) \equiv \max \left\{\delta(s, t) \mid T^{*}(s, t)\right\}
$$

Radius: maximal distance of a reachable state from the initial states

$$
r(T, I) \equiv \max \left\{\delta(s, t) \mid T^{*}(s, t) \text { and } I(s) \text { and } \delta(s, t) \leq \delta\left(s^{\prime}, t\right) \text { for all } s^{\prime} \text { with } I\left(s^{\prime}\right)\right\}
$$

(forward) radius $=2 \quad$ diameter $=4 \quad$ backward radius $=4$

- number of steps needed to reach a bad state reached can be bounded by radius
- works both for forward radius and backward radius
- so we can use the minimum of the two
- radius completeness threshold for safety properties
- safety properties: max. k for doing bounded model checking bounded
- if no counter example of this length can be found the safety property holds

reformulation:

radius max. length r of an initialized path leading to a state t, such there is no other path from an initial state to t with length less than r.

Thus radius r is the minimal number which makes the following formula valid:

$$
\begin{aligned}
\forall s_{0}, \ldots, s_{r+1}\left[\left(I\left(s_{0}\right)\right.\right. & \left.\wedge \bigwedge_{i=0}^{r} T\left(s_{i}, s_{i+1}\right)\right) \rightarrow \\
\exists n \leq r\left[\exists t_{0}, \ldots, t_{n}\left[I\left(t_{0}\right)\right.\right. & \left.\left.\left.\wedge \bigwedge_{i=0}^{n-1} T\left(t_{i}, t_{i+1}\right) \wedge t_{n}=s_{r+1}\right]\right]\right]
\end{aligned}
$$

Quantified Boolean Formula (QBF)

to prove un/satisfiable of QBF is PSPACE complete
initial states

we allow t_{i+1} to be identical to t_{i} in the lower path

- we can not find the real radius / diameter with SAT efficiently
- over approximation idea:
- drop requirement that there is no shorter path
- enforce different (no reoccurring) states on single path instead
- also called simple paths
reoccurrence diameter:
length of the longest simple path
reoccurrence radius:
length of the longest initialized simple path
reoccurring radius is minimal r which makes the following formula valid:

$$
I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{r} T\left(s_{i}, s_{i+1}\right) \rightarrow \bigvee_{0 \leq i<j \leq r+1} s_{i}=s_{j}
$$

which is valid iff the following formula is unsatisfiable:

$$
I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{r} T\left(s_{i}, s_{i+1}\right) \wedge \underbrace{\bigwedge_{0 \leq i<j \leq r+1} s_{i} \neq s_{j}}_{\text {simple path constraints }}
$$

radius 1 , reoccurrence radius n
for $k=0 \ldots \infty \quad$ check

1. k-induction base case:

$$
I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge B\left(s_{k}\right) \wedge \bigwedge_{0 \leq i<k} \neg B\left(s_{i}\right) \quad \text { satisfiable? }
$$

2. k-induction induction step:

$$
T\left(s_{0}, s_{1}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge B\left(s_{k}\right) \wedge \bigwedge_{0 \leq i<k} \neg B\left(s_{i}\right) \quad \text { unsatisfiable? }
$$

if base case satisfiable (= BMC), then bad state reachable
if inductive step unsatisfiable, then bad state unreachable
incomplete without simple path constraints

[EénSörensson'03]

$k=0 \quad$ base case

[EénSörensson'03]

$k=0 \quad$ inductive step

[EénSörensson'03]

$k=1 \quad$ base case

[EénSörensson’03]

$k=1$ inductive step

[EénSörensson'03]

$k=2$ base case

[EénSörensson'03]

$$
k=2 \quad \text { inductive step }
$$

[EénSörensson'03]

$k=3$ base case

[EénSörensson'03]

$$
k=3 \quad \text { inductive step }
$$

Incremental SAT Solving for BMC and k-Induction

[EénSörensson'03]

$k=4 \quad$ base case

[EénSörensson'03]

$$
k=4 \quad \text { inductive step }
$$

Incremental SAT Solving for BMC and k-Induction

[EénSörensson'03]

$k=5$ base case

Incremental SAT Solving for BMC and k-Induction

[EénSörensson'03]

$k=5$ inductive step

Incremental SAT Solving for BMC and k-Induction

[EénSörensson'03]

$k=6$ base case

Incremental SAT Solving for BMC and k-Induction

[EénSörensson'03]

$k=6$ inductive step

- bounded model checking: [BiereCimattiClarkeZhu'99]

$$
I\left(s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \bigvee_{0 \leq i \leq k} B\left(s_{i}\right) \quad \text { satisfiable? }
$$

- reoccurrence diameter checking: [BiereCimattiClarkeZhu'99]

$$
T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \bigwedge_{1 \leq i<j \leq k} s_{i} \neq s_{j} \quad \text { unsatisfiable? }
$$

- k-induction base case: [SheeranSinghStålmarck'00]

$$
I\left(s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge B\left(s_{k}\right) \wedge \bigwedge_{0 \leq i<k} \neg B\left(s_{i}\right) \quad \text { satisfiable? }
$$

- k-induction induction step: [SheeranSinghStålmarck'00]

$$
T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge B\left(s_{k}\right) \wedge \bigwedge_{0 \leq i<k} \neg B\left(s_{i}\right) \wedge \bigwedge_{1 \leq i<j \leq k} s_{i} \neq s_{j} \quad \text { unsatisfiable? }
$$

- automatic abstraction refinement $=$ lemmas on demand of simple path constraints [EénSörensson'03]
let $\quad G=\neg B$ denote the "good states":
- 0-induction base case: $\quad I\left(s_{0}\right) \wedge B\left(s_{0}\right)$ satisfiable iff initial bad state exists
- 0-induction inductive step: $B\left(s_{0}\right)$ unsatisfiable iff $\quad \neg B$ propositional tautology
- 1-induction base: $I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge B\left(s_{1}\right)$ satisfiable iff bad state reachable in one step
- 1 -induction inductive step: $\quad \neg B\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge B\left(s_{1}\right)$ unsatisfiable iff G inductive assuming 0 -induction base case was unsatisfiable and thus $I \models G$
where $\quad G=\neg B \quad$ is called inductive iff \quad 1. $\quad I \models G \quad$ and \quad 2. $\quad G \wedge T \models G^{\prime}$
[BiereCimattiClarkeFujitaZhu'00]
task is to prove that p is an invariant
- guess a formula G stronger than $p: \quad G \models p$

1st check

- show G inductive: $\quad I \models G, \quad G \wedge T \models G^{\prime}$

2nd, 3rd check

- all three checks can be formulated as UNSAT checks
- if one check fails refine G based on satisfying assignment
manual process and thus complete on finite state systems
there are also automatic abstraction/refinement versions of this approach CEGAR [ClarkeGrumbergJhaLuVeith'00]

Definition $\quad I$ interpolant of A and $B \quad$ iff
(1) $A \Rightarrow I$
(2) $\quad V(I) \subseteq G=V(A) \cap V(B)$
(3) $\quad I \wedge B$ unsatisfiable

Note: $\quad A \wedge B$ unsatisfiable as a consequence.
Intuition: I abstraction of A over the common (global/interface) variables G of A and B which still is inconsistent with B.
strongest interpolant $\exists L_{A}[A]$ with $L_{A}=V(A) \backslash G$
Let A and B formulas in CNF.
From a refutational resolution proof of $A \wedge B$ generate interpolant I. next slide

Many applications, approx. quantifier elimination, gives fast model checking algorithm.

Extracting Interpolants from Refutations

[McMillan'03, McMillan'05] + [Biere'09] (BMC chapter in Handbook)

Definition interpolating quadruple $(A, B) c[f]$ is well-formed iff
(W1) $\quad V(c) \subseteq V(A) \cup V(B)$
(W2) $\quad V(f) \subseteq G \cup(V(c) \cap V(A)) \subseteq V(A)$

Definition well-formed interpolating quadruple $(A, B) c[f]$ is valid iff

$$
\text { (V1) } \quad A \Rightarrow f \quad \text { (V2) } \quad B \wedge f \Rightarrow c
$$

Definitition proof rules for interpolating quadrupels

$$
\begin{array}{ll}
\text { (R1) } \frac{(A, B) c \dot{\vee} l[f] \quad(A, B) d \dot{\vee} \bar{l}[g]}{(A, B) c[c]} c \in A & |l| \in V(B) \\
\text { (R2) } \frac{(A, B) c \vee d[f \wedge g]}{(A, B) c[\mathrm{~T}]} c \in B & \frac{(A, B) c \dot{\vee} l[f] \quad(A, B) d \dot{\vee} \bar{l}[g]}{(A, B) c \vee d[f|\bar{l} \vee g| l]}|l| \notin V(B) \tag{R4}
\end{array}
$$

Theorem proof rules produce well-formed and valid interpolating quadruples

$$
\begin{aligned}
& I\left(s_{-1}\right) \wedge T\left(s_{-1}, s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge T\left(s_{2}, s_{3}\right) \wedge \bigvee_{i=0}^{3} \neg G\left(s_{i}\right) \\
& \text { interpolant } \quad P_{1}\left(s_{0}\right) \quad \text { let } \quad R_{1} \equiv I \vee P_{1} \\
& R_{1}\left(s_{-1}\right) \wedge T\left(s_{-1}, s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge T\left(s_{2}, s_{3}\right) \wedge \bigvee_{i=0}^{3} \neg G\left(s_{i}\right) \\
& \text { interpolant } \quad R_{2}\left(s_{0}\right) \Leftarrow R_{1}\left(s_{-1}\right) \wedge T\left(s_{-1}, s_{0}\right) \quad \text { let } \quad R_{2} \equiv R_{1} \vee P_{2} \\
& R_{2}\left(s_{-1}\right) \wedge T\left(s_{-1}, s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge T\left(s_{2}, s_{3}\right) \wedge \bigvee_{i=0}^{3} \neg G\left(s_{i}\right) \\
& R_{n-1}\left(s_{-1}\right) \wedge T\left(s_{-1}, s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge T\left(s_{2}, s_{3}\right) \wedge \bigvee_{i=0}^{3} \neg G\left(s_{i}\right) \\
& \text { interpolant } \quad P_{n}\left(s_{0}\right)
\end{aligned}
$$

until $\quad R_{n} \equiv R_{n-1} \quad$ fix-point guaranteed for $k=$ backward radius of $\neg G$
[Bradley'11] + [EénMishchenkoBrayton'11]

$$
F_{0} \supseteq F_{1} \supseteq F_{2}
$$

sets of rel. ind. clauses
new key concept in [Bradley'11]:
clause c relative inductive w.r.t. $F \quad$ iff $\quad c \wedge F \wedge T \Rightarrow c^{\prime} \quad$ iff $\quad c \wedge F \wedge T \wedge \bar{c}^{\prime}$ unsatisfiable
(1) s is reachable from F_{0} then bad is reachable transitively
(2) otherwise exists $c \subseteq \bar{s}$ rel. ind. w.r.t. F_{0} can be added to F_{1} and maybe to F_{2}
as soon the last set is good, i.e. $F_{k} \Rightarrow G$ increase k

F_{0}	F_{1}	F_{2}	F_{3}
$I G$	G	G	B
			O

propagate all relative inductive clauses of last set to new set
if all can been propagated F_{k} is an inductive invariant stronger than G

Let $\quad F_{0}, \ldots, F_{k}$ be a sequence of sets of clauses.
monotonic iff $F_{i} \supseteq F_{i+1}$ for $i=0 \ldots k-1$
(relative) inductive iff $\quad F_{i} T \Rightarrow F_{i+1}^{\prime} \quad$ for $\quad i=0 \ldots k-1$
initialized iff $\quad I \equiv F_{0}$
good iff $\quad F_{i} \Rightarrow G \quad$ for $i=0 \ldots k-1$
last set might be bad if $F_{k} \wedge B$ satisfiable
F is k-adequat \quad iff \quad all states s satisfying F are at least k steps away from B [McMillan'03]
sequence monotonic and inductive $\quad \Rightarrow \quad F_{k-j} \quad j$-adequat

```
CHECK (s,i) {
    while }\overline{s}\wedge\mp@subsup{F}{i-1}{}\wedgeT\wedge\mp@subsup{s}{}{\prime}\quad\mathrm{ satisfiable {
        if i=1 throw SATISFIABLE
        choose cube t with t}\models\overline{s}\wedge\mp@subsup{F}{i-1}{}\wedgeT\wedge\mp@subsup{s}{}{\prime
        CHECK ( 
    }
    choose clause c\subseteq\overline{s}\mathrm{ with c}c\wedge\mp@subsup{F}{i-1}{}\wedgeT\wedge\mp@subsup{\overline{c}}{}{\prime}\mathrm{ unsatisfiable}
    F
}
MAIN (s,i) {
    F0}=I,\quad\mp@subsup{F}{1}{}=\top,\quadk=1\quad\mathrm{ do not forget to check base cases first
    forever {
        CHECK (B,k)
        k := k+1, F}\quad\mp@subsup{F}{k}{}\quad:= all rel. ind. clauses of F Fk-1 w.r.t. F F Fk-1
        if }\mp@subsup{F}{k}{}\subseteq\mp@subsup{F}{k-1}{}\quad\mathrm{ throw UNSATISFIABLE
    }
}
```

- implemented in IC3 by Aaron Bradley
- as single engine model checker extremely successful in HWMCC'10

Hardware Model Checking Competition 2010

- based on rather out-dated SAT solver (ZChaff from 2004)
- independent implementations such as [EénMishchenkoBrayton IWLS'11]
- seem to be faster than BDDs, k-induction, interpolation
- might be much easier to lift to SMT-based model checking than interpolation
- opportunities for improvement: structural SAT/SMT solving
- affiliated to FMCAD'11, Novemeber 2011, Austin
- we expect new benchmarks from industry
- and improved implementations
- checking multiple properties
- checking liveness properties
- new AIGER format

http://fmv.jku.at/hwmcc11

given (symbol encoding of) an infinite path $\pi=\left(s_{0}, s_{1}, \ldots\right)$.

$$
\begin{array}{rll}
s_{i} \models p & \text { iff } & p\left(s_{0}\right) \\
s_{i} \models \mathbf{X} f & \text { iff } & s_{i+1} \models f \\
s_{i} \models \mathbf{G} f & \text { iff } & \forall j \leq i\left[s_{j} \models f\right] \\
s_{i} \models \mathbf{F} f & \text { iff } & \exists j \leq i\left[s_{j} \models f\right]
\end{array}
$$

How to define/encode bounded semantics for a lasso?
where lasso is a path $\pi=\left(s_{0}, s_{1}, \ldots, s_{k}\right)$ and $s_{l}=s_{k}$ for one l

[LatvalaBiereHeljankoJunttila FMCAD'04]

evaluate semantics on loop in two iterations
$\rangle=1$ st iteration $\quad[]=$ 2nd iteration

$:=$	$i<k$	$i=k$
$[p]_{i}$	$p\left(s_{i}\right)$	$p\left(s_{k}\right)$
$[\neg p]_{i}$	$\neg p\left(s_{i}\right)$	$\neg p\left(s_{k}\right)$
$[\mathbf{X} f]_{i}$	$[f]_{i+1}$	$\bigvee_{l=0}^{k}\left(T\left(s_{k}, s_{l}\right) \wedge[f]_{l}\right)$
$[\mathbf{G} f]_{i}$	$[f]_{i} \wedge[\mathbf{G} f]_{i+1}$	$\bigvee_{l=0}^{k}\left(T\left(s_{k}, s_{l}\right) \wedge\langle\mathbf{G} f\rangle_{l}\right)$
$[\mathbf{F} f]_{i}$	$[f]_{i} \vee[\mathbf{F} f]_{i+1}$	$\bigvee_{l=0}^{k}\left(T\left(s_{k}, s_{l}\right) \wedge\langle\mathbf{F} f\rangle_{l}\right)$
$\langle\mathbf{G} f\rangle_{i}$	$[f]_{i} \wedge\langle\mathbf{G} f\rangle_{i+1}$	$[f]_{k}$
$\langle\mathbf{F} f\rangle_{i}$	$[f]_{i} \vee\langle\mathbf{F} f\rangle_{i+1}$	$[f]_{k}$

- LTL semantics on single path the same as CTL semantics
- symbolically implement fixpoint calculation for (A)CTL
- fixpoint computation terminates after 2 iterations (not k)
- boolean fixpoint equations
- easy to implement and optimize, fast
- generalized to past time [LatvalaBiereHeljankoJunttila VMCAl'05]
- minimal counter examples for past time [SchuppanBiere TACAS'05]
- incremental (and complete) [LatvalaHeljankoJunttila CAV'05]
recursive expansion

$$
\mathbf{F} p \equiv p \vee \mathbf{X F} p
$$

checking $\quad \mathbf{G} \bar{p} \quad$ implemented as search for witness for $\quad \mathbf{F} p$

Kripke structure: single state with self loop in which p does not hold incorrect translation of $\mathbf{F} p$:

$$
\overbrace{I\left(s_{0}\right) \wedge T\left(s_{0}, s_{0}\right)}^{\text {model constraints }} \wedge \underbrace{\left([\mathbf{F} p] \leftrightarrow p\left(s_{0}\right) \vee[\mathbf{F} p]\right)}_{\text {translation }} \wedge \underbrace{\text { assumption }}_{x}
$$

since it is satisfiable by setting $\quad x=1 \quad$ though $p\left(s_{0}\right)=0$
(x fresh boolean variable introduced for $[\mathbf{F} p]$)

