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Disconnect between theory and practice

Concerning the SAT problem, and more generally proof search:

Theory: SAT is NP-complete and hence conjectured intractable.

Practice: SAT is “efficient in practice”.  [Vijay Ganesh, Monday’s talk]

The resolution of these two viewpoints is that “Theory” 
considers worst-case performance and instances of SAT that 
arise from computationally intractable problems, whereas 
“Practice” considers problems that arise in industrial 
situations and are “Big and shallow”.
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Part I: Theory (The bad news)

Let  P  be a (propositional) proof system.   We would like to solve 
the following problems:

- Provability problem: Given a formula Á, decide if it has a short 
P-proof.

- Proof search: Given a formula Áthat has a short P-proof, find 
a P-proof.

- Characterize the formulas that have reasonable length 
(polynomial length) P-proofs.

- Compare the strength of P with other proof systems.

In many cases, the first two problems are NP-hard, and thus 
conjectured to be infeasible to solve.
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Some common proof systems

- DPLL with clause learning.  (As is common for SAT solvers.)
- Resolution.
- Frege systems. (Textbook system, based on modus ponens.)
- Extended Frege systems/extended resolution.  Frege plus the 

ability to introduce new variables that abbreviate formulas.

Definition: The length of a proof is the number of symbols on 
the proof.

Extended Frege proofs can equivalently be defined as Frege
proofs for which proof size is the number of steps in the proof.
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Definition: [Cook-Reckhow’75]  An abstract proof system is a 
polynomial time function f mapping binary strings onto the 
tautologies.

Any traditional proof system can be viewed as an abstract proof 
systems by defining f(w) to equal the formula proved by the 
proof w.  In this way, one can form very strong proof systems, 
even treating Peano arithmetic or ZF set theory as a 
propositional proof system.

Theorem: [CR’75] There exists an (abstract) proof system in 
which all tautologies have polynomial size proofs if and only if 
NP=coNP.

This is “bad” news, since we conjecture NP≠coNP.  Proof search 
is then also infeasible since proof size is already infeasible large!  
Worse, this applies (conjecturally) to any proof system.
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“Cook’s Program” for proving NP≠coNP: Prove super-polynomial 
lower bounds for stronger and stronger proof systems, until it 
is established for all abstract proof systems.

So far achieved for:
- Truth tables
- Tree-like and regular resolution

- Resolution
- Bounded depth Frege systems, also with counting mod m

axioms for fixed m.
- Cutting planes (integer linear inequalities); via Craig interpolation

- Nullstellensatz systems (polynomials, over fields)
- Intuitionistic and modal logics.
- OBDD (ordered BDD) proof systems.
- Certain Lovász-Schrijver systems (quadratic polynomials)
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However, we do not have super-polynomial lower bounds on 
proof lengths for the following systems.

Bounded depth Frege with parity gates; or with mod m gates for 
any m>1; or with majority/threshold gates.

Frege systems
Extended Frege systems
Peano arithmetic, ZF set theory, etc.
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Hardness of proof search

Theorem: [Alekhnovitch-Buss-Moran-Pitassi ’00]  For almost all 
natural proof systems (resolution, Frege, nullstellensatz, cut-
free, etc.), it is impossible to approximate shortest proof 
length in polynomial to with a factor of                           unless 
P=NP.   (Where n is the length of a shortest proof.)

Definition: A proof system P is automatizable if there is a 
procedure, which given a formula Á with a P-proof of length n
finds some P-proof in time polynomial in n.

Theorem [Bonet-Pitassi-Raz ’97]  If Frege proofs are 
automatizable, then factorization of Blum integers is in 
polynomial time.

Theorem:  [Alekhnovitch-Razborov ’01] If resolution is 
automatizable, then the weak parameterized hierarch W[P} 
collapses.
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None of the implicands above are believed to be true.  
Hence we have:

Moral (conjectural):
Even when short proofs exist, it can be infeasible to find them.
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An independence result for NP and P/poly

Definition: The functional pigeonhole principle                 states 
there is no 1-1, onto map from m objects to n<m objects.

The pigeonhole principles have been an important source of 
examples for upper and lower bounds on proof complexity 
(Resolution; Haken ’85; extended Frege systems; Cook ’75; 
Frege systems; Buss ’87; and many more).

Theorem: [Razborov ‘04]                   requires resolution proofs of 
size exponential in n1/3.

111st SAT/SMT Solver Summer School @ MIT



Corollary:  [Razborov]. Resolution is unable to give polynomial 
size proofs of tautologies expressing the principle that NP is 
not in P/poly (i.e., that NP does not have polynomial size 
circuits).

Proof idea: (Think of setting up a program correctness result as 
an instance of SAT.)  Let t>n3.  Express the principle that SAT 
has a circuits of size t as a set of clauses of size poly(t,2n).  
Consider a resolution refutation of these clauses.

But, SAT has obvious circuits of size 2n :  Resolution can not 
disprove the exist of a bijection from 2n to t.  Such a bijection
can convert the 2n -size circuit into a circuit of size t.

This (along with analogous, uniform results for fragments of 
bounded arithmetic) is currently the best unconditional 
formal non-provability result for P≠NP.  (!) 

121st SAT/SMT Solver Summer School @ MIT



“SAT is efficient in practice”, to the extent it holds, is true largely 
to the success of DPLL with Clause Learning [GRASP,Chaff,…] 
on industrial problems and combinatorial problems.

DPLL with Clause Learning depends on:
• Depth first search of solution space
• Efficient backtracking
• Literal selection heuristics
• Clause learning strategies
• Clause forgetting strategies (garbage collection)
• Restart strategies
• Execution optimizations

Part II: Practice (The good news?)
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Good (?) news:  For fixed k>0, our best time bounds for solving 
satisfiability are based essentially on: DPLL without Clause 
Learning, with random literal selection and restarts.

Theorem: [Hertli ‘ta; see also HMS ‘11, PPSZ ’05, …]  There is 
randomized algorithm for 3-SAT with expected runtime < 2εn, 
where ε = 0.39 and n is the number of variables.

The proof is based on selecting decision literals at random, using 
small derivations to check whether the literal value is forced 
(in effect, using unit propagation to decide if consistent to set 
a literal to a particular value).  No backtracking, no clause 
learning is used.

Challenge problem: Show that clause learning, etc., can yield a 
better value for ε.
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Clause Learning – very important for DPLL

Decision literal p ContradictionFirst UIP

Blue for top level Yellow for lower level literal
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Clauses: {~y,~z, x},  {~p,~a,r}, etc. (One per unit propagation.)
First UIP Learned Clause: {~a,~u,~s,~w,~v}.
Whole top level learned clause: {~p,~a,~u,~b,~w,~v}.
With First-UIP: Both p and s can be set false when backtracking.
New level of ~s is set to max. level of u,v,w.

First UIP Cut
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Example: Clause Learning for Pigeonhole Tautologies 
(Injective/total):

Run times in SatDiego, version 1.  Variable selection is by a 
“clause-greedy” method.   No restarts.
Clause learning provides dramatic improvement, but is 
even much better suited for  industrial, less combinatorially
structured problems, where it can often handle hundreds 
of thousands of variables, or more.  
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What is the Logical strength of DPLL with Clause Learning?

[B-Hoffmann-Johannsen ‘08] extending [Beame-Kautz-Sabharwal ‘04, Van Gelder ‘05]

Definition: A w-resolution inference is of the form

A regular proof is one in which no single path uses the same 
resolution variable twice.

Definition:  An input proof is a tree-like proof in which every 
inference has at least one hypothesis which is a leaf (usually 
an initial clause, but also possibly a “lemma”).

Definition:  An input clause of a proof is a clause derived by an 
input sub-proof.
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Instead of dag-like proofs, consider tree-like proofs with lemmas:  
Lemmas must be derived first, and then can be used freely later 

as initial clauses in the proof (to the right in the proof tree).
Definition: A WRTI-proof is a tree-like w-resolution proof in 

which input clauses may be used as lemmas.

Theorem: General dag resolution proofs can be polynomially
simulated by WRTI proofs.

Theorem: Regular WRTI proofs are polynomially equivalent to 
non-greedy DPLL proof search with clause learning (without 
restarts).

This theorem holds for all standard clause learning (1st UIP, all 
UIP,  rel sat, first cut, etc.). The original Marques-Silva & 
Sakallah clause learning is sufficient for the converse 
simulation.
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For DPLL with Clause Learning and Restarts:

It not hard to see that DPLL with clause learning and restarts, if 
allowed non-greedy search, can simulate general resolution 
[BKS].

Theorem: [Pipatsrisawat-Darwiche ‘10].  DPLL with clause 
learning and restarts can polynomially simulate general 
resolution – for appropriately choices of decision literals and 
any commonly used (greedy) learning strategy.

[Atserias-Fichte-Thurley] Similar result for width k resolution.

General idea for proof: Use clause learning to successively learn 
the clauses in a resolution proof, or at least learn enough so 
as to be able simulate unit propagation based on these 
clauses.  Difficulty was to show that this works even in the 
presence of greedy clause learning.
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The power of DPLL with clause learning and without restarts 
versus the power of resolution is unknown.   The only known 
simulations are based on variable extensions [BKS, BHPvG, 
BHJ] and are unsatisfactory.

Open question:  
• Does regular WRTI simulate general resolution?
• Does pool resolution [Van Gelder] simulate general 

resolution?

Both systems are known to be stronger than regular resolution. 
[Van Gelder ‘05, also Bonet-Buss ‘ip]
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A Concluding Question

Meta-Question: How relevant are theoretical analyses for 
understanding the power of DPLL and other practical  
algorithms for satisfiability?

For instance: Does the theorem about polynomially simulating 
resolution have anything to do with the source of the power 
of restarts?  Or, are restarts powerful for other reasons? 

Other theories: - “High variance in search difficulty”
- “Backdoor sets”
- “Clearing the search space”
- “Shake the apple tree (low-hanging fruit)”
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Thank you!

Related survey paper:  Buss, “Towards NP-P via Proof Complexity and Search”, ta.
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