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Outline 

•  Ancient History: Planning as Satisfiability 
 

•  The Future: Markov Logic 
 



Part I 

•  Ancient History: Planning as Satisfiability 
– Planning 
– SAT encoding 
– 3 good ideas: 

•  Parallel actions 
•  Plan graph pruning 
•  Transition based encoding 



Planning 

•  Find a plan that transform an initial state to 
a goal state 
– What is a state? 
– What is a plan? 



Classic Planning 

•  Find a sequence of actions that transform 
an initial state to a goal state 
– State = complete truth assignment to a set of 

time-dependent propositions (fluents) 
– Action = a partial function State → State 

•  Fully observed, deterministic 



STRIPS 
•  Set of possible actions specified by parameterized 

operator schemas and (typed) constants 
 

operator: Fly(a,b) 
precondition: At(a), Fueled 
effect: At(b), ~At(a), ~Fueled 
 
constants: {NY, Boston, Seattle} 
 

•  Fluents not mentioned in effect are unchanged by 
action 

 



STRIPS 

•  Introduced for Shakey the robot (1969) 
– Generate plan 
– Start executing 
– Sense state after 

each action, verifying 
it is as expected 

–  If not, stop and 
replan 

•  Still a widely-used 
method for robot control (vs. POMDP etc) 

 



STRIPS 

•  Complexity 
– Unbounded length: PSPACE-complete 
– Bounded length: NP-complete 

•  Algorithms 
– Backward chaining on subgoals (1969)  
– Search in space of partially-order plans (1987) 
– Planning as satisfiability (1992, 1996) 
– Graphplan (1996) 
– Forward- chaining heuristic search (1999) 
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Clause Schemas 

!x " {A,B,C}P(x)
represents
P(A)#P(B)#P(C)

$x " {A,B,C}P(x)
represents
P(A)%P(B)%P(C)



SAT Encoding 
•  Time is sequential and discrete 

–  Represented by integers 
–  Actions occur instantaneously at a time point 
–  Each fluent is true or false at each time point 

•  If an action occurs at time i, then its preconditions must 
hold at time i 

•  If an action occurs at time i, then its effects must hold at 
time i+1 

•  If a fluent changes its truth value from time i to time i+1, 
one of the actions with the new value as an effect must 
have occurred at time i 

•  Two actions cannot occur at the same time 
•  The initial state holds at time 0, and the goals hold at a 

given final state K 



SAT Encoding 
•  If an action occurs at time i, then its preconditions must 

hold at time i 
 

  

!i " Times
   !p " Planes
      !a"Cities
           !b"Cities
                fly(p,a,b,i)# (at(p,a,i))$fuel(p,i))

operator: Fly(p,a,b) 
precondition: At(p,a), Fueled(p) 

effect: At(p,b), ~At(p,a), ~Fueled
(p) 

Constant types: Times, Planes, Cities 



SAT Encoding 
•  If an action occurs at time i, then its effects must hold at 

time i+1 

  

!i " Times
   !p " Planes
      !a"Cities
         !b"Cities
            fly(p,a,b,i)# (at(p,b,i+1))$¬at(p,a,i+1)$¬fuel(p,i+1))

operator: Fly(p,a,b) 
precondition: At(p,a), Fueled(p) 

effect: At(p,b), ~At(p,a), ~Fueled
(p) 

Constant types: Times, Planes, Cities 



SAT Encoding 
•  If a fluent changes its truth value from time i to time i+1, 

one of the actions with the new value as an effect must 
have occurred at time i 

•  Change from false to true 
 

  

!i " Times
   !p " Planes
      !b"Cities
        (¬at(p,b,i)#at(p,b,i+1))$
             %a"Cities . fly(p,a,b,i)

operator: Fly(p,a,b) 
precondition: At(p,a), Fueled(p) 

effect: At(p,b), ~At(p,a), ~Fueled
(p) 

Constant types: Times, Planes, Cities 



SAT Encoding 
•  If a fluent changes its truth value from time i to time i+1, 

one of the actions with the new value as an effect must 
have occurred at time i 

•  Change from true to false: 

  

!i " Times
   !p " Planes
        !a"Cities
           (at(p,a,i)#¬at(p,a,i+1))$
                %b"Cities . fly(p,a,b,i)

operator: Fly(p,a,b) 
precondition: At(p,a), Fueled(p) 

effect: At(p,b), ~At(p,a), ~Fueled
(p) 

Constant types: Times, Planes, Cities 



Action Mutual Exclusion 
•  Two actions cannot occur at the same time 

  

!i " Times
   !p1, p2" Planes
       !a,b,c,d "Cities  
              ¬fly(p1,a,b,i)#¬fly(p2,c,d,i)

operator: Fly(p,a,b) 
precondition: At(p,a), Fueled(p) 

effect: At(p,b), ~At(p,a), ~Fueled
(p) 

Constant types: Times, Planes, Cities 



Result 

•  1992: can find plans with 5 actions 
– Typical for planners at that time... 

•  1996: finds plans with 60+ actions 
•  What changed? 

– Better SAT solvers 
– Two good ideas: 

•  Parallel actions 
•  Plan graph pruning 



Parallel Actions 
•  Allow multiple actions to occur at the same 

time step if they are non-interfering: 
– Neither negates a precondition or effect of the 

other 
•  Can greatly reduce solution horizon in 

many domains 

  

!i " Times
   !p1, p2" Planes
       !a,b,c,d "Cities  
              ¬fly(p1,a,b,i)#¬fly(p2,c,d,i)   

!i " Times
   !p " Planes
       !a,b,c,d "Cities  
              ¬fly(p,a,b,i)#¬fly(p,c,d,i)

→ 



Graph Plan 
•  Graphplan (Blum & Furst 1996) introduced a 

new planning algorithm: 
–  Instantiate a “plan graph” in a forward direction 

•  Nodes: ground facts and actions 
•  Links: supports and mutually-exclusive 

– Each level of the graph contains all the reachable 
propositions at that time point 

•  Set of propositions, not a set of states! 

– Seach for a subset of the graph that 
•  Supports all the goal propositions 
•  Contains no mutually-exclusive propositions 



Initial State 

P1 

facts facts actions actions 

action a: pre p; effect ~p, q 

action b: pre p; effect p 

action c: pre p, q; effect r 



Growing Next Level 

P0 A1 

B1 

P2 

facts facts actions actions 

Q2 

action a: pre p; effect ~p, q 

action b: pre p; effect p 

action c: pre p, q; effect r 



Propagating Mutual Exclusion 

P0 A1 

B1 

P2 

facts facts actions actions 

Q2 

action a: pre p; effect ~p, q 

action b: pre p; effect p 

action c: pre p, q; effect r 



Growing Next Level 

P0 A1 

B1 

P2 

facts facts actions actions 

Q2 

A3 

B1 
action a: pre p; effect ~p, q 

action b: pre p; effect p 

action c: pre p, q; effect r 



Plan Graph Pruning 

•  The SATPLAN encoding (with parallel 
actions) can be directly created from the 
plan graph 

•  Prunes many unnecessary propositions 
and clauses 

•  “Propagated mutexes” may or may be 
included in the translation 
– Logically redundant 
– May help or hinder particular SAT solvers 



Translation to SAT 

P0 A1 

B1 

P2 

facts facts actions actions 

Q2 

A3 

B1 

  

Actions imply 
preconditions and effects
a1! p0
a1! q2
a1!¬q2
Facts imply (disjunction of) supporting actions
q2! a1
p2! b1
Mutual exclusions
¬a1"¬b1



Blast From the Past 



Performance 

•  SATPLAN and variants won optimal 
deterministic STRIPS tracks of International 
Planning Competition through 2006 
–  10 year run – steady performance improvements 

due to SAT solvers 
•  2008: Change in rules: optimality defined as 

function of action and resource costs, not 
parallel time horizon  

•  Opportunity for SMT (see Hoffmann et al 2007) 
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Transition-Based Encodings 

•  Surprisingly few new ideas for encodings 
•  One good one: transition-based encodings 

(Huang, Chan, Zhang 2010)   
– Based on a double-reformulation of STRIPS: 
– Represent states in terms of multi-valued 

variables (SAS+) 
– Encode transitions in the state variables as 

the SAT propositions 



29 / 22 

SAS+ Representation 
loc1 loc2 

in truck 

at loc1 at loc2 

V(pkg) 

at loc1 at loc2 

V(truck) 

 AT pkg loc1 

 AT pkg loc2 

 IN pkg truck 

 AT truck loc1 

 AT truck loc2 

Strips SAS+ 

Transition: Change between values in a multi-valued variable 

pkg:loc1truck 

pkg:truckloc1 

pkg:truckloc2 

pkg:loc2truck 



Comparison of STRIPS and SAS+ 

STRIPS SAS+ 

D
efinition 

a set of preconditions,  
a set of add effects,  

a set of delete effects 

A set of transitions 

E
xam

ple 

(LOAD pkg truck loc1) 
Pre: 

              
(at truck loc1), 
(at pkg loc1) 

 
pkg:(loc1truck) 
truck: (loc1loc1) Del: (at pkg loc1) 

Add: (in pkg truck) 
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Usually there are fewer  transitions than actions 

Hierarchical relationships between actions and transitions  



Overview of New Encoding 

… 
… 
… 
… 

SAT Instance (Part 1): 
transitions 

SAT Instance (Part 2): 
matching actions and 
transitions (multiple 
independent ones) … … … 

31 / 22 

Transitions 

Actions 

t = 1 t =2 t =3 

SAT Instance: 
Facts and actions 

Actions 

Planning graph 

… … … 

t = 1 t =2 t =3, 4, … Strips Based Encoding 

SAS+ Based New Encoding 



Clauses in New Encoding, Example 

truck:loc2 

Time step 1 Time step 2 

 
… 
… 
… 
… 
… 

Time step 3,4,5,… 

pkg: loc1 

truck:loc1 truck:loc1 

truck:loc2 

truck:loc1 

truck:loc2 

pkg: loc1 
pkg: truck 
pkg: loc2 

pkg: loc1 
pkg: truck 
pkg: loc2 

Find matchings 

set of actions set of actions … … 

pkg: truck 
pkg: loc2 

1.  Progression of transitions over time steps (blue one implies green ones) 

2.  Initial state and goal (Bold ones) 

3.  Matching actions and transitions 

4.  Action mutual exclusions and transition mutual exclusions 

32 / 22 



Clauses for Action-Transition Matching 

Actions:  
        x, y, z    
Transitions:  
       a, b, c, d 
x: {a, b, c} 
y: {b, c, d} 
z: {a, c, d} 

•  Action implies transitions: 
  

)(
)(
)(

tttt

tttt

tttt

dcaz
dcby
cbax

∧∧→

∧∧→

∧∧→

)(
)(

)(
)(

ttt

tttt

ttt

ttt

zyd
zyxc

yxb
zxa

∨→

∨∨→

∨→

∨→
•  Transition implies actions: 

  

•  Action mutual exclusions: 
  tttttt xzzyyx ¬→¬→¬→ ;;

33 / 22 

These clauses repeat in each time step t. 



Strips v.s. SAS+ Based Encodings 

Strips SAS+ 

Variables 

 
  Actions and Facts 

 
  Actions and Transitions 

C
lauses 

  Logics of actions across time 
steps, subject to initial state and 
goal  (O((2A)N)) 
 

  Logics of transitions across time steps, 
subject to initial state and goal (O((2T)N)) 
      T is much smaller than A 

  Logics of finding a matching action set for 
transitions, in each time step t  (K) 
    N small independent matching problems 
    Exact Cover problem[Karp72] 

Worst case state space size:  
O((2A)N) 

Worst case state space size:  
O((2T)NNK)  

34 / 22 

N, T, A: number of time steps, transitions and actions 



Number of Solvable Instances versus Time Limits 
35 / 22 

Better performances in 10 domains out of 11 tested (from IPC3,4,5) 



 Detailed Results 
SatPlan06 New Encoding 

Instances 
Time 
(sec) #Variables #Clauses Size 

(MB) Time #Variables #Clauses Size 

Airport40 2239.4 327,515 13,206,595 807 583.3 396,212 3,339,914 208 

Driverslog17 2164.8 61,915 2,752,787 183 544.1 74,680 812,312 56 

Freecell4 364.3 17582 6,114,100 392 158.4 26,009 371,207 25 

Openstack4 212.1 3,709 66,744 5 33.6 4,889 20,022 2 

Pipesworld12 3147.3 30,078 13,562,157 854 543.7 43,528 634,873 44 

TPP30 3589.7 97,155 7,431,062 462 1844.8 136,106 997,177 70 

Trucks7 1076.0 21,745 396,581 27 245.7 35,065 255,020 18 

Zeno14 728.4 26,201 6,632,923 421 58.7 17,459 315,719 18 
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Conclusions 
 A new transition based encoding  

 Recent planning formulation SAS+ 
 Smaller size and faster problem solving 
 New encoding can be used to improve other 

SAT-based planning methods 
 Planning with uncertainty [Castellini et al. 2003] 

 Planning with preferences [Giunchiglia et al. 2007] 

 Planning with numeric [Hoffmann et al. 2007] 

 Temporal planning [Huang et al. 2009] 
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End Part I 

•  Ancient History: Planning as Satisfiability 
– Planning 
– SAT encoding 
– 3 good ideas: 

•  Parallel actions 
•  Plan graph pruning 
•  Transition based encoding 



Part II 

  The Future: Markov Logic 
  From random fields to Max-SAT  
  Finite first-order theories 
  3 good ideas: 

  Lazy inference 
  Query-based instantiation 
  Domain pruning 

Slides borrowed freely 
from Pedro Domingos 



Take Away Messages 

  SAT technology is useful for probabilistic 
reasoning in graphical models 
  MLE (most like explanation) == MAXSAT 
  Marginal inference == model counting 

  Markov Logic is a formalism for graphical 
models that makes the connection to logic 
particular clear 

  Potential application for SMT 



Graphical Models 
  Compact (sparse) representation of a joint 

probability distribution 
  Leverages conditional independencies 
  Graph + associated local numeric constraints 

  Bayesian Network 
  Directed graph 
  Conditional probabilities of variable given parents 

  Markov Network 
  Undirected graph 
  Un-normalized probabilities (potentials) over cliques 



Markov Networks 
  Undirected graphical models 

Cancer 

Cough Asthma 

Smoking 

  Potential functions defined over cliques 
Smoking Cancer   Ф(S,C) 

False False      4.5 

False True      4.5 

True False      2.7 

True True      4.5 

∏Φ=
c

cc xZ
xP )(1)(

∑∏Φ=
x c

cc xZ )(



Markov Networks 
  Undirected graphical models 

  Log-linear model: 

Weight of Feature i Feature i 

⎩
⎨
⎧ ∨¬

=
otherwise0

CancerSmokingif1
)CancerSmoking,(1f

5.11 =w

Cancer 

Cough Asthma 

Smoking 

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

i
ii xfw

Z
xP )(exp1)(



Markov Logic: Intuition 

  A logical KB is a set of hard constraints 
on the set of possible worlds 

  Let’s make them soft constraints: 
When a world violates a formula, 
It becomes less probable, not impossible 

  Give each formula a weight 
(Higher weight  ⇒  Stronger constraint) 

( )∑∝ satisfiesit  formulas of weightsexpP(world)



Markov Logic: Definition 
  A Markov Logic Network (MLN) is a set of 

pairs (F, w) where 
  F is a formula in first-order logic 
  w is a real number 

  Together with a set of constants, 
it defines a Markov network with 
  One node for each grounding of each predicate in 

the MLN 
  One feature for each grounding of each formula F 

in the MLN, with the corresponding weight w 



Example: Friends & Smokers 

habits.  smoking  similar  have  Friends
cancer.  causes  Smoking



Example: Friends & Smokers 

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀
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Example: Friends & Smokers 

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀

⇒∀

1.1
5.1



Example: Friends & Smokers 

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀

⇒∀

1.1
5.1

Two constants: Anna (A) and Bob (B) 



Example: Friends & Smokers 

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀

⇒∀

1.1
5.1

Cancer(A) 

Smokes(A) Smokes(B) 

Cancer(B) 

Two constants: Anna (A) and Bob (B) 



Example: Friends & Smokers 

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀

⇒∀

1.1
5.1

Cancer(A) 

Smokes(A) Friends(A,A) 

Friends(B,A) 

Smokes(B) 

Friends(A,B) 

Cancer(B) 

Friends(B,B) 

Two constants: Anna (A) and Bob (B) 



Example: Friends & Smokers 

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀

⇒∀

1.1
5.1

Cancer(A) 

Smokes(A) Friends(A,A) 

Friends(B,A) 

Smokes(B) 

Friends(A,B) 

Cancer(B) 

Friends(B,B) 

Two constants: Anna (A) and Bob (B) 



Example: Friends & Smokers 

( ))()(),(,
)()(

ySmokesxSmokesyxFriendsyx
xCancerxSmokesx

⇔⇒∀

⇒∀

1.1
5.1

Cancer(A) 

Smokes(A) Friends(A,A) 

Friends(B,A) 

Smokes(B) 

Friends(A,B) 

Cancer(B) 

Friends(B,B) 

Two constants: Anna (A) and Bob (B) 



Markov Logic Networks 
  MLN is template for ground Markov nets 
  Probability of a world x: 
 
 
 
 
  Typed variables and constants greatly reduce 

size of ground Markov net 
  Functions, existential quantifiers, etc. 
  Infinite and continuous domains 

Weight of formula i No. of true groundings of formula i in x 

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

i
ii xnw

Z
xP )(exp1)(



Relation to Statistical Models 
  Special cases: 

  Markov networks 
  Markov random fields 
  Bayesian networks 
  Log-linear models 
  Exponential models 
  Max. entropy models 
  Gibbs distributions 
  Boltzmann machines 
  Logistic regression 
  Hidden Markov models 
  Conditional random fields 

  Obtained by making all 
predicates zero-arity 

 
  Markov logic allows 

objects to be 
interdependent  
(non-i.i.d.) 

 



Relation to First-Order Logic 

  Infinite weights  ⇒  First-order logic 
  Satisfiable KB, positive weights ⇒  

Satisfying assignments = Modes of distribution 
  Markov logic allows contradictions between 

formulas 



MAP/MPE Inference 

  Problem: Find most likely state of world 
given evidence 

)|(maxarg xyP
y

Query Evidence 



MAP/MPE Inference 

  Problem: Find most likely state of world 
given evidence 

⎟
⎠

⎞
⎜
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∑
i
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yxnw
Z

),(exp1maxarg



MAP/MPE Inference 

  Problem: Find most likely state of world 
given evidence 

 

∑
i

ii
y

yxnw ),(maxarg



MAP/MPE Inference 

  Problem: Find most likely state of world 
given evidence 

  This is just the weighted MaxSAT problem 
  Use weighted SAT solver 

(e.g., MaxWalkSAT [Kautz et al., 1997] ) 
  Potentially faster than logical inference (!) 

∑
i

ii
y

yxnw ),(maxarg



The MaxWalkSAT Algorithm 

for i ← 1 to max-tries do 
    solution = random truth assignment 
    for j ← 1 to max-flips do 
        if ∑ weights(sat. clauses) > threshold then 
            return solution 
        c ← random unsatisfied clause 
        with probability p 
            flip a random variable in c 
        else 
            flip variable in c that maximizes 
                ∑ weights(sat. clauses)                 
return failure, best solution found 



But … Memory Explosion 
  Problem:  

If there are n constants 
and the highest clause arity is c, 
the ground network requires O(n  ) memory 
 

  Solution: 
Exploit sparseness; ground clauses lazily 
→ LazySAT algorithm [Singla & Domingos, 2006] 
  Idea: only true literals and unsat clauses need to 

be kept in memory 

c 



Computing Probabilities 

  P(Formula|MLN,C) = ? 
  MCMC: Sample worlds, check formula holds 
  P(Formula1|Formula2,MLN,C) = ? 
  If Formula2 = Conjunction of ground atoms 

  First construct min subset of network necessary to 
answer query (generalization of Knowledge-
Based Model Construction) 

  Then apply MCMC (or other) 



Ground Network Construction 

network ← Ø 
queue ← query nodes 
repeat 
    node ← front(queue)  
    remove node from queue 
    add node to network 
    if node not in evidence then 
        add neighbors(node) to queue     
until queue = Ø 



Challenge: Hard Constraints 

  Problem: 
Deterministic dependencies break MCMC 
Near-deterministic ones make it very slow 
 

  Solutions: 
  Combine MCMC and WalkSAT 
→ MC-SAT algorithm  [Poon & Domingos, 2006] 

  Compilation to arithmetic circuits [Lowd & Domingos 2011] 

  Model counting [Sang & Kautz 2005] 



Challenge: Quantifier Degree 
  Problem: 

Size of instantiated network increases 
exponentially with quantifier nesting 

  Solution: 
  Often, most clauses are trivially satisfiable for 

most entities 
  Preprocess entire theory to infer smaller domains 

for quantified variables 
  Approach: local consistency (constraint 

propagation) [Papai, Singla, Kautz 2011] 



Example 

  1000 x 1000 grid = 1,000,000 cells 
  Previous approach: graphical model is 

quadratic in number of cells (1012 nodes) 
  New approach: linear in number of cells 
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Details 
  Enforce generalized arc consistency using “hard” 

constraints 
  Efficient implementation using database Join and 

Project operators 
  Reduces total inference time by factor of 2 to 8 on 

benchmark domains 

“Constraint Propagation for Efficient 
Inference in Markov Logic”, T. Papai, P. 
Singla, & H. Kautz, CP 2011. 



Alchemy 
Open-source software including: 
  Full first-order logic syntax 
  Generative & discriminative weight learning 
  Structure learning 
  Weighted satisfiability and MCMC 
  Programming language features 

alchemy.cs.washington.edu 



Capture	  the	  Flag	  Domain	  

  Rich	  but	  controlled	  domain	  of	  interac7ve	  
ac7vi7es	  
o  Very	  similar	  to	  strategic	  applica7ons	  

  Rules	  
o  Two	  teams,	  each	  has	  a	  territory	  
o  A	  player	  can	  be	  captured	  when	  on	  the	  opponents'	  
territory	  

o  A	  captured	  player	  cannot	  move	  un7l	  freed	  by	  a	  
teammate	  

o  Game	  ends	  when	  a	  player	  captures	  the	  opponents'	  
flag	  



Game	  Video	  



Hard	  Rules	  for	  Capturing	  



SoE	  Rules	  for	  Capturing	  



Results	  for	  Recognizing	  Captures	  

Sadilek & Kautz AAAI 2010 



End Part II 

  The Future: Markov Logic 
  From random fields to Max-SAT  
  Finite first-order theories 
  3 good ideas: 

  Lazy inference 
  Query-based instantiation 
  Domain pruning 


