SAT $\cap \mathrm{Al}$

Henry Kautz University of Rochester

Outline

- Ancient History: Planning as Satisfiability
- The Future: Markov Logic

Part I

- Ancient History: Planning as Satisfiability
- Planning
- SAT encoding
- 3 good ideas:
- Parallel actions
- Plan graph pruning
- Transition based encoding

Planning

- Find a plan that transform an initial state to a goal state
- What is a state?
- What is a plan?

Classic Planning

- Find a sequence of actions that transform an initial state to a goal state
- State = complete truth assignment to a set of time-dependent propositions (fluents)
- Action = a partial function State \rightarrow State
- Fully observed, deterministic

STRIPS

- Set of possible actions specified by parameterized operator schemas and (typed) constants

operator: $\operatorname{Fly}(a, b)$
precondition: At(a), Fueled
effect: At(b), $\sim A t(a), \sim$ Fueled

constants: \{NY, Boston, Seattle\}

- Fluents not mentioned in effect are unchanged by action

STRIPS

- Introduced for Shakey the robot (1969)
- Generate plan
- Start executing
- Sense state after each action, verifying it is as expected
- If not, stop and replan
- Still a widely-used
 method for robot control (vs. POMDP etc)

STRIPS

- Complexity
- Unbounded length: PSPACE-complete
- Bounded length: NP-complete
- Algorithms
- Backward chaining on subgoals (1969)
- Search in space of partially-order plans (1987)
- Planning as satisfiability $(1992,1996)$
- Graphplan (1996)
- Forward- chaining heuristic search (1999)

SATPLAN

Clause Schemas

$\forall x \in\{A, B, C\} P(x)$
represents
$P(A) \wedge P(B) \wedge P(C)$
$\exists x \in\{A, B, C\} P(x)$
represents
$P(A) \vee P(B) \vee P(C)$

SAT Encoding

- Time is sequential and discrete
- Represented by integers
- Actions occur instantaneously at a time point
- Each fluent is true or false at each time point
- If an action occurs at time i, then its preconditions must hold at time i
- If an action occurs at time i , then its effects must hold at time i+1
- If a fluent changes its truth value from time ito time i+1, one of the actions with the new value as an effect must have occurred at time i
- Two actions cannot occur at the same time
- The initial state holds at time 0 , and the goals hold at a given final state K

SAT Encoding

- If an action occurs at time i, then its preconditions must hold at time i
$\forall i \in$ Times
$\forall p \in$ Planes
operator: $\operatorname{Fly}(\mathrm{p}, \mathrm{a}, \mathrm{b})$
precondition: At(p,a), Fueled(p)
effect: $\operatorname{At}(p, b), \sim A t(p, a), \sim$ Fueled (p)

Constant types: Times, Planes, Cities
$\forall a \in$ Cities
$\forall b \in$ Cities

$$
\mathrm{fly}(\mathrm{p}, \mathrm{a}, \mathrm{~b}, \mathrm{i}) \supset(\mathrm{at}(\mathrm{p}, \mathrm{a}, \mathrm{i})) \wedge \text { fuel }(\mathrm{p}, \mathrm{i}))
$$

SAT Encoding

- If an action occurs at time i, then its effects must hold at time i+1
$\forall i \in$ Times

$$
\begin{aligned}
\forall p & \in \text { Planes } \\
\forall a & \in \text { Cities }
\end{aligned}
$$

```
operator: Fly(p,a,b)
    precondition: At(p,a), Fueled(p)
    effect: At(p,b), ~At(p,a), ~Fueled
    (p)
```

Constant types: Times, Planes, Cities
$\forall b \in$ Cities

$$
\mathrm{fly}(\mathrm{p}, \mathrm{a}, \mathrm{~b}, \mathrm{i}) \supset(\mathrm{at}(\mathrm{p}, \mathrm{~b}, \mathrm{i}+1)) \wedge \neg \mathrm{at}(\mathrm{p}, \mathrm{a}, \mathrm{i}+1) \wedge \neg \mathrm{fuel}(\mathrm{p}, \mathrm{i}+1))
$$

SAT Encoding

- If a fluent changes its truth value from time ito time $\mathrm{i}+1$, one of the actions with the new value as an effect must have occurred at time i
- Change from false to true

$$
\begin{aligned}
& \forall i \in \text { Times } \\
& \qquad \begin{array}{l}
\text { Cor } \\
\forall b \in \text { Planes } \\
\quad(\neg \text { Citities }(\mathrm{p}, \mathrm{~b}, \mathrm{i}) \wedge \mathrm{at}(\mathrm{p}, \mathrm{~b}, \mathrm{i}+\mathrm{l})) \supset \\
\quad \exists a \in \text { Cities } . \mathrm{fly}(\mathrm{p}, \mathrm{a}, \mathrm{~b}, \mathrm{i})
\end{array}
\end{aligned}
$$

```
operator: Fly(p,a,b)
```

precondition: At(p,a), Fueled(p)
effect: $\operatorname{At}(p, b), \sim A t(p, a), \sim$ Fueled
(p)

Constant types: Times, Planes, Cities

SAT Encoding

- If a fluent changes its truth value from time ito time $\mathrm{i}+1$, one of the actions with the new value as an effect must have occurred at time i
- Change from true to false:

$$
\begin{aligned}
& \forall i \in \text { Times } \\
& \quad \forall p \in \text { Planes } \\
& \quad \forall a \in \text { Cities }
\end{aligned}
$$

```
operator: Fly(p,a,b)
```

precondition: At (p, a), Fueled (p)
effect: $\operatorname{At}(p, b), \sim A t(p, a), \sim$ Fueled
(p)

Constant types: Times, Planes, Cities

$$
(\operatorname{at}(\mathrm{p}, \mathrm{a}, \mathrm{i}) \wedge \neg \operatorname{at}(\mathrm{p}, \mathrm{a}, \mathrm{i}+1)) \supset
$$

$$
\exists b \in \text { Cities . fly }(\mathrm{p}, \mathrm{a}, \mathrm{~b}, \mathrm{i})
$$

Action Mutual Exclusion

- Two actions cannot occur at the same time

\author{
Constant types: Times, Planes, Cities
 ```
operator: $\operatorname{Fly}(\mathrm{p}, \mathrm{a}, \mathrm{b})$
 precondition: At(p,a), Fueled(p)
 effect: $\operatorname{At}(p, b), \sim A t(p, a), \sim$ Fueled (p)
 operator. Fly(p,a,b)
 precondition: At(p,a), Fueled(p)
 (p)

``` \\ \(\forall a, b, c, d \in\) Cities \\ \(\neg \mathrm{fly}(\mathrm{p} 1, \mathrm{a}, \mathrm{b}, \mathrm{i}) \vee \neg \mathrm{fly}(\mathrm{p} 2, \mathrm{c}, \mathrm{d}, \mathrm{i})\)
}

\section*{Result}
- 1992: can find plans with 5 actions
- Typical for planners at that time...
- 1996: finds plans with 60+ actions
- What changed?
- Better SAT solvers
- Two good ideas:
- Parallel actions
- Plan graph pruning

\section*{Parallel Actions}
- Allow multiple actions to occur at the same time step if they are non-interfering:
- Neither negates a precondition or effect of the other
- Can greatly reduce solution horizon in many domains
\(\forall i \in\) Times
\[
\begin{aligned}
& \forall p 1, p 2 \in \text { Planes } \\
& \forall a, b, c, d \in \text { Cities } \\
& \quad \neg \mathrm{fly}(\mathrm{p} 1, \mathrm{a}, \mathrm{~b}, \mathrm{i}) \vee \neg \mathrm{fly}(\mathrm{p} 2, \mathrm{c}, \mathrm{~d}, \mathrm{i})
\end{aligned}
\]
\[
\begin{aligned}
& \forall i \in \text { Times } \\
& \forall p \in \text { Planes } \\
& \forall a, b, c, d \in \text { Cities } \\
& \quad \neg \mathrm{fly}(\mathrm{p}, \mathrm{a}, \mathrm{~b}, \mathrm{i}) \vee \neg \mathrm{fly}(\mathrm{p}, \mathrm{c}, \mathrm{~d}, \mathrm{i})
\end{aligned}
\]

\section*{Graph Plan}
- Graphplan (Blum \& Furst 1996) introduced a new planning algorithm:
- Instantiate a "plan graph" in a forward direction
- Nodes: ground facts and actions
- Links: supports and mutually-exclusive
- Each level of the graph contains all the reachable propositions at that time point
- Set of propositions, not a set of states!
- Seach for a subset of the graph that
- Supports all the goal propositions
- Contains no mutually-exclusive propositions

\section*{Initial State}
facts actions facts actions
(P1)
action a: pre p; effect \(\sim p, q\) action \(b\) : pre \(p\); effect \(p\) action c: pre \(p, q\); effect r

\section*{Growing Next Level}

action a: pre p; effect \(\sim p, q\) action b: pre \(p\); effect \(p\) action c: pre p, q; effect r

\section*{Propagating Mutual Exclusion} facts actions facts actions

action a: pre p; effect \(\sim p, q\) action b: pre \(p\); effect \(p\) action c: pre p, q; effect r

\section*{Growing Next Level}
facts actions facts actions
 action b: pre \(p\); effect \(p\) action c: pre p, q; effect r

\section*{Plan Graph Pruning}
- The SATPLAN encoding (with parallel actions) can be directly created from the plan graph
- Prunes many unnecessary propositions and clauses
- "Propagated mutexes" may or may be included in the translation
- Logically redundant
- May help or hinder particular SAT solvers

\section*{Translation to SAT}

Actions imply preconditions and effects
\(a 1 \rightarrow p 0\)
\(a 1 \rightarrow q 2\)
\(a 1 \rightarrow \neg q 2\)
Facts imply (disjunction of) supporting actions
\(q 2 \rightarrow a 1\)
\(p 2 \rightarrow b 1\)
Mutual exclusions
\(\neg a 1 \vee \neg b 1\)

\section*{Blast From the Past}

\section*{Performance}
- SATPLAN and variants won optimal deterministic STRIPS tracks of International Planning Competition through 2006
- 10 year run - steady performance improvements due to SAT solvers
- 2008: Change in rules: optimality defined as function of action and resource costs, not parallel time horizon
- Opportunity for SMT (see Hoffmann et al 2007)

\section*{Transition-Based Encodings}
- Surprisingly few new ideas for encodings
- One good one: transition-based encodings (Huang, Chan, Zhang 2010)
- Based on a double-reformulation of STRIPS:
- Represent states in terms of multi-valued variables (SAS+)
- Encode transitions in the state variables as the SAT propositions

\section*{SAS+ Representation}


\section*{Strips}

AT pkg loc1

AT pkg loc2

IN pkg truck

AT truck loc1

AT truck loc2
Transition: Change between values in a multi-valued variable

\title{
Comparison of STRIPS and SAS+
}
\begin{tabular}{|c|c|c|c|}
\hline & & STRIP & SAS+ \\
\hline ( & & a set of preco a set of add a set of delet & A set of transitions \\
\hline \multirow{4}{*}{} & \multicolumn{3}{|c|}{(LOAD pkg truck loc1)} \\
\hline & Pre: & \begin{tabular}{l}
(at truck loc1), \\
(at pkg loc1)
\end{tabular} & \multirow{3}{*}{\begin{tabular}{l}
pkg:(loc1 \(\rightarrow\) truck) \\
truck: (loc1 \(\rightarrow\) loc1)
\end{tabular}} \\
\hline & Del: & (at pkg loc1) & \\
\hline & Add: & (in pkg truck) & \\
\hline
\end{tabular}

Usually there are fewer transitions than actions
Hierarchical relationships between actions and transitions

\section*{Overview of New Encoding}

\section*{Planning graph}

Actions


SAT Instance:
Facts and actions

Strips Based Encoding

Transitions

Actions


SAT Instance (Part 1): transitions

SAT Instance (Part 2): matching actions and transitions (multiple independent ones)

SAS+ Based New Encoding

\section*{Clauses in New Encoding, Example}

Time step 1
Time step 2
Time step 3,4,5,...
truck:loc2
truck:loc1 \(\longrightarrow\) truck:loc2
pkg: loc1
pkg: truck: \(\longrightarrow\) pkg: loc1
pkg: loc2


Find matchings

set of actions
set of actions
1. Progression of transitions over time steps (blue one implies green ones)
2. Initial state and goal (Bold ones)
3. Matching actions and transitions
4. Action mutual exclusions and transition mutual exclusions

\section*{Clauses for Action-Transition Matching}

Actions:
\[
x, y, z
\]

Transitions:
\[
a, b, c, d
\]
\(x:\{a, b, c\}\)
\(y:\{b, c, d\}\)
\(z:\{a, c, d\}\)
- Action implies transitions:
\[
\begin{aligned}
& x_{t} \rightarrow\left(a_{t} \wedge b_{t} \wedge c_{t}\right) \\
& y_{t} \rightarrow\left(b_{t} \wedge c_{t} \wedge d_{t}\right) \\
& z_{t} \rightarrow\left(a_{t} \wedge c_{t} \wedge d_{t}\right)
\end{aligned}
\]
- Transition implies actions:
\[
\begin{aligned}
& a_{t} \rightarrow\left(x_{t} \vee z_{t}\right) \\
& b_{t} \rightarrow\left(x_{t} \vee y_{t}\right) \\
& c_{t} \rightarrow\left(x_{t} \vee y_{t} \vee z_{t}\right) \\
& d_{t} \rightarrow\left(y_{t} \vee z_{t}\right)
\end{aligned}
\]
- Action mutual exclusions:
\[
x_{t} \rightarrow \neg y_{t} ; y_{t} \rightarrow \neg z_{t} ; z_{t} \rightarrow \neg x_{t}
\]

These clauses repeat in each time step \(t\).

\section*{Strips v.s. SAS+ Based Encodings}
\begin{tabular}{|c|c|c|}
\hline & Strips & SAS+ \\
\hline  & \(\square\) Actions and Facts & \(\square\) Actions and Transitions \\
\hline  & Logics of actions across time steps, subject to initial state and goal \(\left(O\left(\left(2^{\mathrm{A}}\right)^{\mathrm{N}}\right)\right)\) & \begin{tabular}{l}
\(\square\) Logics of transitions across time steps, subject to initial state and goal \(\left(O\left(\left(2^{\mathrm{T}}\right)^{\mathrm{N}}\right)\right)\) \\
\(\boldsymbol{T}\) is much smaller than \(\boldsymbol{A}\) \\
\(\square\) Logics of finding a matching action set for transitions, in each time step t ( K ) \\
\(\boldsymbol{N}\) small independent matching problems Exact Cover problem[Karp72]
\end{tabular} \\
\hline & Worst case state space size:
\[
O\left(\left(2^{A}\right)^{N}\right)
\] & Worst case state space size:
\[
O\left(\left(2^{\mathrm{T}}\right)^{\mathrm{N}} \mathrm{NK}\right)
\] \\
\hline
\end{tabular}
\(\mathrm{N}, \mathrm{T}, \mathrm{A}:\) number of time steps, transitions and actions

Number of Solvable Instances versus Time Limits


Better performances in 10 domains out of 11 tested (from IPC3,4,5)

\section*{Detailed Results}
\begin{tabular}{|l|r|r|r|r|r|r|r|r|}
\hline & \multicolumn{4}{|c|}{ SatPlan06 } & \multicolumn{4}{|c|}{ New Encoding } \\
\hline Instances & \begin{tabular}{l} 
Time \\
\((\mathrm{sec})\)
\end{tabular} & \#Variables & \#Clauses & \begin{tabular}{l} 
Size \\
\((\mathrm{MB})\)
\end{tabular} & \multicolumn{1}{l|}{\begin{tabular}{l} 
Time
\end{tabular}} & \#Variables & \#Clauses & Size \\
\hline Airport40 & 2239.4 & 327,515 & \(13,206,595\) & 807 & 583.3 & 396,212 & \(3,339,914\) & 208 \\
\hline Driverslog17 & 2164.8 & 61,915 & \(2,752,787\) & 183 & 544.1 & 74,680 & 812,312 & 56 \\
\hline Freecell4 & 364.3 & 17582 & \(6,114,100\) & 392 & 158.4 & 26,009 & 371,207 & 25 \\
\hline Openstack4 & 212.1 & 3,709 & 66,744 & 5 & 33.6 & 4,889 & 20,022 & 2 \\
\hline Pipesworld12 & 3147.3 & 30,078 & \(13,562,157\) & 854 & 543.7 & 43,528 & 634,873 & 44 \\
\hline TPP30 & 3589.7 & 97,155 & \(7,431,062\) & 462 & 1844.8 & 136,106 & 997,177 & 70 \\
\hline Trucks7 & 1076.0 & 21,745 & 396,581 & 27 & 245.7 & 35,065 & 255,020 & 18 \\
\hline Zeno14 & 728.4 & 26,201 & \(6,632,923\) & 421 & 58.7 & 17,459 & 315,719 & 18 \\
\hline
\end{tabular}

\section*{Conclusions}
- A new transition based encoding
\(\square\) Recent planning formulation SAS+
- Smaller size and faster problem solving
- New encoding can be used to improve other SAT-based planning methods
\(\square\) Planning with uncertainty [Castellini et al. 2003]
\(\square\) Planning with preferences [Giunchiglia et al. 2007]
\(\square\) Planning with numeric [Hoffmann et al. 2007]
\(\square\) Temporal planning [Huang et al. 2009]

\section*{End Part I}
- Ancient History: Planning as Satisfiability
- Planning
- SAT encoding
- 3 good ideas:
- Parallel actions
- Plan graph pruning
- Transition based encoding

\section*{Part II}
- The Future: Markov Logic
- From random fields to Max-SAT
- Finite first-order theories
- 3 good ideas:
- Lazy inference
- Query-based instantiation
- Domain pruning

Slides borrowed freely
from Pedro Domingos

\section*{Take Away Messages}
- SAT technology is useful for probabilistic reasoning in graphical models
- MLE (most like explanation) == MAXSAT
- Marginal inference == model counting
- Markov Logic is a formalism for graphical models that makes the connection to logic particular clear
- Potential application for SMT

\section*{Graphical Models}
- Compact (sparse) representation of a joint probability distribution
- Leverages conditional independencies
- Graph + associated local numeric constraints
- Bayesian Network
- Directed graph
- Conditional probabilities of variable given parents
- Markov Network
- Undirected graph
- Un-normalized probabilities (potentials) over cliques

\section*{Markov Networks}
- Undirected graphical models

- Potential functions defined over cliques
\[
\begin{gathered}
P(x)=\frac{1}{Z} \prod_{c} \Phi_{c}\left(x_{c}\right) \\
Z=\sum_{x} \prod_{c} \Phi_{c}\left(x_{c}\right)
\end{gathered}
\]
\begin{tabular}{|l|l|c|}
\hline Smoking & Cancer & \(\boldsymbol{\Phi ( S , C )}\) \\
\hline False & False & 4.5 \\
\hline False & True & 4.5 \\
\hline True & False & 2.7 \\
\hline True & True & 4.5 \\
\hline
\end{tabular}

\section*{Markov Networks}
- Undirected graphical models

- Log-linear model:
\[
\begin{array}{r}
P(x)=\frac{1}{Z} \exp \left(\sum_{i} w f_{i}(x)\right) \\
\text { Weight of Feature } i \quad \text { Feature } i
\end{array}
\]
\(f_{1}(\) Smoking, Cancer \()= \begin{cases}1 & \text { if } \neg \text { Smoking } v \text { Cancer } \\ 0 & \text { otherwise }\end{cases}\)
\(w_{1}=15\) \(w_{1}=1.5\)

\section*{Markov Logic: Intuition}
- A logical KB is a set of hard constraints on the set of possible worlds
- Let's make them soft constraints: When a world violates a formula, It becomes less probable, not impossible
- Give each formula a weight (Higher weight \(\Rightarrow\) Stronger constraint)
\(\mathrm{P}(\) world \() \propto \exp \left(\sum\right.\) weights of formulas it satisfies \()\)

\section*{Markov Logic: Definition}
- A Markov Logic Network (MLN) is a set of pairs (F, w) where
- \(F\) is a formula in first-order logic
- w is a real number
- Together with a set of constants, it defines a Markov network with
- One node for each grounding of each predicate in the MLN
- One feature for each grounding of each formula \(F\) in the MLN, with the corresponding weight \(w\)

\section*{Example: Friends \& Smokers}

Smoking causes cancer.
Friends have similar smoking habits.

\section*{Example: Friends \& Smokers}
\(\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)\)
\(\forall x, y\) Friends \((x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))\)

\section*{Example: Friends \& Smokers}
1.5 \(\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)\)
1.1 \(\forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))\)

\section*{Example: Friends \& Smokers}
1.5 \(\forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)\)
1.1 \(\forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))\)

Two constants: Anna (A) and Bob (B)

\section*{Example: Friends \& Smokers}
\(1.5 \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)\)
1.1 \(\forall x, y\) Friends \((x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))\)

Two constants: Anna (A) and Bob (B)


Cancer(A)

\section*{Example: Friends \& Smokers}
\(1.5 \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)\)
1.1 \(\forall x, y\) Friends \((x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))\)

Two constants: Anna (A) and Bob (B)
Friends \((A, B)\)

Friends \((A, A)\)
 Friends(B,B)

Friends \((B, A)\)

\section*{Example: Friends \& Smokers}
\[
\begin{array}{l|l}
1.5 & \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x) \\
1.1 & \forall x, y \operatorname{Friends}(x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y)) \\
\hline
\end{array}
\]

Two constants: Anna (A) and Bob (B)
Friends \((A, B)\)


\section*{Example: Friends \& Smokers}
\(1.5 \forall x \operatorname{Smokes}(x) \Rightarrow \operatorname{Cancer}(x)\)
\(1.1 \forall x, y\) Friends \((x, y) \Rightarrow(\operatorname{Smokes}(x) \Leftrightarrow \operatorname{Smokes}(y))\)
Two constants: Anna (A) and Bob (B)


\section*{Markov Logic Networks}
- MLN is template for ground Markov nets
- Probability of a world \(x\) :
\[
\begin{aligned}
& P(x)=\frac{1}{Z} \exp \left(\sum_{i} w_{i} n_{i}(x)\right) \\
& \text { Weight of formula } i \quad \text { No. of true groundings of formula } i \text { in } x
\end{aligned}
\]
- Typed variables and constants greatly reduce size of ground Markov net
- Functions, existential quantifiers, etc.
- Infinite and continuous domains

\section*{Relation to Statistical Models}
- Special cases:
- Markov networks
- Markov random fields
- Bayesian networks
- Log-linear models
- Exponential models
- Max. entropy models
- Gibbs distributions
- Boltzmann machines
- Logistic regression
- Hidden Markov models
- Conditional random fields
- Obtained by making all predicates zero-arity
- Markov logic allows objects to be interdependent (non-i.i.d.)

\section*{Relation to First-Order Logic}
- Infinite weights \(\Rightarrow\) First-order logic
- Satisfiable KB, positive weights \(\Rightarrow\) Satisfying assignments = Modes of distribution
- Markov logic allows contradictions between formulas

\section*{MAP/MPE Inference}
- Problem: Find most likely state of world given evidence


\section*{MAP/MPE Inference}
- Problem: Find most likely state of world given evidence
\[
\underset{y}{\arg \max } \frac{1}{Z_{x}} \exp \left(\sum_{i} w_{i} n_{i}(x, y)\right)
\]

\section*{MAP/MPE Inference}
- Problem: Find most likely state of world given evidence
\[
\underset{y}{\arg \max } \sum_{i} w_{i} n_{i}(x, y)
\]

\section*{MAP/MPE Inference}
- Problem: Find most likely state of world given evidence
\[
\underset{y}{\arg \max } \sum_{i} w_{i} n_{i}(x, y)
\]
- This is just the weighted MaxSAT problem
- Use weighted SAT solver (e.g., MaxWalkSAT [Kautz et al., 1997])
- Potentially faster than logical inference (!)

\section*{The MaxWalkSAT Algorithm}
for \(i \leftarrow 1\) to max-tries do
solution = random truth assignment for \(j \leftarrow 1\) to max-flips do
if \(\sum\) weights(sat. clauses) \(>\) threshold then return solution
\(c \leftarrow\) random unsatisfied clause
with probability \(p\)
flip a random variable in \(c\)
else
flip variable in \(c\) that maximizes \(\Sigma\) weights(sat. clauses)
return failure, best solution found

\section*{But ... Memory Explosion}
- Problem:

If there are \(\mathbf{n}\) constants and the highest clause arity is \(\mathbf{c}\), the ground network requires \(\mathbf{O}(\mathbf{n})\) memory
- Solution:

Exploit sparseness; ground clauses lazily
\(\rightarrow\) LazySAT algorithm [Singla \& Domingos, 2006]
- Idea: only true literals and unsat clauses need to be kept in memory

\section*{Computing Probabilities}
- \(\mathrm{P}(\) Formula|MLN,C) \(=\) ?
- MCMC: Sample worlds, check formula holds
- P(Formula1|Formula2,MLN,C) = ?
- If Formula2 = Conjunction of ground atoms
- First construct min subset of network necessary to answer query (generalization of KnowledgeBased Model Construction)
- Then apply MCMC (or other)

\section*{Ground Network Construction}
network \(\leftarrow \varnothing\)
queue \(\leftarrow\) query nodes
repeat
node \(\leftarrow\) front(queue)
remove node from queue
add node to network
if node not in evidence then add neighbors(node) to queue
until queue \(=\varnothing\)

\section*{Challenge: Hard Constraints}
- Problem:

Deterministic dependencies break MCMC Near-deterministic ones make it very slow
- Solutions:
- Combine MCMC and WalkSAT \(\rightarrow\) MC-SAT algorithm [Poon \& Domingos, 2006]
- Compilation to arithmetic circuits [Lowd \& Domingos 2011]
- Model counting [Sang \& Kautz 2005]

\section*{Challenge: Quantifier Degree}
- Problem:

Size of instantiated network increases exponentially with quantifier nesting
- Solution:
- Often, most clauses are trivially satisfiable for most entities
- Preprocess entire theory to infer smaller domains for quantified variables
- Approach: local consistency (constraint propagation) [Papai, Singla, Kautz 2011]

\section*{Example}
\(\forall C e l l 1, C e l l 2, A g e n t 1, A g e n t 2\). talk(Agent1,Agent2) \& location(Agent1,Cell1) \& location(Agent2,Cell2) \(\rightarrow\) near(Cell1,Cell2)
\(\forall\) Celli, Cell2.
near(Cell1,Cell2) \(\rightarrow\) Cell1 = Cell2 v adjacent(Cell1,Cell2)
- \(1000 \times 1000\) grid \(=1,000,000\) cells
- Previous approach: graphical model is quadratic in number of cells (10 \({ }^{12}\) nodes)
- New approach: linear in number of cells

\section*{Details}
- Enforce generalized arc consistency using "hard" constraints
- Efficient implementation using database Join and Project operators
- Reduces total inference time by factor of 2 to 8 on benchmark domains
\begin{tabular}{|c|r|r|r|r|r|r|r|r|}
\hline \multirow{2}{*}{ Domain } & \multicolumn{4}{|c|}{ Time (in mins) } & \multicolumn{4}{c|}{ Ground Tuples (in 1000's) } \\
\cline { 2 - 9 } & \multicolumn{2}{|c|}{ Const. Propagation } & \multicolumn{2}{|c|}{ Prob. Inference } & \multicolumn{2}{|c|}{ Const. Propagation } & \multicolumn{2}{c|}{ Prob. Inference } \\
\cline { 2 - 9 } & Stand. & CPI & Stand. & CPI & Stand. & \multicolumn{1}{c|}{ CPI } & \multicolumn{1}{|c|}{ Stand. } & \multicolumn{1}{c|}{ CPI } \\
\hline CTF & 0 & 0.37 & 1536.6 & 528.0 & 0 & 585.5 & 2107.8 & 1308.7 \\
Cora & 0 & 0.07 & 181.1 & 26.2 & 0 & 153.6 & 488.2 & 81.4 \\
Library & 0 & 0.20 & 286.4 & 23.0 & 0 & 462.7 & 366.2 & 45.9 \\
\hline
\end{tabular}
"Constraint Propagation for Efficient Inference in Markov Logic", T. Papai, P. Singla, \& H. Kautz, CP 2011.

\section*{Alchemy}

Open-source software including:
- Full first-order logic syntax
- Generative \& discriminative weight learning
- Structure learning
- Weighted satisfiability and MCMC
- Programming language features
alchemy.cs.washington.edu

\section*{Capture the Flag Domain}
- Rich but controlled domain of interactive activities
o Very similar to strategic applications
- Rules
o Two teams, each has a territory
o A player can be captured when on the opponents' territory
o A captured player cannot move until freed by a teammate
o Game ends when a player captures the opponents' flag

\section*{Game Video}


\section*{Hard Rules for Capturing}

H6. A player can only be captured by an enemy.
H7. A player can be captured only when standing on enemy territory.
H9. A player transitions from an uncaptured state to a captured state only via a capture event.
\[
\begin{aligned}
& \forall a_{1}, a_{2}, t: \text { capturing }\left(a_{1}, a_{2}, t\right) \Rightarrow\left(\operatorname{enemies}\left(a_{1}, a_{2}\right) \wedge\right. \\
& \quad \text { onEnemyTer }\left(a_{2}, t\right) \wedge \neg \operatorname{onEnemyTer}\left(a_{1}, t\right) \\
& \left.\wedge \operatorname{samePlace}\left(a_{1}, a_{2}, t\right)\right) \quad(\mathrm{H} 6, \mathrm{H} 7) \\
& \forall a, t:(\neg \operatorname{isCaptured}(a, t) \wedge \text { isCaptured }(a, t+1)) \Rightarrow \\
& \left(\exists a_{1}: \operatorname{capturing}\left(a_{1}, a, t\right)\right)
\end{aligned}
\]

\section*{Soft Rules for Capturing}

S4. If players \(a\) and \(b\) are enemies, \(a\) is on enemy territory, \(b\) is not captured already, and they are snapped to the same location, then a probably captures \(b\).
S5. Capture events are generally rare, i.e., there are typically only a few captures within a game.
\(\forall a_{1}, a_{2}, t:\left[\left(\operatorname{enemies}\left(a_{1}, a_{2}\right) \wedge\right.\right.\) onEnemyTer \(\left(a_{2}, t\right) \wedge \quad(\mathrm{S} 4)\) \(\neg\) onEnemyTer \(\left(a_{1}, t\right) \wedge \operatorname{samePlace}\left(a_{1}, a_{2}, t\right) \wedge\) \(\left.\neg \operatorname{isCaptured}\left(a_{2}, t\right)\right) \Rightarrow\) capturing \(\left.\left(a_{1}, a_{2}, t\right)\right] \cdot w_{c}\)
\[
\begin{equation*}
\forall a, c, t:[\operatorname{capturing}(a, c, t)] \cdot w_{c b} \tag{S5}
\end{equation*}
\]

\section*{Results for Recognizing Captures}
\begin{tabular}{|l||c|c||c|c|c|c|}
\hline & \# GPS Readings & \# Actual Captures & Baseline & Baseline + States & 2-Step ML & Unified ML \\
\hline \hline Game 1 & 13,412 & 2 & & & & \\
\hline Precision & & & 0.006 & 0.065 & 1.000 & 1.000 \\
Recall & & & 1.000 & 1.000 & 1.000 & 1.000 \\
F1 & 14,400 & 2 & 0.012 & 0.122 & 1.000 & 1.000 \\
\hline \hline Game 2 & & & 0.006 & & & \\
\hline Precision & & & 0.500 & 0.500 & 1.000 & 1.000 \\
Recall & & & 0.013 & 0.022 & 0.833 & 1.000 \\
F1 & & & & & 0.909 & 1.000 \\
\hline \hline Game 3 & & & 0.041 & 0.238 & & \\
\hline Precision & & & 0.833 & 0.833 & 0.833 & 1.000 \\
Recall & & & 0.079 & 0.317 & 0.909 & 0.933 \\
F1 & & & & & \\
\hline
\end{tabular}

Sadilek \& Kautz AAAI 2010

\section*{End Part II}
- The Future: Markov Logic
- From random fields to Max-SAT
- Finite first-order theories
- 3 good ideas:
- Lazy inference
- Query-based instantiation
- Domain pruning```

