
+

SAT-Based Design Debugging
Sharad Malik

Georg Weissenbacher
Princeton University

+
Verification vs. Debugging

Verification
Make sure that there are no bugs

Debugging
Observe error

What went wrong?

Root-cause analysis

Understanding bugs is often more time consuming than
finding them

+
Hardware bugs are expensive

Intel Pentium FDIV Bug 1994
incorrect results for division

due to errors in the entries in the lookup table used by the digital
divide operation algorithm

Total cost associated with replacement: $475 million

+
Outline

Hardware Design/Verification Flow

SAT Background
SAT Encoding of Logic Designs
Satisfying Assignments for Debugging
Unsatisfiable Instances for Debugging

Pre-Silicon Debug
Localizing faults in Register-Transfer-Level (RTL) designs

Post-Silicon Validation
Localizing faults in manufactured prototypes

Outlook: Fault Localization in Software

Summary

Specification

RTL Design

Logic Circuit

Physical Design

Chip Prototype

Design
Error
Diagnosis

Fault
Diagnosis

[Smith, Veneris, Ali, Viglas 2004]

pre-silicon

post-silicon

+
Verification Techniques

Testing
White Box Testing

Logic Simulation

Black Box Testing

Formal Verification
Automated Theorem Proving (ATP)

Model Checking

(Partial) Specifications in Temporal Logic

Bounded Model Checking

Equivalence Checking

…

+
Applicability of Verification
Techniques

logic simulation model checking

pre-silicon
(full observability)

✓
+ ease of use
- limited coverage
- simulation is slow

✓
+ complete coverage
- scalability issues
- complex formalisms

post-silicon
(limited observability)

✓
+ real-time execution
- still limited coverage
- manufacturing cost

✗
not applicable

+
Find Errors, Localize Faults

Error:
Discrepancy between observed and expected behavior

Fault:
Abnormal condition, may cause an error

Electrical: signal interference in manufactured prototypes
Logical: missing case statement in hardware design

Temporal and spatial localization of faults
“typically dominate[s] the effort expended during the debug
process for a bug” [Josephson 2006]

This talk’s focus:
Automated Fault Localization

+
Outline

Hardware Design/Verification Flow

SAT Background
SAT Encoding of Logic Designs
Satisfying Assignments for Debugging
Unsatisfiable Instances for Debugging

Pre-Silicon Debug
Localizing faults in Register-Transfer-Level (RTL) designs

Post-Silicon Validation
Localizing faults in manufactured prototypes

Outlook: Fault Localization in Software

Summary

+

module seq_moore(i, o, clk, reset)
input [2:0] i;
input clk;
input reset;
output o;
reg [1:0] o;

reg [1:0] Q; // state variables
reg [1:0] D; // next state output

always @(posedge clk)
Q = D;

always @(Q or reset or …)
begin

case (Q)
…

Register Transfer Level

D Q

R

D Q

R

Combi-
national

logic

i[0]

i[1]

i[2]

o[0] o[1]

Huffman Model

+
Iterative Logic Array

[Abramovici, Breuer, Friedman 1990]

+
Iterative Logic Array (Example)

+
Outline

Hardware Design/Verification Flow

SAT Background
SAT Encoding of Logic Designs
Satisfying Assignments for Debugging
Unsatisfiable Instances for Debugging

Pre-Silicon Debug
Localizing faults in Register-Transfer-Level (RTL) designs

Post-Silicon Validation
Localizing faults in manufactured prototypes

Outlook: Fault Localization in Software

Summary

+
Applications of SAT Encoding

How do we know that the RTL design is correct?

Check whether certain specified properties hold

If not, we want a counterexample

Property Checking

“output remains 0 as
long as initial state (s)
and input 1 (i1) are 0”

+
Applications of SAT Encoding

Bounded Model Checking
Check whether given property holds for k cycles

Property Checking

“output remains 0 as
long as initial state (s)
and input 1 (i1) are 0”

+
Applications of SAT Encoding

Property holds if unfolding and negated property UNSAT

Any satisfying assignment is a counterexample to the claim

Property Checking

+

+
Applications of SAT Encoding

Any satisfying assignment is a counterexample to the claim

Property Checking

0

0

1
1

+
Counterexamples

However, a counterexample still doesn’t tell us
what went wrong, and

where it went wrong.

More valuable than correctness proofs?

“One of the most important advantages of model checking […]
is its counterexample facility. […] The counterexamples can
be essential in finding subtle errors in designs.”

[Clarke, Grumberg, McMillan, Zhao 1995]

Root Cause Analysis or Fault Localization

+
Outline

Hardware Design/Verification Flow

SAT Background
SAT Encoding of Logic Designs
Satisfying Assignments for Debugging
Unsatisfiable Instances for Debugging

Pre-Silicon Debug
Localizing faults in Register-Transfer-Level (RTL) designs

Post-Silicon Validation
Localizing faults in manufactured prototypes

Outlook: Fault Localization in Software

Summary

+
Unsatisfiable Instances

Constrain a faulty design with the correct input/output

The resulting formula is unsatisfiable

Locate gates that are inconsistent with desired behavior

0

0

1
0

+
Minimal Correction Set (MCS)

Given an UNSAT instance
Minimal subset of clauses that must be dropped to make instance
satisfiable

Any subset of an MCS is not a correction set

dropping both (r + s) and (s) “corrects” the formula

Remaining clauses are consistent

Is there more than one MCS in our example?

+
Minimal Correction Set (MCS)

The following formula has a single minimum MCS:
Least cardinality

{(r),(s)} is minimal but not minimum.

The formula has three different MCSes.

+
MAX SAT

The complement of a minimum correction set
Largest subset of clauses that can be satisfied

Given an UNSAT instance

What is the largest subset of clauses that can be satisfiable?

The complement of any MAX-SAT solution is an MCS

Converse doesn’t hold:
Complement of MCS is maximal set of satisfiable clauses

+
Partial MAX SAT

Maximum subset of clauses that can be satisfied
given certain clauses cannot be dropped

Given an UNSAT instance

which clauses do we have to drop to make it satisfiable?
(the pinned clauses can’t be dropped)

+
Minimal Unsatisfiable Subsets
(MUS) and Unsatisfiable Cores

An unsatisfiable subset is an inconsistent subset of the clauses
of the original formula

Also, referred to as an UNSAT core

An unsatisfiable subset is minimal if dropping one of its
clauses makes it satisfiable

+
MCSes and MUSes

Generate all MCSes for a set of clauses

Each hitting set of the MCSes is an MUS

Each hitting set of all MUSes is an MCS

Therefore, dropping the clauses of an MCS “deactivates” all cores

,

,

,

, ,

✔

✔ ✔

✔ ✔

+
Outline

Hardware Design/Verification Flow

SAT Background
SAT Encoding of Logic Designs
Satisfying Assignments for Debugging
Unsatisfiable Instances for Debugging

Pre-Silicon Debug
Localizing faults in Register-Transfer-Level (RTL) designs

Post-Silicon Validation
Localizing faults in manufactured prototypes

Outlook: Fault Localization in Software

Summary

Specification

RTL Design

Logic Circuit

Physical Design

Chip Prototype

Design
Error
Diagnosis

Fault
Diagnosis

pre-silicon

post-silicon

+

Specification

Logic net-list

Pre-Silicon Debug
Problem Definition

Requirements, UML,
Use Cases, SystemC, …

Unfolding

Test Scenario

Iterative Logic Array

Consistent?

Derive

+
Test Case as Circuit Constraints

Test scenario is modeled as constraint for iterative logic array

0 … 1 1 … 1 1 … 1 0 … 1

1 … 0 1 … 0 0 … 0 1 … 1

1
0
…
1

+
Test Scenarios as Constraints
Example

“output remains 0 as
long as initial state (s)
and input 1 (i1) are 0”

Specification

Logic net-list

time-frame 1

s = 0
i1 = 0
i2 = 0
o = 0

time-frame 2

i1 = 0
i2 = 1
o = 0
t = 0

+
Test Scenarios as Constraints

Add test-scenario as constraints to circuit

The corresponding CNF formula is inconsistent

Example

0

0

0
0

00

01

+
Test Scenarios as Constraints

Detecting the error is only half the story

Manually localizing the fault causing a known error is tedious

Example

0

0

0
0

00

01

0

+
Fault Localization Using MCSes

Use MCSes to identify error location

Input/output values are hard constraints
(we’re not interested in MCSes including them)

Example

+
Fault Localization Using MCSes

Generate ILA constrained with test case (in CNF)

Compute all MCSes:
Each MCS represents a set of potential fault locations

General Methodology

0 … 1 1 … 1 1 … 1 0 … 1

1 … 0 1 … 0 0 … 0 1 … 1

1
0
…
1

+
Outline

Hardware Design/Verification Flow

SAT Background
SAT Encoding of Logic Designs
Satisfying Assignments for Debugging
Unsatisfiable Instances for Debugging

Pre-Silicon Debug
Localizing faults in Register-Transfer-Level (RTL) designs

Post-Silicon Validation
Localizing faults in manufactured prototypes

Outlook: Fault Localization in Software

Summary

Specification

RTL Design

Logic Circuit

Physical Design

Chip Prototype

Design
Error
Diagnosis

Fault
Diagnosispost-silicon

+
Post-Silicon Validation
Problem Definition

Consistent?

Chip Prototype

Testing
Test Result

Logic Circuit

Unfolding
Iterative Logic Array

+
Post-Silicon Validation

Include a different class of faults: electrical faults
Not in every time-frame: may be transient or intermittent

The test result represents the erroneous behavior

The net-list is the fault-free golden model
We assume functional correctness when considering electrical bugs

What has changed compared to pre-silicon?

Undesired
Test Result

+
Post-Silicon Validation

Limited observability of signals in manufactured chip
Trace buffers: Limited recording of select signals

Scan chains: Read-out after chip execution stopped

What has changed compared to pre-silicon?

0 … 1 1 … 1 1 … 1 0 … 1

1 … 0 1 … 0 0 … 0 1 … 1

1
0
…
1

1
1
…
0

?
?

…
1

Trace Buffer
Scan chain

?
?

…
1

?
?

…
0

+
Test Results as Circuit Constraints

Test results used as constraint for iterative logic array

? = information was not recorded

0 … 1 1 … 1 1 … 1 0 … 1

1 … 0 1 … 0 0 … 0 1 … 1

1
0
…
1

1
1
…
0

?
?

…
1

?
?

…
0

?
?

…
1

+
Test Results as Constraints
Example

Test run

Logic net-list

time-frame 1

s = 0
i1 = ?
i2 = 0
o = 0
r = ?

time-frame 2

r = ?
i1 = ?
i2 = 0
o= 1
t = ?

+
Test Results as Constraints

Add test results as constraints to circuit

The corresponding CNF formula is inconsistent

Example

0

0
0 10

+
Fault Localization Using MCSes

Use MCSes to identify error location

Recorded test results are hard constraints

Example

+
Post-Silicon Faults and MCSes

Limited observability results in harder decision problems
In Pre-Silicon: Full information about signals in each cycle

Analysing ILA with thousands of time-frames becomes
computationally infeasible

Limits of Scalability

?
?

…
0

?
?

…
1

?
?

…
1

+
Post-Silicon Faults and MCSes

Analysis limited to small (contiguous) sequence of cycles

Scalability of decision procedure determines window size

Slide window backwards in time to cover different cycles

Limits of Scalability

?
?

…
0

?
?

…
1

?
?

…
1

+
Sliding Windows
Example

1000

0

Sliding windows may fail to locate fault

Approach is incomplete due to limited information

In this particular example: we don’t know the value of r

+
Sliding Windows
Example

1000

0

Would like to propagate information across windows

At a reasonable computational cost

Maybe we can infer the value of r in the first window?

r=?

+
Reconstructing Information
With Inferred Values

10

r = 1

r=1

00

0

1

+
Backbones

Backbone of a satisfiable formula:
Set of variables that have same value in all satisfying
assignments

Consider the satisfiable formula

Satisfying assignments:

Inferring “Fixed” Signals for Satisfiable Instances

r s t

1 0 0

1 1 0

+
Computing Backbones

Given a Boolean formula F

1. Obtain initial satisfying assignment A0

2. For each literal p such that A0[p]=1
variable of p is part of backbone iff (F . p) is UNSAT

Optimization (Filtering):

1. If (F . p) is satisfiable, look at this satisfying assignment A1

2. Variables differing in value in A0 and A1 are not in
backbone

[Marques-Silva, Janota, Lynce 2010]

+
Propagating Backbones
Across Sliding Windows

0 … 1 1 … 1 1 … 1 0 … 1

1 … 0 1 … 0 0 … 0 1 … 1

1
0
…
1

1
1
…
0

?
?

…
1

?
?

…
1

1
1
…
1

?
1
…
1

?
?

…
0

1
?

…
0

[Zhu, Weissenbacher, Sethi, Malik 2011]

+
Propagating Backbones
Across Sliding Windows

+
Outline

Hardware Design/Verification Flow

SAT Background
SAT Encoding of Logic Designs
Satisfying Assignments for Debugging
Unsatisfiable Instances for Debugging

Pre-Silicon Debug
Localizing faults in Register-Transfer-Level (RTL) designs

Post-Silicon Validation
Localizing faults in manufactured prototypes

Outlook: Fault Localization in Software

Summary

+
Fault Localization in Software

1. Observe an assertion violation

2. Unwind loops of the program,
obtain symbolic representation

3. Constrain program with expected input/output values

4. Compute MCSes to locate faults

Methodology

[Jose, Majumdar 2011]

+
Fault Localization in Software
Problem Definition

Consistent?

Software Implementation

Unwinding
Symbolic Representation

Specification

e.g., requirements

Assertions in Program

+
Symbolic Representation of
Software

guard1 = (index1≠1)
index2 = 2

index3 = index1+2
i=guard1? index2 : index3

Static Single Assignment Form
[Cytron, Ferrante, Rosen,
Wegman, Zadeck 1991]

+
Computing MCSes for Program

index1=1

guard1 = (index1≠1)
index2 = 2

index3 = index1+2
i=guard1? index2 : index3

(i<3)

test input

violated assertion

+
MCSes Indicate Potential Errors

+
Outline

Hardware Design/Verification Flow

SAT Background
SAT Encoding of Logic Designs
Satisfying Assignments for Debugging
Unsatisfiable Instances for Debugging

Pre-Silicon Debug
Localizing faults in Register-Transfer-Level (RTL) designs

Post-Silicon Validation
Localizing faults in manufactured prototypes

Outlook: Fault Localization in Software

Summary

+
Summary

Locating faults is tedious

Minimal Correction Sets enable fault localization in
logic design

manufactured chip prototypes

software

Backbones enable partial recovery of information

+
References (for Hardware)

[Abramovici, Breuer, Friedman 1990]
Digital Systems Testing and Testable Design
Computer Science Press

[Smith, Veneris, Ali, Viglas 2004]
Fault Diagnosis and Logic Debugging Using Boolean Satisfiability
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

[Josephson 2006]
The Good, the Bad, and the Ugly of Silicon Debug
Design Automation Conference

[Liffiton, Sakallah 2009]
Generalizing Core-Guided MAX-SAT
Theory and Applications of Satisfiability Testing

[Chen, Safarpour, Marques-Silva, Veneris 2009]
Automated Design Debugging with Maximum Satisfiability
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

[Marques-Silva, Janota, Lynce 2010]
On Computing Backbones of Propositional Theories
European Conference on Artificial Intelligence

[Zhu, Weissenbacher, Sethi, Malik 2011]
Post-Silicon Fault Localisation Using Maximum Satisfiability and Backbones
Formal Methods in Computer-Aided Design, 2011

+
References (for Software)

[Clarke, Kroening, Lerda 2004]
A Tool for Checking ANSI-C Programs
Tools and Algorithms for the Construction and Analysis of Systems

[Groce, Chaki, Kroening, Strichman 2006]
Error Explanation with Distance Metrics
International Journal on Software Tools for Technology Transfer

[Jose, Majumdar 2011] (Tool paper)
BugAssist: Assisting Fault Localization in ANSI-C Programs
Computer Aided Verification

[Jose, Majumdar 2011]
Clause Cue Clauses: Error Localization Using Maximum Satisfiability
Programming Languages Design and Implementation

