L 1 L)
|
¢
ottt B .
A
-
.]
. v
T E X
& 5 .‘_‘
!
L] 'y -
r S
S 1
i . s
2 1)
| 3 ey 1
] P
i =
\
i .

SAT-Based Design Debugging

Sharad Malik
Georg Weissenbacher
Princeton University

Verification vs. Debugging

m Verification

Make sure that there are no bugs

= Debugging
Observe error
What went wrong?

m Root-cause analysis

m Understanding bugs is often more time consuming than
finding them

Hardware bugs are expensive

intele
pentium 4195835 _ 1 333§30069906037069

s 40N

m Intel Pentium FDIV Bug 1994

» incorrect results for division

= due to errors in the entries in the lookup table used by the digital
divide operation algorithm

m Total cost associated with replacement: $475 million

Outline

m Hardware Design/Verification Flow

m SAT Background
SAT Encoding of Logic Designs
Satisfying Assignments for Debugging
Unsatisfiable Instances for Debugging

m Pre-Silicon Debug
Localizing faults in Register-Transfer-Level (RTL) designs

m Post-Silicon Validation
Localizing faults in manufactured prototypes

m Outlook: Fault Localization in Software

® Summary

Design
Error
Diagnosis

—— pre-silicon

Fault

post-silicon —= Diagnosis

[Smith, Veneris, Ali, Viglas 2004]

Verification Techniques

m Testing
White Box Testing
m Logic Simulation
Black Box Testing

m Formal Verification
Automated Theorem Proving (ATP)
Model Checking
m (Partial) Specifications in Temporal Logic
m Bounded Model Checking
Equivalence Checking

Applicability of Verification

Techniques

logic simulation

model checking

v
+ ease of use
- limited coverage
- simulation is slow

v
+ real-time execution
- still limited coverage
- manufacturing cost

pre-silicon
(full observability)

post-silicon
(limited observability)

v
+ complete coverage
- scalability issues
- complex formalisms

X
not applicable

Find Errors, Localize Faults

m Error:
Discrepancy between observed and expected behavior

m Fault:
Abnormal condition, may cause an error

Electrical: signal interference in manufactured prototypes
Logical: missing case statement in hardware design

m Temporal and spatial localization of faults
“typically dominate[s] the effort expended during the debug
process for a bug” [Josephson 2006]

m This talk’s focus:
Automated Fault Localization

Outline

m SAT Background
» SAT Encoding of Logic Designs
|

Register Transfer Level

module seq_moore(i, o, clk, reset)
input [2:0] i;
input clk;
input reset;
output o;
reg [1:0] o;

reg [1:0] Q; // state variables
reg [1:0] D; // next state output

always @(posedge clk)
Q =D;

always @(Q or reset or ...)
begin
case (Q)

i[0]
i[1]
i[2]

Combi-

national
logic

o[0] o[1]

Huffman Model

[terative Logic Array

[Abramovici, Breuer, Friedman 1990]

Iterative Logic Array (Example)

. -1 T =)
_ T\ ! _
Dy DD
PR | S —¢ D) : @
@ |
|
() 0 ’L% 01: Z% 02
D D
cycle @ (F4il) - (F+s)- (i1 +5+7) (540" (5+0'): (o +i} +5)
cyele @ (E4+3) - (t+71)- (2 +T+ 1) (’i%—l—oz)-(F—l—o?)-(o_z—Fi%—l—r)

Outline

m SAT Background

Satisfying Assignments for Debugging

Applications of SAT Encoding
Property Checking

m How do we know that the RTL design is correct?
m Check whether certain specified properties hold

m If not, we want a counterexample

“output remains O as

‘!' long as initial state (s)

— and input 1 (i,) are 0”
11) D Q p i)

>R

[
. O
12

Applications of SAT Encoding
Property Checking

m Bounded Model Checking
Check whether given property holds for k cycles

“output remains 0 as
long as initial state (s)
and input 1 (i) are 0”

_ T — S R)
(S'Z%)—>01 (s~zl-zl)—>02

Applications of SAT Encoding
Property Checking

m Property holds if unfolding and negated property UNSAT
m Any satisfying assignment is a counterexample to the claim

D D

cycle @ (F+i})- (F+s) (i +5+7) (+0") (5+0) (oF +i}+s)
cycle ® (t+43)-(E+7)- (i3 + 7+ t) (i%—l—02)-(F—|—02)-(0_2—|—i%—|—r)

=.:1.:2 02
(s 1] zl) — 0

Applications of SAT Encoding
Property Checking

m Any satisfying assignment is a counterexample to the claim

oDl D
o1 o il o [eD-7]
1 L4 0

Counterexamples

More valuable than correctness proofs?

“One of the most important advantages of model checking
is its counterexample facility. The counterexamples can
be essential in finding subtle errors in designs.”

[Clarke, Grumberg, McMillan, Zhao 1995]

m However, a counterexample still doesn'’t tell us
what went wrong, and

where it went wrong.

Root Cause Analysis or Fault Localization

Outline

m SAT Background

Unsatisfiable Instances for Debugging

Unsatisfiable Instances

m Constrain a faulty design with the correct input/output
m The resulting formula is unsatisfiable

m Locate gates that are inconsistent with desired behavior

— rvog2
T i ¢
0 —¢ @, E @
! o1 i 0*

Minimal Correction Set (MCS)

m Given an UNSAT instance

Minimal subset of clauses that must be dropped to make instance
satisfiable

m Any subset of an MCS is not a correction set

(T+35+1) ((F—I—s)} (r) (s) (F)

dropping both (r + s) and (s) “corrects” the formula
m Remaining clauses are consistent

m [s there more than one MCS in our example?

Minimal Correction Set (MCS)

m The following formula has a single minimum MCS:

Least cardinality

) [(F+s)

® {(1),(s)} is minimal but not minimum.

® The formula has three different MCSes.

MAX SAT

m The complement of a minimum correction set

Largest subset of clauses that can be satisfied

m Given an UNSAT instance

F+5+t) (F+s) (r) (s) (¢

What is the largest subset of clauses that can be satisfiable?

m The complement of any MAX-SAT solution is an MCS

m Converse doesn’t hold:
Complement of MCS is maximal set of satisfiable clauses

Partial MAX SAT

m Maximum subset of clauses that can be satisfied
given certain clauses cannot be dropped

m Given an UNSAT instance ﬁ

T+s5+t) T+s) () (s) (F)

which clauses do we have to drop to make it satisfiable?
(the pinned clauses can’t be dropped)

Minimal Unsatisfiable Subsets
(MUS) and Unsatisfiable Cores

m An unsatisfiable subset is an inconsistent subset of the clauses
of the original formula

Also, referred to as an UNSAT core

(5) (T+s) (r) [(5)

m An unsatisfiable subset is minimal if dropping one of its
clauses makes it satisfiable

A

A

A

MCSes and MUSes

(5) F+s) (r) (s)
®) {E.6)
) (s)} v v

'(7“
’(3

—
m Each hitting set of the MCSes is an MUS

m Each hitting set of all MUSes is an MCS

m Therefore, dropping the clauses of an MCS “deactivates” all cores

Outline

m Pre-Silicon Debug
» Localizing faults in Register-Transfer-Level (RTL) designs

Design
Error —— pre-silicon
Diagnosis
Fault
post-silicon Physical Design Diagnosis

v

Chip Prototype

Pre-Silicon Debug

Problem Definition

Golden Model Golden Model

— — -
Requirements, UML,
Use Cases, SystemC, ...
- UnfOIdlng -

Test Case as Circuit Constraints

m Test scenario is modeled as constraint for iterative logic array

+ . .
Test Scenarios as Constraints

Example

Specification time-frame 1 time-frame 2

“output remains O as s=0 i, =

long as initial state (s) i,=0 i, =1

and input 1 (i,) are 0” i,=0 o=0
o=0 t=0

Logic net-list

11 —

D Q
e |

| 10)

Test Scenarios as Constraints

Example

m Add test-scenario as constraints to circuit

m The corresponding CNF formula is inconsistent

0 —
1 — O

@

O_

)
_/
@

- . - - . . - = = -

Test Scenarios as Constraints

Example

m Detecting the error is only half the story

m Manually localizing the fault causing a known error is tedious

0 —
1 — O

@

O_

- . - - . . - = = -

Fault Localization Using MCgSes

Example

m Use MCSes to id

m Input/output val
(we’re not intere

(5) (i) (i) (1) (D) (i7) (33

cycle ® (T+11) - (F+s) - i +54+ il +
e ® @) E4r) (@474 @3+

Fault Localization Using MCgSes
General Methodology

m Generate ILA constrained with test case (in CNF)

m Compute all MCSes:
Each MCS represents a set of potential fault locations

Outline

m Post-Silicon Validation
» Localizing faults in manufactured prototypes

Specification

v
Design

Error RTL Design
Diagnosis

Fault

post-silicon —= Diagnosis

Post-Silicon Validation

Problem Definition

Golden Model Golden Model

- — -

Testmg

Post-Silicon Validation

What has changed compared to pre-silicon?

m Include a different class of faults: electrical faults
Not in every time-frame: may be fransient or intermittent

m The test result represents the erroneous behavior

m The net-list is the fault-free golden model
We assume functional correctness when considering electrical bugs

Faulty Chip Golden Model
i1 —
Undesired : D_D Q_‘
Test Result R

. v

Post-Silicon Validation

What has changed compared to pre-silicon?

m Limited observability of signals in manufactured chip
Trace buffers: Limited recording of select signals
Scan chains: Read-out after chip execution stopped

0...1 1 ...1 1 ...1 0...1

.1 .1
17 ... T,

Test Results as Circuit Constraints

m Test results used as constraint for iterative logic array

m ? = information was not recorded

+.
Test Results as Constraints

Example

|
I
s=0 : r="7
P i, =0 : 1,=0
o=0 1 o=1
r="7 Lot=7?

-1

Logic net-list
2’1 =

11 — 50
|)
| >—o i o

Test Results as Constraints

Example

m Add test results as constraints to circuit

m The corresponding CNF formula is inconsistent

IEpSINEHE
0 O, E @
0 o1 o

Fault Localization Using MCgSes

Example

D D
cycle @ (F—I—i%)-(?—l—s)-(i__%—l—E—l—r) (g—kol) (5+0') - (o} 4+ + s)
cycde @ (F+33)-(FFr)-@+7+1) (B+0%) (F+02) (@ +i3+r)

Post-Silicon Faults and MCSes
Limits of Scalability

m Limited observability results in harder decision problems

In Pre-Silicon: Full information about signals in each cycle

m Analysing ILA with thousands of time-frames becomes
computationally infeasible

!!!!!

Post-Silicon Faults and MCSes

Limits of Scalability

m Analysis limited to small (contiguous) sequence of cycles
m Scalability of decision procedure determines window size

m Slide window backwards in time to cover different cycles

| I I I I | |]
i 3 2N 3N e e N

tTm

Sliding Windows

Example

m Sliding windows may fail to locate fault
m Approach is incomplete due to limited information

m In this particular example: we don’t know the value of r

Sliding Windows

Example

m Would like to propagate information across windows

m At a reasonable computational cost

m Maybe we can infer the value of r in the first window?

Reconstructing Information
With Inferred Values r=1

Backbones

Inferring “Fixed” Signals for Satisfiable Instances

m Backbone of a satisfiable formula:
Set of variables that have same value in all satisfying
assignments

m Consider the satisfiable formula

(r&t) - (r+s)-(r)

m Satisfying assignments:
- — o= m—

Computing Backbones

Given a Boolean formula F
1. Obtain initial satisfying assignment A,

2. For each literal p such that A [p]=1
variable of p is part of backbone iff (F-p) is UNSAT

Optimization (Filtering):
1. If (F-p) is satisfiable, look at this satisfying assignment A,

2. Variables differing in value in A, and A, are not in
backbone

[Marques-Silva, Janota, Lynce 2010]

n
Q
S
O
O
LY
O
©
af
@)
=
©
o
©
Q,
O
e
al

2
O
go)
k=
(@)
k=
e
n
n
n
O
P
O
kG

[Zhu, Weissenbacher, Sethi, Malik 2011]

Propagating Backbones

Across Sliding Windows

/

sy, S,

cyclen—1 cycle n crash

[IIIECT)

{ =

[IIIPCT

cycle 2

y)

h)

uoneuLIOJuI
Po330]

time

Y -

R -

N
15t window

2nd window

A

.J

—
-1
'.
L]

=1
1
L
L]

-~

cyclen—1 cycle n crash
2nd backbone

UORULIOJUT
paLIaJuI

15t backbone

v

Outline

m Outlook: Fault Localization in Software

Fault Llocalization in Software
Methodology

1. Observe an assertion violation

2. Unwind loops of the program,
obtain symbolic representation

3. Constrain program with expected input/output values

4. Compute MCSes to locate faults

[Jose, Majumdar 2011]

Fault Localization in Software

Problem Definition

Golden Model

e

e.g., requirements ﬁ
- UnWIndlng -

+
Symbolic Representation of
Software

O ==

int Array[3];

Static Single Assignment Form
[Cytron, Ferrante, Rosen,

int testme(int index) Wegman, Zadeck 1991]

{ - e-s - - -
| if Cindex 1- 1) M-~ < —

index = 2; e I R

else I e S

I index = index + 2; = = == . - .- — |
i = index; I I

]]] || || I

t (i>-08 i <3); // guard, = (index,#1)
ret kray[t] ; I index, = 2 I
} [index, = index;+2 I

\ i=guard,? index, : 1ndex3

N - [|
d J

+
Computing MCSes for Program

index,=1

[guard, = (index,#1)

index; = index,; +2
i1=guard, ¥ INJe€X, : INdeX,

violated assertion el

MCSes Indicate Potential Errors

o mainc 82 ==

int Array[3];

int testme(int index)
{
if (index !-_12
index = 2;
else
index = index + 2;

1 = index;

assert (1 >= 0 && 1 < 3); // array bounds
return Array[i];

Outline

m Hardware Design/Verification Flow

m SAT Background

m SAT Encoding of Logic Designs
m Satisfying Assignments for Debugging
m Unsatisfiable Instances for Debugging

m Pre-Silicon Debug
m Localizing faults in Register-Transfer-Level (RTL) designs

m Post-Silicon Validation
m Localizing faults in manufactured prototypes

m Outlook: Fault Localization in Software

= Summary

Summary

m Locating faults is tedious

m Minimal Correction Sets enable fault localization in
logic design
manufactured chip prototypes

software

m Backbones enable partial recovery of information

References (for Hardware)

m [Abramovici, Breuer, Friedman 1990]
Digital Systems Testing and Testable Design

Computer Science Press

m [Smith, Veneris, Ali, Viglas 2004]
Fault Diagnosis and Logic Debugging Using Boolean Satisfiability

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

m [Josephson 2006]
The Good, the Bad, and the Ugly of Silicon Debug

Design Automation Conference

m [Liffiton, Sakallah 2009]

Generalizing Core-Guided MAX-SAT
Theory and Applications of Satisfiability Testing

m [Chen, Safarpour, Marques-Silva, Veneris 2009]
Automated Design Debugging with Maximum Satisfiability

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

m [Marques-Silva, Janota, Lynce 2010]
On Computing Backbones of Propositional Theories
European Conference on Artificial Intelligence

®m [Zhu, Weissenbacher, Sethi, Malik 2011]

Post-Silicon Fault Localisation Using Maximum Satisfiability and Backbones
Formal Methods in Computer-Aided Design, 2011

References (for Software)

m [Clarke, Kroening, Lerda 2004]
A Tool for Checking ANSI-C Programs

Tools and Algorithms for the Construction and Analysis of Systems

m [Groce, Chaki, Kroening, Strichman 2006]

Error Explanation with Distance Metrics
International Journal on Software Tools for Technology Transfer

m [Jose, Majumdar 2011] (Tool paper)
BugAssist: Assisting Fault Localization in ANSI-C Programs

Computer Aided Verification

m [Jose, Majumdar 2011]

Clause Cue Clauses: Error Localization Using Maximum Satisfiability
Programming Languages Design and Implementation

