Orange Kayak Update July 26 2011

Results from second pool test
Plans for the future

Second Pool Test

- System Improvements
 - Extended wifi range by incorporating wifi router
 - Successful, but router needed to be located on the kayak might be a problem with the kayak computer's wifi antenna
 - Used new netbook for communication successfully
 - Used thruster with radio controller successfully
 - Thruster is sometimes intermittent—discussed later
 - Logged data from the DVL
 - Still questions about the DVL output—discussed later
 - Chee Wee mounted his small sensor array to the bow
 - Logged pressure at 1kHz with 19 COTS and 4 CW
 - Synchronized time stamps for pressure and non-pressure sensors
 - Streamlined data organization—script to make a good .mat

Second Pool Test

- Second look at non-pressure sensors
 - Compass, imu, dvl
- Yaw, roll, and hydrostratic tests by hand
 - Primarily to compare Chee Wee's small sensor array to the Honeywell sensors
- Maneuvers with thruster
 - Straight
 - Circle—large and small radius

Compass and IMU

- Compass and IMU roll
 and pitch match well
- In general, the compass gave better results than during the first pool test
- There were fewer "jumps" in Yaw

The compass readings are incorrectly scaled, but the correcting factor appears to be different in the two pool tests

GPS

- More reliable than previous test
- Intermittent jumps
- Oddly oblong circular tracks
 - No calibration / improvements to do

Chee Wee's sensor Array on Kayak

Cables are passed along keel under duct tape before up and into the bow cavity.

PDMS Sensor Array (CW)

- Sensors respond to motion, but does not seem to be due to pressure
 - Magnitude ~100x larger than previous measurements
 - Inconsistently follow the COTS pressure sensor results
 - Larger discrepancies
 when smother motions
 applied
- Possibly due to motion of wires
- COTS sensors in black for comparison

PDMS Sensor Array (CW)

- Based on dry postexamination of sensor array mounting (data nc shown):
 - Cable motion causes introduces large noise bursts
 - PDMS near cable connection very sensitive to motion
 - Some relaxation evident in pressure after stimulation, due to gaps between PDMS and kayak

Kayak maneuvers

- Thruster pulses intermittently at ~1Hz, which causes rolling at this frequency during turns
- Noticeable bow wave
- Two turn radii
 - Large turn radius with maximum natural thrust angle
 - Small turn radius with artificially large thrust angle by changing offset (see picture on next slide)

small radius turn thruster angle

Pungo100

Wifi router mounted on kayak

Turning/drifting: larger radius turn

Pressure data with Thruster (straight line motion)

Bow pressure distribution during maneuvers

Starboard pressure

Starboard turn

Goals for the Future

- Obtain reliable estimate of kayak state
 - Compass and dvl functionality
 - Use compass, imu, and dvl together to estimate kayak state
- Interpret pressure
 - Relate pressure to kayak dynamics
 - Yaw and roll compensation in pressure
- MEMS sensors on kayak
- Solve thruster and sensor intermittency
- Troubleshoot wifi antenna

Kayak Scan

Calibrated compass

Chee Wee's sensor array Roll experiment

