
www.bmc.com

BMC Remedy Action Request System 7.6.04

Integration Guide

January 2011

If you have comments or suggestions about this documentation, contact Information Design and Development by email at
doc_feedback@bmc.com.

Contacting BMC Software

You can access the BMC Software website at http://www.bmc.com. From this website, you can obtain information
about the company, its products, corporate offices, special events, and career opportunities.

United States and Canada

Address BMC SOFTWARE INC
2101 CITYWEST BLVD
HOUSTON TX 77042-2827
USA

Telephone 713 918 8800 or
800 841 2031

Fax 713 918 8000

Outside United States and Canada

Telephone (01) 713 918 8800 Fax (01) 713 918 8000

© Copyright 2011 BMC Software, Inc.

BMC, BMC Software, and the BMC Software logo are the exclusive properties of BMC Software, Inc., are registered with the U.S. Patent
and Trademark Office, and may be registered or pending registration in other countries. All other BMC trademarks, service marks, and
logos may be registered or pending registration in the U.S. or in other countries. All other trademarks or registered trademarks are the
property of their respective owners.

UNIX is the registered trademark of The Open Group in the US and other countries.

BMC Software considers information included in this documentation to be proprietary and confidential. Your use of this information is
subject to the terms and conditions of the applicable End User License Agreement for the product and the proprietary and restricted
rights notices included in this documentation.

Restricted rights legend
U.S. Government Restricted Rights to Computer Software. UNPUBLISHED -- RIGHTS RESERVED UNDER THE COPYRIGHT LAWS OF
THE UNITED STATES. Use, duplication, or disclosure of any data and computer software by the U.S. Government is subject to
restrictions, as applicable, set forth in FAR Section 52.227-14, DFARS 252.227-7013, DFARS 252.227-7014, DFARS 252.227-7015, and
DFARS 252.227-7025, as amended from time to time. Contractor/Manufacturer is BMC Software, Inc., 2101 CityWest Blvd., Houston, TX
77042-2827, USA. Any contract notices should be sent to this address.

http://www.bmc.com
mailto:doc_feedback@bmc.com

Customer Support

You can obtain technical support by using the Support page on the BMC Software website or by contacting Customer
Support by telephone or email. To expedite your inquiry, please see “Before Contacting BMC Software.”

Support website

You can obtain technical support from BMC Software 24 hours a day, 7 days a week at
http://www.bmc.com/support_home. From this website, you can:

■ Read overviews about support services and programs that BMC Software offers.
■ Find the most current information about BMC Software products.
■ Search a database for problems similar to yours and possible solutions.
■ Order or download product documentation.
■ Report a problem or ask a question.
■ Subscribe to receive email notices when new product versions are released.
■ Find worldwide BMC Software support center locations and contact information, including email addresses, fax

numbers, and telephone numbers.

Support by telephone or email

In the United States and Canada, if you need technical support and do not have access to the Web, call 800 537 1813 or
send an email message to customer_support@bmc.com. (In the Subject line, enter
SupID:<yourSupportContractID>, such as SupID:12345.) Outside the United States and Canada, contact
your local support center for assistance.

Before contacting BMC Software

Have the following information available so that Customer Support can begin working on your issue immediately:

■ Product information

— Product name
— Product version (release number)
— License number and password (trial or permanent)

■ Operating system and environment information

— Machine type
— Operating system type, version, and service pack
— System hardware configuration
— Serial numbers
— Related software (database, application, and communication) including type, version, and service pack or

maintenance level

■ Sequence of events leading to the problem

■ Commands and options that you used

■ Messages received (and the time and date that you received them)

— Product error messages
— Messages from the operating system, such as file system full
— Messages from related software

http://www.bmc.com/support_home
mailto:customer_support@bmc.com

License key and password information

If you have a question about your license key or password, contact Customer Support through one of the following
methods:

■ E-mail customer_support@bmc.com. (In the Subject line, enter SupID:<yourSupportContractID>,
such as SupID:12345.)

■ In the United States and Canada, call 800 537 1813. Outside the United States and Canada, contact your local support
center for assistance.

■ Submit a new issue at http://www.bmc.com/support_home.

mailto:customer_support@bmc.com
http://www.bmc.com/support_home

Contents
Preface 13

Audience . 13
AR System documents . 13

Chapter 1 What does “integration” mean? 17

Benefits. 18
Areas for integration . 18
Real-time versus asynchronous integration. 18
Integrating with AR System . 19

Chapter 2 Architectural overview of AR System 21

Terminology . 22
Form. 22
Request . 22
Workflow . 22
Application . 23

Multitier architecture. 24
AR System clients. 26

Web client . 26
BMC Remedy User . 26
BMC Remedy Developer Studio . 26
BMC Remedy Data Import. 27
BMC Remedy Alert . 27

BMC Remedy Mid Tier . 28
AR System server . 28
Database servers. 29
Communications between clients and the AR System server . 30
Communications between AR System servers and database servers 30
Many-to-many connections . 30
AR System components . 32
Security and access control . 33

Chapter 3 Integration considerations 35

Where to integrate . 36
AR System client . 36
AR System server. 36
Contents 5

Database integration . 36
Multiplatform issues . 37
Choosing an implementation method. 38
Integration technologies . 38

Chapter 4 AR System C API 41

Overview . 42
Understanding the AR System API . 43
Program structure. 44
Multithreaded API clients . 45
Using the API for integration . 46

Example: Network management platform integration accessories 47
Issues and considerations . 48

Chapter 5 Java API 49

Overview . 50
Installed files . 50

Contents of the AR System Java API installation . 50
Run-time configuration . 52

Java driver . 52
Programming model . 52

ARServerUser . 53
Server objects . 53
Cloning objects . 53
Exception handling . 53

Programming with the Java API . 54
Sample . 55

Chapter 6 Web services 61

Overview of web services in AR System. 62
Web service standards. 62
Predefined AR System web services . 64
Forms and field mappings for web services . 64
Basic and custom web services . 65
Creating web service clients . 66

Setting up the environment for web services . 66
Verifying the AR System server configuration for web services 67
Configuring for a proxy server . 67
Accessing WSDL or web services over https . 68

AR System web services architecture . 69
Information flow for web services published in AR System 69
Information flow for consuming a web service in AR System 71

Publishing a web service . 72
Creating a web service. 72
Viewing a list of web services . 80

Registering a web service . 80
Web Services Registry prerequisites and configuration. 80
Managing web services registry entries . 82
6 Integration Guide

Synchronizing the Registry and Category forms with the registry 87
Exporting and importing data in the Registry and Category forms 88

Consuming a web service . 89
Creating a Set Fields web service filter action. 89
Querying the registry . 91
WSDL limitations for consumption . 94
Managing web service performance issues . 94

SOAP headers and authentication. 95
Authentication information for a published web service . 96
Authentication information for consuming a web service 97

Supported schema constructs and AR System web service limitations 101
Supported XML schema constructs . 101
The choice element . 103
XML schema constructs not supported in AR System. 103

Chapter 7 Plug-ins 105

About AR System plug-ins . 106
Installing plug-in components . 108

Installed files . 109
Creating C plug-ins . 110

C plug-in conventions. 111
Creating Java plug-ins . 112

Classes, instances, and shared data . 112
Writing a Java plug-in. 113

Configuring the Java plug-in server . 114
Multithreading in the Java plug-in server . 114
Dynamic plug-in loading . 115
Plug-in naming conventions . 117
Restarting the plug-in server using the Set Server Info command 118

Configuring the AR System server . 118
Defining plug-in aliases . 119

Running the plug-in server. 120
Logging plug-in information . 120

Common plug-in C functions and Java methods . 123
Common C plug-in functions . 123
Common Java plug-in methods . 124

AREA plug-ins . 124
AREA plug-in C API functions . 126
AREA plug-in Java API methods . 126
Sample AREA implementations . 127

ARDBC plug-ins. 127
ARDBC plug-in C API functions. 128
Calling AR System API from an ARDBC plug-in. 129
ARDBC plug-in Java API methods . 130
Creating a vendor form for an ARDBC plug-in . 130

AR filter API plug-ins . 132
AR filter API plug-in C function . 133
AR filter API plug-in Java methods . 134
Contents 7

Chapter 8 LDAP plug-ins 135

Overview of LDAP and AR System. 136
ARDBC LDAP plug-in . 136

Requirements . 136
Configuring the ARDBC LDAP plug-in . 137
Building AR System forms for directory services . 140
ARDBC LDAP run-time performance tips. 144

AREA LDAP plug-in . 145
Configuring the AREA LDAP plug-in . 145
Configuring AREA LDAP group search . 150
Configuring AR System servers to use the AREA LDAP plug-in 152
What’s next? . 152

Chapter 9 AR System external authentication 153

Overview of AREA authentication . 154
About the AREA LDAP plug-in . 154
Specifying AREA plug-in server settings . 154

Configuring authentication processing. 155
Specifying when to use internal and external authentication 155
Specifying authentication chaining mode . 156
Determining AREA behavior . 157
Configuring Atrium SSO integration . 161

Setting up the AREA hub . 164

Chapter 10 Data visualization fields 167

Overview . 168
Services provided to the data visualization modules on BMC Remedy Mid Tier . . 168
Services provided on clients . 170
Using Java classes . 171
Working with native libraries . 172
Storing shared library files on the mid tier . 172
Creating data visualization fields. 174

Creating data visualization modules on the mid tier . 175
Registering data visualization modules . 178

Configuring right-to-left format in a data visualization field (DVF) 182

Chapter 11 Vendor forms 183

About vendor forms. 184
Creating vendor forms . 184

Chapter 12 View forms 187

About view forms. 188
Database requirements for view forms. 188
AR System requirements for view forms . 189
Field properties for fields on view forms . 189
Database data types for view forms . 189
8 Integration Guide

Creating and modifying view forms. 192
Mapping an alternative AR System field type . 194
Modifying view forms . 194

Setting up a remote database for view forms . 194

Chapter 13 SQL database access 197

Accessing AR System data externally . 198
Pushing data from AR System with SQL . 198
Pulling data into AR System with SQL. 198
Issues and considerations . 199

Chapter 14 ODBC database access 201

Overview . 202
Creating multiple data sources . 202
Compatibility with ODBC clients . 205
Using Crystal Reports with AR System . 205

Using field labels or database names in Crystal Reports. 208
Crystal Report report options considerations . 209
Selecting report fields in Crystal Reports . 209
Using Crystal Reports with join forms. 210
Limitations when using Crystal Reports . 210

Using Microsoft Access with AR System . 211
Using Microsoft Excel with AR System . 212
Issues and considerations . 212

Chapter 15 Extending BMC Remedy Developer Studio 215

About extending BMC Remedy Developer Studio. 216
Prerequisites for creating plug-ins. 219

Software requirements . 219
Project dependencies. 219

Extension points . 219
BMC Remedy Developer Studio API . 220
Installation directory . 220

Chapter 16 BMC Atrium Integration Engine 221

The AIE integration with AR System . 222

Chapter 17 BMC Atrium Orchestrator 225

Overview . 226
The AR System Orchestrator Configuration form . 226

Modifying entries in the AR System Orchestrator Configuration form 228
AR System workflow for Atrium Orchestrator integration. 229

Job status for asynchronous execution operations . 232

Chapter 18 Exporting and importing data and definitions 233

Overview . 234
Contents 9

Exporting objects and data to XML format. 234
AR System objects in XML . 234
AR System data in XML . 235
Using XML with the AR System API . 235

Using the import/export command-line utility. 235
Guidelines for using the import/export utility . 236
DefinitionImport and DefinitionExport options . 236
Import/export examples. 239

Using the runmacro command-line utility . 240
runmacro example . 242

Using the BMC Remedy Data Import utility . 243
Options for BMC Remedy Data Import command-line utility 245
Importing in a multithreaded environment. 253
Importing with a mapping file. 255
Importing without a mapping file . 255
Localization tips . 255
BMC Remedy Data Import utility examples . 256

Using the BMC Remedy User CLI . 257

Chapter 19 Running external processes (Run Process) 259

Overview . 260
Client and server processes. 260
Using Run Process to start applications . 260

Example: open a reference document from an active link button 262
Example: call a pager application from a filter . 263

Using Run Process/$PROCESS$ to retrieve data from applications 264
Run a process on the web . 266

Limitations in using JavaScript . 267
Issues and considerations . 267

Chapter 20 OLE automation 269

OLE overview . 270
AR System and OLE automation . 271
Active links and OLE automation . 272

Using the GUID . 273
The OLE automation active link interface . 273
Reading the method tree. 275

Maintaining server context across multiple active link actions. 278
Working with ActiveX controls . 278
AR System as an OLE automation server . 278
DCOM support . 279
The OLE automation active link action . 279

OLE automation example—Sample:SpellCheck . 283
Issues and considerations . 284

Chapter 21 Dynamic data exchange 285

Overview . 286
DDE parameters used by AR System . 286
10 Integration Guide

Methods of integration . 287
Configuring your system to use DDE with AR System . 287

Working with your dde.ini file . 287
DDE time-out settings. 290

Using active links with DDE . 290
Using the DDE active link action . 291
Using the DDE active link keyword . 293

Using BMC Remedy User reporting with DDE. 293
Configuring BMC Remedy User to pass report data . 294
Creating a report for DDE export . 294

Using a DDE execute from an external application to trigger AR System 295
Using AR System with DDE, third-party applications, and macros 296

DDE server name and BMC Remedy User path. 296
Supported DDE topic and function . 297
Example program and buffer . 297

Examples . 300
Integrating with Microsoft Excel. 300
Integrating with Microsoft Word . 303
Using DDE to pass data to Excel for graphing . 305

Issues and considerations . 306

Chapter 22 Simple network management protocol 307

Overview . 308
BMC Remedy SNMP Agent functions . 309

Monitoring AR System . 309
Sending traps . 310
SNMP configuration . 311
The arsnmpd configuration file . 312

System information . 313
Access control information . 313
Location of the armonitor configuration file . 316

The snmpd configuration file . 317
The armonitor configuration file . 318
Starting BMC Remedy SNMP Agent . 318
Stopping BMC Remedy SNMP Agent . 319
Troubleshooting . 319

Chapter 23 Making applications licensable for integration system vendors 323

Application licensing options. 324
Application licensing overview . 325
Making applications licensable . 326
Adding the application license to your server. 327
Assigning application licenses to users . 328

Appendix A Web service operation types 331

Create operation type . 332
Set operation type . 332
Get operation type . 333
Contents 11

Service operation type . 334
XPATH function . 335
Setting the start record and the maximum limit . 337

Appendix B Mapping web service data 339

Mapping to simple and complex documents . 340
Simple documents . 340
Complex hierarchical documents . 342
Mapping to complex documents . 345
Using join forms in web services . 350

XML editing. 351
Simple XML editing . 352
Object properties . 352
Handling null, empty, and missing values . 354
Advanced XML editing. 358

Data types . 360

Appendix C ARDBC LDAP example: Accessing inetorgperson data 363

Creating the inetorgperson vendor form . 364
Attaching fields to represent inetorgperson data . 365
Defining a filter to generate a DN . 367

Summary of fields . 368

Appendix D Web service examples 371

Example 1: Publishing a simple flat document . 372
Example 2: Consuming a simple flat document . 377
Example 3: Publishing a complex document . 381
Example 4: Consuming a complex document . 394

Appendix E Adding a certificate to a certificate database 401

About certificate databases . 402
Creating a certificate database . 402
Adding a certificate to a certificate database . 403
Listing certificates in a certificate database. 404

Appendix F AR System change ID utility 407

Introduction to archgid . 408
Syntax of archgid . 412
Using archgid in prompt-driven mode . 415
Using archgid in bulk mode . 417

Index 419
12 Integration Guide

Preface
IMPORTANT
The compatibility information listed in the product documentation is subject to
change. See the compatibility matrices at http://www.bmc.com/support for the
latest, most complete information about what is officially supported. Carefully
read the system requirements for your particular operating system, especially the
necessary patch requirements.

Audience
This guide is written for developers and administrators responsible for creating,
customizing, and maintaining integrations between BMC Remedy Action Request
System (AR System) and external systems.

Before you read this guide, you should have a strong working knowledge of
AR System, BMC Remedy Developer Studio, and BMC Remedy User. In addition,
it is helpful to have a working knowledge of the external systems you are
considering for integration with AR System.

AR System documents
The following table lists documentation available for AR System 7.6.04.

Unless otherwise noted, online documentation in Adobe Acrobat (PDF) format is
available on AR System product installation DVDs, on the Customer Support
website (http://www.bmc.com/support), or both.
Preface 13

http://www.bmc.com/support
http://www.bmc.com/support

BMC Remedy Action Request System 7.6.04
You can access product help through each product’s Help menu or by clicking
Help links.

NOTE
The AR System product help has not been updated for version 7.6.04. The help
topics still apply to version 7.6.03. For the most recent content, refer to the PDF
documentation.

 Title Description Audience

Concepts Guide1 Overview of AR System architecture and features; includes
information about add-on products that extend AR System
functionality and a comprehensive glossary for the entire
AR System documentation set.

Everyone

Installation Guide Instructions for installing AR System. Administrators

Introduction to Application
Development with BMC
Remedy Developer Studio

Information about the development of AR System
applications, including an introduction to using BMC
Remedy Developer Studio.

Developers2

Form and Application
Objects Guide

Information about AR System applications and their user
interface components, including forms, fields, views,
menus, and images.

Developers

Workflow Objects Guide Information about the AR System workflow objects (active
links, filters, and escalations) and how to use them to create
processes that enforce business rules.

Developers

Configuration Guide Information about configuring AR System servers and
clients, localizing, importing and exporting data, and
archiving data.

Administrators

BMC Remedy Mid Tier
Guide

Information about configuring the mid tier, setting up
applications for the mid tier, and using applications in
browsers.

Administrators

Integration Guide Instructions for integrating AR System with external
systems by using web services, plug-ins, and other products,
including LDAP, OLE, and ARDBC.

Administrators/
Developers/
Programmers3

Optimizing and
Troubleshooting Guide

Information about monitoring and maintaining AR System
and AR System applications to optimize performance and
solve problems.

Administrators/
Developers/
Programmers

Database Reference Database administration topics and rules related to how
AR System interacts with specific databases; includes an
overview of the data dictionary tables.

Administrators/
Developers/
Programmers

BMC Remedy Distributed
Server Option Guide

Information about implementing a distributed AR System
server environment with BMC Remedy Distributed Server
Option (DSO).

Administrators

BMC Remedy Flashboards
Guide

Instructions for creating, modifying, and administering
flashboards to display and monitor AR System information.

Administrators/
Developers

C API Reference Information about AR System data structures, C API
function calls, and OLE support.

Programmers

C API Quick Reference Quick reference to C API function calls. Programmers
14 Integration Guide

AR System documents
1 The full title of each guide includes BMC Remedy Action Request System 7.6.04
(for example, BMC Remedy Action Request System 7.6.04 Concepts Guide), except

Java API Information about Oracle Java classes, methods, and
variables that integrate with AR System. For the location of
the JAR file containing this online documentation, see the
information about the Java API in the Integration Guide.

Programmers

Java Plug-in API Information about Java classes, methods, and variables used
to write plug-ins for AR System. For the location of the JAR
file containing this online documentation, see the
information about plug-ins in the Integration Guide.

Programmers

BMC Remedy Email Engine
Guide

Instructions for configuring and using BMC Remedy Email
Engine.

Administrators

Error Messages Guide Descriptions of AR System error messages. Administrators/
Developers/
Programmers

Master Index Combined index of all books. Everyone

BMC Remedy Approval
Server Guide

Instructions for using BMC Remedy Approval Server to
automate approval and signature processes in your
organization.

Administrators

Release Notes Information about new features, compatibility, and
international issues.

Everyone

Release Notes with Known
Issues

Information about new features, compatibility, international
issues, installation planning, and open issues.

Everyone

BMC Remedy User Help Instructions for using BMC Remedy User. Everyone

BMC Remedy Developer
Studio Help

Instructions for using BMC Remedy Developer Studio to
develop AR System forms, workflow objects, and
applications.

Developers

BMC Remedy Data Import
Help

Instructions for using BMC Remedy Data Import. Administrators

BMC Remedy Alert Help Instructions for using BMC Remedy Alert. Everyone

BMC Remedy Mid Tier
Configuration Tool Help

Instructions for configuring BMC Remedy Mid Tier. Administrators

BMC Remedy Browser
Help

Instructions for using AR System forms in browsers. Everyone

BMC Remedy Migrator
7.6.04 BMC Remedy
Migrator Guide

Outlines procedures for installing BMC Remedy Migrator,
setting options, and performing migration tasks.

Administrators /
Developers

BMC Remedy Migrator
online help

Procedures for setting BMC Remedy Migrator options and
performing migration tasks.

Administrators /
Developers

BMC Remedy Encryption
Security 7.6.04 BMC
Remedy Encryption
Security Guide

Provides an overview of the BMC Remedy Encryption
Security products and explains how to install and configure
them.

Administrators

 Title Description Audience
Preface 15

BMC Remedy Action Request System 7.6.04
the BMC Remedy Migrator Guide and BMC Remedy Encryption Security Guide.
2 Application developers who use BMC Remedy Developer Studio.
3 C and Java programmers who write plug-ins and clients for AR System.
16 Integration Guide

Chapter

1
 What does “integration”
mean?
In the context of software applications, integration means linking products
together to provide increased functionality and utility. In other words, two
products together do more (or do it faster) than the products by themselves.

AR System is a powerful foundation and development environment for
applications that automate business processes. Its flexible multiplatform,
multidatabase architecture and highly customizable user interface enable
AR System to be adapted to the unique business processes of a particular company
and to evolve as those processes change. However, AR System alone cannot
perform all of the functions in an environment. Instead, AR System applications
can be integrated with other applications and tools to form complete business
solutions.

AR System is an open system, with many interfaces for linking to other products.
This document provides an overview of AR System and these interfaces, and
discusses methodologies for creating integrated environments.

The following topics are provided:

Benefits (page 18)
Areas for integration (page 18)
Real-time versus asynchronous integration (page 18)
Integrating with AR System (page 19)
Chapter 1 What does “integration” mean? 17

BMC Remedy Action Request System 7.6.04
Benefits
The primary intent of business software is to enable users to do their jobs more
quickly with fewer resources. Using two products separately is usually less
efficient than using them in an integrated fashion. For example, a user might have
to enter the same information into two different applications, which often results
in errors. Or the telephone number of an incoming call might be manually entered
by a customer service representative rather than automatically captured.
Application integration can provide improved efficiency and effectiveness.

Areas for integration
The two primary areas for integration between applications are:

Data sharing—Passing data structures back and forth or jointly accessing a
common database.

Process linking—One application (App1) automatically launches another
(App2) “in context” so that App2 “knows” everything entered into App1, and
the user is immediately focused at the part of App2 that continues the process.
Or App2 automatically does its job in the background based on directions from
App1, and the user does not even know it is running.

The overall environment behaves as if it were one large application, and yet the
company can choose the discrete pieces that best meet the business
requirements.

Real-time versus asynchronous integration
Products are sometimes integrated for “real-time” interaction. For example, in a
help desk environment, a user calls a support person with a question. During the
call, the support person enters information about the user and the question into the
call tracking application. If the best way to answer the question is for the support
person to walk the user through a process on the user’s workstation, the support
person could click a button on the call tracking application interface that runs a
remote control application. The remote control application opens a window on the
support person’s workstation that is a copy of the user’s screen, and the support
person can take control of the keyboard and mouse functions of the user’s system
to step through a process. The user gets an answer and the support person never
leaves his or her desk.
18 Integration Guide

Integrating with AR System
In contrast, some integration is done “asynchronously.” This means that an
application can be updating another application on an ongoing basis so that the
second application is up-to-date the next time it is accessed. For example, suppose
a Human Resources application contains the names and office numbers of all of the
current employees of a company. Every night, the HR application writes a file that
contains an alphabetical list of all of the employees to a defined place on a file
server. Whenever the help desk starts the call tracking application, the application
reads this file and dynamically builds menus of the employee names so that the
support personnel can fill in their forms quickly. Conversely, whenever a change
request to move an office is processed by the help desk, a notification is sent to the
HR system that contains the affected employee name, the new office number, and
an effective date.

Integrating with AR System
AR System is a platform on which you can build applications for automating a
wide range of support and business processes. In many IT organizations,
AR System-based applications are the central applications for tracking
information. Therefore, the opportunities to integrate AR System with other
applications are endless, ranging from simple access to diagnostic utilities to large-
scale integration with manufacturing, customer interaction, and financial
accounting systems.

NOTE
A hallmark of AR System is its rich and robust API. All prospective product
partners are encouraged to integrate with AR System at the API level whenever
possible. For more information, see the C API Reference.

Many customers purchase AR System as a development platform to create their
own business applications and automate their business processes. BMC Remedy
also develops and sells specific applications such as BMC Remedy Help Desk™,
BMC Remedy Asset Management™, BMC Remedy Customer Support™, BMC
Remedy Quality Management™, or BMC Remedy Change Management™. These
BMC Remedy applications are built on top of AR System.

Integration at the API level is encouraged because your integration can be more
easily adapted to BMC Remedy customers who utilize applications purchased
from BMC Remedy and can be adapted to those BMC Remedy customers who
build their own custom applications. BMC Remedy User is built on the AR System
C API. BMC Remedy Mid Tier and BMC Remedy Developer Studio are built on the
AR System Java API.
Chapter 1 What does “integration” mean? 19

BMC Remedy Action Request System 7.6.04
20 Integration Guide

Chapter

2
 Architectural overview of
AR System
AR System has a multitier client/server architecture. AR System clients provide
user interface facilities available from various platforms, including the Web. This
section discusses the terminology and overall architecture of AR System.

The following topics are provided:

Terminology (page 22)
Multitier architecture (page 24)
AR System clients (page 26)
BMC Remedy Mid Tier (page 28)
AR System server (page 28)
Database servers (page 29)
Communications between clients and the AR System server (page 30)
Communications between AR System servers and database servers (page 30)
Many-to-many connections (page 30)
AR System components (page 32)
Security and access control (page 33)
Chapter 2 Architectural overview of AR System 21

BMC Remedy Action Request System 7.6.04
Terminology
The following terms describe the architecture of AR System.

Form
The primary user interface is a form, which is a screen made up of fields. Fields can
be required, optional, or system-filled. Each field can have some type of data
entered into it, including text, numbers, and dates and times. An example of a form
is shown in Figure 2-1 on page 23.

A form corresponds to a table in a database, and the fields on a form correspond
to columns in the tables. (Because forms were called “schemas” before AR System
4.0, many API calls still use that term.)

Request
When a user fills in the required fields on a form and tells the system to save the
information in the database, a new request is created (or submitted). A request is
one row of information in the database. It might be a trouble ticket or change
request. (Because requests were called “entries” before AR System 4.0, many API
calls still use that term.)

Workflow
When data is written into a database or into a form on the client, it sits there until
someone or some application decides to change it. Workflow provides a means to
take action based on this data, and the actions can result in changes to the data.
Workflow is composed of descriptions (sometimes called “definitions” or “rules”)
that specify the actions to take and the conditions that can trigger them. Workflow
can be triggered by the state of data (for example, the value in a field) or by the
amount of time the data is stored. Actions can include running other applications,
notifying people, changing data in the database or on-screen, and running reports.
22 Integration Guide

Terminology
Application
AR System is used to track information such as trouble tickets, change requests,
asset records, purchase orders, stock trades, and service level agreements. A
complete trouble ticket application might consist of a main form that contains the
caller identification, problem description and work log information, and several
secondary forms that are “linked” or “related” to the main form. Examples of
secondary forms are an employee detail form that contains previously entered
records about all of the employees at the company (for example, name, phone
number, office location, PC type, and so on), and a solution form that contains
summaries of previously entered problems and solutions. When a new trouble
ticket is entered into the form, AR System workflow can look up information in the
other forms and add it to the trouble ticket. This way, common information does
not need to be reentered multiple times. BMC Remedy has developed a number of
applications, including BMC Remedy Help Desk, BMC Remedy Asset
Management, BMC Remedy Change Management, BMC Remedy Service Level
Agreements, BMC Remedy Quality Management, BMC Remedy Customer
Support, and BMC Remedy Citizen Response.

Figure 2-1: Sample BMC Remedy form
Chapter 2 Architectural overview of AR System 23

BMC Remedy Action Request System 7.6.04
Multitier architecture
AR System is a multitier client/server architecture (see Figure 2-2 on page 25).
AR System clients provide the user interface. The AR System mid tier makes the
user interface available in browsers. The AR System server implements the
workflow functions, access control, and flow of data into and out of the database.
The database server acts as a data storage and retrieval engine. (For information
about supported platforms, see the compatibility matrices at http://
www.bmc.com/support.)
24 Integration Guide

http://www.bmc.com/support
http://www.bmc.com/support

Multitier architecture
Figure 2-2: AR System multitier architecture

JSP Web
server

JSP Web
server

• MS Windows
• Sun Solaris
• HP-UX
• IBM AIX
• Red Hat Linux

• MS Windows
• Sun Solaris
• HP-UX
• IBM AIX
• Red Hat Linux

AR System userAR System user
Web

browser
Web

browserWireless clientWireless client

HTTP/
HTTPS
HTTP/
HTTPS

Hypertext Transfer
Protocol/Secure
(HTTP/HTTPS)

Hypertext Transfer
Protocol/Secure
(HTTP/HTTPS)

Remote
procedure

calls
(RPCs)

Remote
procedure

calls
(RPCs)

Remote
procedure

calls (RPCs)

Remote
procedure

calls (RPCs)

Database serverDatabase server

• Oracle
• Sybase
• Informix
• DB2
• MS SQL Server
• Flat File (obsolete
 as of AR System 5.1)

• Oracle
• Sybase
• Informix
• DB2
• MS SQL Server
• Flat File (obsolete
 as of AR System 5.1)

Database (Inter-process
 IPC communications)
Database (Inter-process
 IPC communications)

AR System Mid Tier

AR System
server

AR System
server
Chapter 2 Architectural overview of AR System 25

BMC Remedy Action Request System 7.6.04
AR System clients
AR System clients are available for a number of operating system environments,
as listed in Figure 2-2 on page 25. For each operating systems, the client is
composed of a set of native applications (tools) that use the standard user interface
conventions for that environment. Individual users can run these tools as
necessary. Each client includes one or more of the following tools.

Web client
Through the BMC Remedy Mid Tier, users can access AR System in a browser.
Using the web-based interface, users can submit and modify new requests, to
search for information about requests, and to generate reports. Web pages are
written in JSP™ and rendered in JavaScript™ and HTML.

BMC Remedy User
A executable client for the Windows platform that provides an interface to
AR System applications. It is also used to submit and modify new requests, to
search for information about requests, and to generate reports. An example of the
interface is shown in Figure 2-1 on page 23.

BMC Remedy Developer Studio
Used by AR System administrators to create and modify applications. All the
components that make up an application, such as forms and workflow definitions,
are created and modified using BMC Remedy Developer Studio. There is no
programming or scripting language used. An example of the interface is shown in
Figure 2-3 on page 27. BMC Remedy Developer Studio requires a Windows
platform.
26 Integration Guide

AR System clients
Figure 2-3: BMC Remedy Developer Studio interface

BMC Remedy Data Import
Used to load external data into the AR System database. For example, employee
information could be extracted from a Human Resources application and loaded
into a Company People Info form as a batch process, eliminating the need to retype
any data.

BMC Remedy Data Import provides a graphical interface that allows the building
of the mapping between the columns in the external data set and the fields in the
AR System form. These mapping definitions can be saved and reused. BMC
Remedy Data Import is available for Windows.

BMC Remedy Alert
Alerts users to events. For example, it can display a message informing help desk
personnel that a new problem was assigned to them. Clicking a notification opens
a ticket in BMC Remedy User.
Chapter 2 Architectural overview of AR System 27

BMC Remedy Action Request System 7.6.04
BMC Remedy Alert is a small application that is typically run as a background
process on an AR System user’s workstation. From BMC Remedy Alert, you can
open up a list of alerts in BMC Remedy User or in a browser. BMC Remedy Alert
shows only a summary of the number of alerts received. BMC Remedy Alert runs
only on Windows platforms.

In addition to these applications, some additional processes act as clients in
AR System. These include the BMC Remedy Migrator change automation product,
the Network Management Platform Integration accessories, and the Systems
Management Integration utilities. These are independent of the standard user
desktop tools. Several of these products and the mechanisms they use for
integration with AR System are described in Chapter 4, “AR System C API.”

BMC Remedy Mid Tier
The mid tier translates client requests, interprets responses from the server,
handles web service requests, and runs server-side processes that bring AR System
functionality to web and wireless clients. For example, unlike BMC Remedy User,
a browser is a generic client that has no inherent knowledge of any application that
might run within it. By acting as an interpreter, the mid tier allows a browser to
become a fully functional AR System client.

The BMC Remedy Mid Tier requires a supported Java Server Pages (JSP) engine.
Tomcat is bundled with the mid tier, and is installed with the mid tier as part of
the mid tier installation by default.

For the latest information about supported platforms and software, see the
Remedy compatibility matrices at http://www.bmc.com/support.

AR System server
The AR System server is a set of processes that run on an application’s server host.
The AR System server is available for Windows and for a variety of UNIX®
versions, as shown in Figure 2-2 on page 25. The server is implemented as several
service processes that are normally started automatically when the server host is
powered up.

The server processes have no direct user interface. They communicate with other
processes, either AR System clients or external applications, through an
application programming interface (API). An API is one possible way to integrate
with AR System.
28 Integration Guide

http://www.bmc.com/support

Database servers
The AR System server processes the data that is enter by way of an AR System
client. It writes the data into the database when a new record is submitted, and
retrieves that data when a client makes a query. The server checks that a user has
permission to do each requested transaction, enforcing any access control defined
as part of an application. The server also continuously evaluates the data in the
database and each transaction to determine whether any workflow should be
triggered.

These are the key components of the AR System server:

arserverd process—The primary AR System server process. It handles
requests from the clients and interacts with the database.

plug-in server—A companion process to the AR System server. It loads
configured plug-in modules to interface with external data while processing
vendor forms, validates users with external authentication sources, and extends
filter workflow. When the AR System server needs to access a plug-in, it
interfaces with the plug-in server to perform the operation.

Email process—Java on UNIX or aremaild on Windows; the process that links
arserverd with email systems. For example, users can submit service requests
to an AR System server by sending an email message to an email account. In
addition, workflow can cause email messages to be sent to particular email
addresses as a notification option.

Database servers
AR System uses standard relational database engines for the actual storage and
retrieval of data. Architecturally, the database server is an independent set of
processes that are completely separate from the AR System server processes.
Physically, the database server processes can be running on the same server host
as the AR System server or on a different host. The database server can be any
platform that the database engine supports.

AR System is not a database application in the typical sense. All of the workflow is
managed by the AR System server, so proprietary database features such as
triggers and stored procedures are not used. An application created on an
AR System server running one type of database engine can easily be moved to a
server running a different database engine through a simple export/import
process.

The user or administrator of AR System clients does not need to know anything
about SQL or the underlying database.
Chapter 2 Architectural overview of AR System 29

BMC Remedy Action Request System 7.6.04
Communications between clients and the
AR System server

All clients of the AR System server communicate with the server by using remote
procedure calls (RPCs) on top of a TCP/IP transport stack. The type of RPC is the
Oracle ONC™ RPC.

TCP/IP networks are the de facto standard for corporate and Internet
communications. The RPC mechanism is used because it is a “lightweight”
transport that uses minimal network bandwidth, yet provides robust
communications services. It can function over slower dial-up network links and
high-speed internets and intranets, and is supported over most of the wireless
networking technologies.

The AR System web server communicates with the browsers using HTTP
(Hypertext Transfer Protocol) or HTTPS (Secure HTTP).

Communications between AR System servers
and database servers

From the perspective of the database server, the AR System server is a database
“client.” BMC Remedy uses the database client libraries from the various
databases. When an AR System server is installed, the installer specifies the type
and location of the database server, and the proper database client is enabled.
AR System servers communicate with the database servers through whatever
inter-process communications (IPC) mechanism the database client uses.
Examples include SQL*Net for Oracle and OpenClient for Sybase.

Some database engines are multithreaded. This means that the database can
perform multiple transactions simultaneously. In AR System, the arserverd
server process is also multithreaded. Each of these arserverd threads is connected
to a different thread in the database engine. This provides tremendous data
throughput and system scalability.

Many-to-many connections
In an AR System environment, one AR System server can theoretically support
any number of AR System client connections (limited by network bandwidth and
server host and database performance). The clients can be on any mix of platforms.

Similarly, an AR System client can be connected to any number of servers at the
same time. These servers can be any mix of server hosts and underlying database
engines.
30 Integration Guide

Many-to-many connections
In an environment with multiple AR System servers, the Distributed Server
Option (DSO) can be added to share common information among servers and keep
that information consistent. DSO also enables records to be forwarded between
servers if workflow determines that the record should be transferred. This permits
building large-scale distributed support environments that behave as a single
virtual system. Some of the many uses of DSO include:

Transferring requests to the location at which they can be processed.

Transferring requests between regions in a 24-hour, 7-days-per-week customer
support environment.

Creating a distributed knowledge base so that problem-solving information can
be referenced at any location.

Archiving old requests to a reporting server to maximize the performance of the
production server.

Figure 2-4: Many-to-many architecture

AR System serverAR System serverAR System serverAR System server

AR System clientsAR System clients

Distributed
Server Option

Distributed
Server Option

• One AR System server can support
 any number of AR System clients
 running on any mix of platforms.

• An AR System client can be
 connected to multiple AR System
 servers simultaneously.

• AR System servers can keep each
 other synchronized using the
 Distributed Server Option.

Bracknell, EnglandBracknell, EnglandTokyo, JapanTokyo, Japan
Chapter 2 Architectural overview of AR System 31

BMC Remedy Action Request System 7.6.04
AR System components
AR System applications address business processes such as problem management
or asset tracking. Similar to Microsoft Excel templates, which are the spreadsheet
forms and the underlying formulas, AR System applications are the forms and the
related workflow definitions.

When an application is created using BMC Remedy Developer Studio, it is built
with objects. There are five essential classes of objects that can be linked together
to make applications. The first two provide the basic user interface pieces:

Forms—Display information in fields. (Adding fields to a form causes the
AR System server to create columns in a database table.) Each data field on a
form has a set of properties that define the size of the field, the type of data that
the field stores, and any access permissions. There are also several fields that
don’t contain data but instead organize data or improve the appearance of the
screen: active link control fields (buttons and hotlinks), table fields, trim fields,
and panel fields. Fields from existing forms can be combined into join forms.

Menus—Are attached to fields on forms as fill-in aids. They can provide
suggestions for entering data into a field, or can be mandated as the only
possible choices. Menus can be statically defined, dynamically built by querying
other AR System database tables, read from text files written by other
applications, or created from SQL queries to external databases.

The other three object classes provide the workflow definitions:

Filters—Action-based workflow definitions that are executed on the AR System
server.

Active links—Action-based workflow definitions that are executed on the client.

Escalations—Time-based workflow definitions that are executed on the server.

“Action-based” means that the workflow definition is evaluated when there is a
change of state of some data or some specific action is initiated. For example, a
filter could be defined so that whenever a new trouble ticket record is submitted to
the server with a priority of “high” or “critical,” a notification message is sent to a
support manager. Submitting the new record is the action. The requirement that
the record have a certain priority is the “qualification” on the filter. Some of the
other actions that can trigger filters are updating records, deleting records, and
retrieving records. Active links can be triggered by many additional mechanisms,
including clicking buttons on a form, entering carriage returns in fields, making
menu selections, opening or closing windows, and others.

“Time-based” means that the workflow definition is evaluated based on a time
parameter. These can be either absolute time, such as “every day at 2:00 p.m.,” or
a time interval, such as “once every 37 minutes.”

Workflow definitions can be “qualified” as just described. A qualification is a
logical expression that is evaluated when the workflow definition is triggered. For
example, the qualification to enforce the priority requirements in the previous
example is something like this:
32 Integration Guide

Security and access control
$Priority$ = “High” OR $Priority$ = “Critical”

This says that the value in the Priority field of the particular record must match
either the value “High” or “Critical.” Qualifications can be combinations of
algebraic and Boolean structures.

If a workflow definition is triggered and the qualification is met, one or more
actions can be taken by AR System. Actions include:

Copying data from other forms or sending data to other forms

Sending unscrewing messages to users or sending notifications using email,
BMC Remedy Alert, or other methods

Enabling or disabling fields or changing menus associated with fields

Making DDE or OLE connections to other applications

Running an external process

Managing guides

Managing dialog boxes, which are fields that are displayed to users who are
filling out forms

Error checking

Logging information to a file, usually to maintain an audit trail

Running an SQL command

Another object, called a guide, is a group of active links or filters that can assist
users in accomplishing specific tasks. For example, a guide could open a business
card form and then display instructions to users as they tab through the fields.
Guides can also be used to group together reusable sets of workflow that can be
referenced by several forms or actions in your applications.

Security and access control
Throughout AR System, keeping information secure is a major consideration.
AR System implements a multitier approach to control access at the following
points:

Server level

Form level (or database table level)

Request level (or row level)

Field level (or column level)

Active link or guide level

When users start an AR System client, they must enter a user name and a
password, which are checked against every AR System server with which the
client is trying to connect. After a connection is made, each request that goes
between the client and the server has the current user name and password checked
to verify that the values are still valid.
Chapter 2 Architectural overview of AR System 33

BMC Remedy Action Request System 7.6.04
In addition to having a unique user name and password on a server, every user is
a member of zero or more groups. Groups are defined and maintained with the
Group form, where each record is a different group definition. For example, there
might be groups defined for First-Level Support, Back-Line Support, and Support
Management. Groups are used to control information access to forms, requests,
fields, and active links/guides. As a practical matter, most users are likely to
belong to the Public group.

You could use group access to forms so that a particular form is visible to users in
the Support Management group, but not to users in the First-Level Support and
Back-Line Support groups.

For a particular form, an administrator can determine that certain requests are
accessible only by members of one group and that other requests are accessible by
members of a different group.

In addition, every field on a form has access control. You set field permissions
when you define the field properties in BMC Remedy Developer Studio. Each field
can have a list of groups that can view the field and the data entered into it. Some
or all of the groups with View permission might also have “change” access so that
they can enter and modify the data. If a user opens a form on his or her workstation
and the groups he or she is a part of do not have View access to some of the fields,
those fields are not displayed on the form. A field can also be visible to users or
hidden so that it is accessible only through workflow.

Finally, each active link and active link guide has its access control assigned when
it is created. A user who has access to an active link does not automatically have
access to the field associated with it. Similarly, a user who has access to a guide
does not automatically have access to the active links in the guide.

Access control in AR System is additive. That is, each user starts out with no access
permissions; administrators then add permissions as needed. In this way,
AR System implements strict access control. Administrators must make a
conscious decision to grant access to specific groups on a case-by-case basis.
However, if desired, the default permissions can be changed.

Only AR System administrators or subadministrators can modify security
parameters.
34 Integration Guide

Chapter

3
 Integration considerations
Several mechanisms can be used to integrate AR System with another application.
This section discusses the issues to consider when planning an integration project.

The following topics are provided:

Where to integrate (page 36)
Multiplatform issues (page 37)
Choosing an implementation method (page 38)
Integration technologies (page 38)
Chapter 3 Integration considerations 35

BMC Remedy Action Request System 7.6.04
Where to integrate
The three options for integration points with AR System are the client, the server,
and the database server. The choice depends on the nature of the integration and
whether user interaction is involved.

AR System client
AR System to third-party application—Integration with the AR System client
typically involves taking data from a form and passing it to another application
where the user can then perform some additional function. Integration can also
simply consist of launching another application that reads data from the
AR System database. In general, client integration assumes that the user will
access the other application to some extent. Most instances are real-time, where
a user is involved right now.

Third-Party application to AR System—Often, a third-party application
launches BMC Remedy User and directs it to display specific data. For example,
a network management system might have a graphical map of the network
devices. Selecting a device on the map and choosing a “List Open Tickets” from
a menu could cause BMC Remedy User to be triggered with the ID of the
selected device passed as a parameter, and generate a results list of all of the
open trouble tickets for the device. This way, a network technician can quickly
see all of the outstanding problems for a device, but does not need to know the
details of starting AR System and issuing queries.

AR System server
Integration with the AR System server generally implies data sharing or transfer,
either to or from the server. The integration might involve workflow that triggers
secondary actions. Sometimes, the server initiates the interaction. For example, a
filter is triggered that uses a Run Process action to call a pager application to send
a notification to a technician. In other instances, a third-party application might
submit new requests to the server or query for the status of existing requests. For
example, a system management agent running on a PC might discover the
addition of a new sound card. The agent sends a message to a (remote)
management application that, in turn, submits a new request to an asset
application in AR System. AR System users are not directly aware that a new
request has been created, but the next time someone generates an asset report, the
new information is included.

Database integration
The following three modes of integration involve the database directly:

A third-party application reading the AR System database

AR System reading an external database

AR System writing to an external database
36 Integration Guide

Multiplatform issues
The first two modes, which involve reading databases, are relatively
straightforward. Any application that can issue SQL commands and which has the
appropriate permissions can read the data in the AR System tables. In a similar
manner, AR System workflow actions can execute SQL read commands and
scripts that query external database tables and retrieve information. For more
information, see the Database Reference.

The third mode, having AR System write data to an external database table, can be
accomplished using Direct SQL. Another method is to create AR System workflow
that executes an SQL command script, passing any AR System data as parameters
to the script.

In addition, View and Vendor forms are available to provide access to external
databases in AR System forms.

Having a third-party application write data to an AR System table is not
supported. The AR System server maintains the relationships among the tables in
the AR System database. If a third-party application attempts to add data and does
not maintain these relationships, the entire database can become corrupted.

Multiplatform issues
A major consideration for every integration implementation is the range of
platforms that are involved. For example, on the AR System client side, some
functions that work in BMC Remedy User are not available in a browser
environment. For example, one of the active link actions is to issue a Windows
DDE command. This action is ignored if executed from a mid tier client.

AR System clients are available for Windows and on all major platforms through
the Web using the BMC Remedy Mid Tier. In some cases, integration at the client
level is unique for the different platforms. The AR System workflow qualifications
include functions to test for the different platforms. For example, the $CLIENT-
TYPE$ function identifies whether the client is BMC Remedy User or a browser.
Multiple workflow definitions can be triggered in parallel, and the one appropriate
for the platform is executed. In some cases, you can avoid the client functionality
issue by running a process on the server from client workflow. Because the
application executes on the AR System server’s platform and operating system, it
doesn’t matter which client platform triggered the workflow.

Similarly, different AR System server platforms might require adjustments to
integration implementations.
Chapter 3 Integration considerations 37

BMC Remedy Action Request System 7.6.04
Choosing an implementation method
The following section outlines some methods by which you can implement
integration with AR System.

How quickly do you want to have the integration working?

Some options are easy to get running for demonstration purposes, but have
drawbacks for production deployment. The more complex the integration, the
more time is required to implement it.

How “robust” does the integration need to be? How heavy will the usage be,
and are there any data throughput requirements?

For an integration that will be used infrequently, some of the methods are
simple to implement. If the integration involves moving a large amount of
information, other methods might require more effort but produce better
results.

Will users be able to modify the integration? How will it be supported?

Some of the methods do not lend themselves to user modification. Others are
easily modifiable, but might be more difficult to support if changes are made.

Integration technologies
A basic design philosophy of AR System is that it is almost always used in
conjunction with other tools and products to create an integrated solution.
AR System is designed to have many integration points, making it easy to combine
with your other solutions.

This table lists the technologies available for integrating with AR System:

Method Description Page

C API (Application
Programming
Interface)

The AR System API on the server is the most technically complex
method. It requires knowledge of C programming and building
executables. However, it provides access to all AR System server
functionality for tightly linked, high-performance integration.

page 41

Java API The AR System Java API is a collection of Java classes that provide
AR System C API functionality in a Java development environment.
Using this abstraction layer allows developers to quickly build
enhanced applications for the web.

page 49

Web Services This integration technology (XML, WSDL, UDDI, and SOAP) allows
you to build distributed applications without programming:
• Use the Set Fields workflow action and a Web Services object to
“consume” third-party web services in AR System applications.
• Use AR System to create and “publish” a Web Services object.

page 61
38 Integration Guide

Integration technologies
AR System Plug-Ins AR System clients perform data operations on external systems through
the AR System server, plug-in service, and plug-in related APIs. The
plug-in service extends the AR System server to integrate with external
data sources. The AR System server connects to the plug-in service,
which activates the proper plug-in when a transaction is made.

page 105

Data Visualization
Field

The data visualization field provides a framework and services for BMC
Remedy Mid Tier-based graphing solutions. It provides an efficient way
to add graphical elements (such as flashboards) to AR System forms.

page 167

AREA Plug-Ins
(AR System External
Authentication)

BMC Remedy provides a special API that allows user logins to be
validated from a data source outside the AR System database. This API
is called the AR System External Authentication (AREA) API.

page 124
and
page 127

Filter API Plug-Ins The filter API enables you to use filters to permit other applications to
make calls back into AR System.

page 105

ARDBC Plug-Ins
(AR System Database
Connectivity)

AR System Database Connectivity enables you to access and manipulate
data that is not stored in AR System. Using the ARDBC API, you can
create plug-ins used by AR System server to manage data. These
plug-ins are loaded at run time and implement calls that are analogous
to the set, get, create, delete, and get-list API calls for entries in a form.

page 105
and
page 135

Vendor Forms Vendor forms allow AR System to present data from external sources as
entries in an AR System form. Vendor forms require you to have an
ARDBC plug-in installed and configured.

page 183

View Forms View forms allow direct read-and-write access to data in database tables
that are not owned by AR System. This allows direct access to these
tables, as if they were owned by AR System, without programming,
database replication, or synchronization.

page 187

SQL Database Access Third-party tools with appropriate permissions can access any
information in the AR System database. In addition, AR System
workflow can query other databases.

page 197

ODBC Access ODBC (Open DataBase Connectivity) is a standard database access
method developed by Microsoft. Using the BMC Remedy ODBC driver,
any client capable of accessing ODBC can have read-only access to
AR System forms. Reporting is a common use of ODBC.

page 201

BMC Atrium
Integration Engine
(AIE)

The BMC Atrium Integration Engine mediates between the AR System
server and vendor applications such as SAP®, Oracle, and other
applications and databases for which adapters are developed. Adapters
can come from BMC Remedy, from partners, or from customers.

page 221

Command Line
Interface (CLI)

A Command Line Interface (CLI) is available with most AR System
clients. This enables a client to be started and passed a set of parameters
so that either it is in a specific state and displays information or it
completes a process and exits with no user interface displayed.

page 233

XML Import and
Export

AR System can export and import object definitions in XML.
AR System clients can convert AR System objects to XML and vice versa
without making calls to the AR System server. When the server exports
the file in XML format, it adds a header required to make it a valid XML
document. This same header is required for the server to import an XML
file correctly. Otherwise, the file is assumed to be in the standard
AR System definition format.

page 233

Method Description Page
Chapter 3 Integration considerations 39

BMC Remedy Action Request System 7.6.04
Running External
Applications
(Run Process)

One of the actions available in AR System workflow is the Run Process
action. AR System can use the command line interfaces of other
applications to start those applications and pass them initial data. In
some cases, the third-party application is simply started, while in others
AR System waits for a response.

page 259

OLE Automation BMC Remedy User supports OLE Automation. It can be both an
Automation server and Automation client. This enables AR System to
send commands or data to other applications and to receive commands
or data from other applications.

page 269

Dynamic Data
Exchange (DDE)

BMC Remedy User supports DDE. It can be both a DDE client and
server. This enables AR System to pass data to other Windows
applications and to be started “in context” by other applications.

page 285

SNMP You can use SNMP to manage complex networks through SNMP-
compliant management consoles and monitor network devices.

page 307

Licensing
Applications

Authorized integration system vendors (ISVs) can make their
applications licensable at the application and user levels.

page 323

Method Description Page
40 Integration Guide

Chapter

4
 AR System C API
The AR System C API provides a common interface client programs, including
AR System clients, can use to communicate with AR System server. The C API is
defined by a set of functions and data structures, and is implemented as a C library
that you can link into your own programs. This section provides an overview of
the AR System C API and how you can use it to integrate AR System with a third-
party product.

The following topics are provided:

Overview (page 42)
Understanding the AR System API (page 43)
Program structure (page 44)
Multithreaded API clients (page 45)
Using the API for integration (page 46)
Issues and considerations (page 48)
Chapter 4 AR System C API 41

BMC Remedy Action Request System 7.6.04
Overview
A client-server application model is a combination of the following items:

A software component with a user interface on a client machine

A software component on a server that processes and stores information

A communications mechanism between the client and the server.

The user works at the client machine, which is “serviced” by the server.

Figure 4-1: Simple client-server model

Typically, the client and server components are on different computer systems,
and the communications mechanism is based on some form of networking
technology, but it is possible to have both the client and server on the same host
simply communicating between processes.

To make the development of client-server applications easier, an application
programming interface (API) is used. Typically, the server is designed first, and its
functionality is structured into a set of “commands.” These commands are
programmed into an API, which becomes the “language” for interacting with the
server. When a client wants the server to do something, it makes a request through
the API. The API handles all of the communications and operating system
functions, gets the server to perform the task, and returns the appropriate
information to the client. When the client software is developed, the programmer
does not need to know any of the details of the server environment or
communications mechanisms.

The AR System server has a fully defined API that is common to all server
platforms, both Windows and the UNIX platforms. The AR System client tools all
use this API for interaction with the servers. They all speak the same language and
are completely interchangeable. A client on any platform can work with a server
on any platform. As long as a client can connect to an AR System server, it can
communicate all its requests and receive the replies using this common language.
The client does not need to know on which platform the server is running. It also
does not need to know about other clients that are using the same server.

AR System serverAR System server
ClientClient

Communications
mechanism

Communications
mechanism
42 Integration Guide

Understanding the AR System API
The AR System API is defined by a strict set of programming functions and data
structures, which are documented in the C API Reference. The API is implemented
as a C library and associated files that can be linked into your programs. Third-
party programs linked to the AR System API library become clients to an
AR System server.

Figure 4-2: AR System API

Understanding the AR System API
The AR System C API and Java API are shipped on the product distribution media
as installation options. There is no additional license fee or charge for using the
APIs to develop custom client applications, nor is there a license fee or charge for
redistributing or selling such custom clients.

The AR System components were built with these APIs. Therefore, any
functionality available with these clients can be replicated in another client
program.

The functions provided in the API libraries give the programmer control over all
the following AR System components:

Requests—Records in the database. Analogous to a row in a database table. Also
known as entries.

Forms—Objects used to query, modify, and submit records. Also known as
schemas.

Views—Various form (schema) layouts. Also known as VUIs.

Fields—Objects in which data is entered on a form. Also used to enhance the
appearance of a form. Analogous to a column in a database table.

Menus—Objects that can be attached to one or more fields often used to improve
ease-of-use when selecting a value for a field.

Filters—Server-side, action-based workflow rules.

Escalations—Server-side, time-based workflow rules.

Active links—Client-side, action-based, and time-based workflow rules.

BMC Remedy
User

BMC Remedy
User

APIAPI

Third-party clientsThird-party clientsAR System client toolsAR System client tools

AR System serverAR System server

BMC Remedy
Administrator

Third-party
application
Third-party
application

APIAPI
Chapter 4 AR System C API 43

BMC Remedy Action Request System 7.6.04
Containers—Generic lists of references that are used to define guides and
applications.

Support files—Files that clients can retrieve. Commonly used for reports but
can be any file on the server.

The API functions allow five actions to be performed on these objects:

Create—Create an instance of the object.

Delete—Delete an existing instance of the object.

Get—Get details about an existing instance of the object.

Set—Set (update) an existing instance of the object.

GetList—Search and get a list of matching instances of the object.

Additional functions are available for Data Import, Data Export, User
Administration, and Connection Control. API functions that deal exclusively with
BMC Remedy Alert are also available.

Program structure
The AR System C API programs consist of the following four basic sections:

Startup/Initialization—Call ARInitialization to perform server- and
network-specific initialization operations for connecting to the AR System
servers (required).

System Work—Call one or more C API functions to perform the specific work
of your program.

Free Allocated Memory—Call one or more of the FreeAR functions (or use the
free function) to free all allocated memory associated with a specific data
structure. For more information, see the C API Reference.

Shutdown/Cleanup—Call ARTermination to perform environment-specific
cleanup routines and disconnect from the AR System servers (required).

If you use floating licenses and do not disconnect from the server, your license
token is unavailable for other users for the defined time-out interval.
44 Integration Guide

Multithreaded API clients
Multithreaded API clients
The AR System API supports multithreaded clients through the use of sessions.
Each session maintains its own state information, enabling simultaneous
operations against AR System servers. This feature enables more sophisticated
client programs to perform multiple operations simultaneously against the same
or different servers. You establish a session with a call to ARInitialization and
terminate it with a call to ARTermination. The session identifier returned in the
control record from an ARInitialization call must be in the control record for all
subsequent API function calls intended to operate in that session. Operations for a
session are not restricted to a single thread; however, each session can be active on
only one thread at a time.

Following is an example of a generic API program source file.

#include <stdlib.h>
#include <string.h>
#include <ar.h>
#include <arextern.h>
#include <arfree.h>

int main(int argc, char* argv[])
{
 ARStatusList status;

 /* read command line arguments */
 if (argc < 6) exit(-1);
 char* server = argv[1];
 char* user = argv[2];
 char* pass = argv[3];
 char* schema = argv[4];
 char* eid = argv[5];

 /* set control parameters (server, user, etc) */
 ARControlStruct control;
 control.cacheId = 0;
 control.sessionId = 0;
 strcpy(control.user, user);
 strcpy(control.password, pass);
 strcpy(control.language, "");
 strcpy(control.server, server);

 /* Remedy Startup */
 if (ARInitialization(&control, &status) >= AR_RETURN_ERROR) {
 printf("\n **** initialization error ****\n");
 exit(-1);
 }
 FreeARStatusList(&status, FALSE);

Chapter 4 AR System C API 45

BMC Remedy Action Request System 7.6.04
 /* Verify user/password/server */
 if (ARVerifyUser(&control, NULL,NULL,NULL,&status) >=
AR_RETURN_ERROR) {
 printf("\n **** verification failed ****\n");
 exit(-1);
 }

 /* Set the entryid of the record we want */
 AREntryIdList entryId;
 entryId.numItems = 1;
 entryId.entryIdList = (AREntryIdType *) calloc(1,
sizeof(AREntryIdType));
 strncpy(entryId.entryIdList[0], eid, AR_MAX_ENTRYID_SIZE);
 entryId.entryIdList[0][AR_MAX_ENTRYID_SIZE] = '\0';

 /* Get the entry */
 ARFieldValueList fieldValues;
 if(ARGetEntry(&control,
 schema, &entryId, NULL, &fieldValues,
 &status) >= AR_RETURN_ERROR) {
 printf("\n **** get entry error ****\n");
 exit(-1);
 }

 /* Clean up */
 FreeARStatusList(&status, FALSE);
 FreeARFieldValueList(&fieldValues, FALSE);
 FreeAREntryIdList(&entryId, FALSE);

 /* Terminate */
 (void) ARTermination(&control, &status);
 FreeARStatusList(&status, FALSE);

 return 0;
}

Using the API for integration
Typically, the AR System API is not linked directly into a third-party application.
Instead, a separate program is created that interfaces with the AR System server
using the AR System API on one side and with the third-party application using
its native interface on the other side. This interface program acts as a proxy
between the two applications, functioning as a client to both sides.
46 Integration Guide

Using the API for integration
Figure 4-3: Using APIs to link applications

The proxy client that links AR System with another application does not need to
provide all of the features seen in AR System clients such as BMC Remedy User.
Only the functions necessary for useful integration need be implemented. A proxy
client could run as a background process with no user interfaces. For example, a
proxy client could be created to monitor a log file that a third-party application
updates. Whenever new entries appear in the log file, the proxy client application
could automatically submit new records into the AR System database, with no
user interaction. Similarly, a proxy client could monitor the AR System database
and periodically extract records and use them to create graphical reports or charts.

In addition to providing a means for custom clients to access the AR System server,
the API can be used to integrate with existing AR System or legacy applications.

Example: Network management platform integration accessories
BMC Remedy makes available a set of accessories that provide integration with
network management platforms such as HP OpenView Network Node Manager,
IBM® NetView® for AIX®, and Oracle Solstice Domain Manager. The major
portion of the integration consists of a set of proxy client applications that take
selected events (or alarms or alerts) identified by the management platforms and
create trouble ticket records in an AR System server. There is a unique proxy client
application for each management platform.

The management platform applications run on UNIX hosts. The proxy clients run
as background processes on these hosts. Each proxy client implements the
management platform API to get the event messages (on one side) and the
AR System API (on the other side) to send the information to an AR System server
and create a trouble ticket. Usually, a proxy client communicates with a
management platform locally within the host system and communicates with an
AR System server remotely across a network. However, if AR System and the
management platform are running on the same host, everything can be
implemented locally.

For example, for HP OpenView Network Node Manager, the proxy client is called
arovd (AR System OpenView daemon). It was built using the HP OpenView
Event API, so that it could register itself with the HP OpenView system and receive
events. It was also built with the AR System API so that events of interest could be
translated and stored as records in the AR System database.

Proxy
client
Proxy
client

Third-party
application
Third-party
application

Third-party
application
Third-party
application AR SystemAR System

AR System serverAR System server
Chapter 4 AR System C API 47

BMC Remedy Action Request System 7.6.04
Figure 4-4: Integration of AR System with HP OpenView Network Node Manager

Issues and considerations
Keep the following points in mind when using the AR System API:

Using the AR System API requires expertise in C programming. It assumes a
technical background and familiarity with the use of compilers.

The AR System server is backward compatible, supporting all requests from
applications that use the API libraries back to AR System 3.2. If you continue to
link to one of these libraries, you do not need to make any changes to continue
running your existing programs against newer servers. If you link to a newer
version of the AR System API libraries, you will probably need to make changes
to your programs. The main program structure and processing, however, need
not change.

For information about new and changed calls in the API libraries, see the
AR System Release Notes for versions newer than your integration.

For information about which API calls have been updated or replaced, see the
C API Reference.

AR System
server

AR System
server

arovd converts
events into an

AR System request

arovd converts
events into an

AR System request

HP OpenView
forwards events

to arovd

HP OpenView
forwards events

to arovd

Network agents
send "trap" events
to HP OpenView

Network agents
send "trap" events
to HP OpenView

AR System
C API

arovd

HP OpenView API

Network SNMP
agent

HP OpenView
Network Node

Manager
48 Integration Guide

Chapter

5
 Java API
The AR System Java API is an application programming interface to integrate with
AR System. This chapter includes the information you need to start developing
your AR System Java client. See the online documentation for details of the API.

The following topics are provided:

Overview (page 50)
Installed files (page 50)
Run-time configuration (page 52)
Programming model (page 52)
Programming with the Java API (page 54)
Sample (page 55)
Chapter 5 Java API 49

BMC Remedy Action Request System 7.6.04
Overview
The Java API is a collection of classes, interfaces, and relationships that provide full
client functionality like the AR System C API in a style consistent with typical Java
programming techniques. Like the C API, the Java API is forward and backward
compatible with other versions of AR System.

Installed files
To install the Java API, select the API server component when you install the
AR System server. See the Installation Guide for detailed information.

The Java API files are typically installed in the following directories:

UNIX—/usr/ar/serverName/api

Windows—C:\Program Files\BMC Software\ARSystem\serverName\
Arserver\api

The C API files are also in this directory. To verify that the Java API is installed,
check that files listed in the next section are present.

Contents of the AR System Java API installation
The following table lists the components of the Java API installation.

Directory Component Description

JavaDriver build.xml
CommandProcessor.java
Commands.java
ImageExtractor.java
InputFile.java
InputReader.java
JavaDriver.java
LocaleCharSet.java
OutputWriter.java
PerfJavaDriver.java
PerfThreadControlBlock.java
RandomNumberThread.java
RowIterator.java
SyncObject.java
ThreadControlBlock.java
ThreadStartInfo.java
WFD.java
WfdCommands.java
WfdOutputWriter.java

Sample Java code file that
shows examples of using the
Java API
50 Integration Guide

Installed files
lib
(This directory
also contains
the required
C API library
files.)

apache_axis_license.txt
apache_crimson_license.txt
apache_log4j_license.txt
arapi76.dll
arapi76.jar
arapi76.lib
ardoc76.jar
arjni76.dll
arrpc76.dll
arsys_sample.xml
arutil76.jar
arutiljni76.dll
arutl76.dll
arxmlutil76.dll
arxmlutil76.lib
axis.jar
commons-discovery-0.2.jar
commons-logging-1.0.4.jar
javadriver.bat
javadriver.jar
javawfd.bat
jaxrpc.jar
jlicapi76.dll
jlicapi76.jar
log4j-1.2.14.jar
log4j-1.2.8.jar
log4j.properties
log4j.xml
saaj.jar
websvc76.jar
wsdl4j-1.5.1.jar
xercesImpl.jar
xmlParserAPIs.jar

API and supporting JAR and
DLL files with the Javadoc™-
generated HTML
documentation of the API,
XML configuration files, and
batch files for the Java driver
and the workflow debugger.

Directory Component Description
Chapter 5 Java API 51

BMC Remedy Action Request System 7.6.04
Run-time configuration
To run Java API programs, make sure your execution environment includes:

Java runtime environment™ (JRE™) 5 or later. (Java SE 5 is also know as Java
1.5.0.)

Required JAR files in the CLASSPATH environment variable or the java
command -classpath command-line parameter. Include all the JAR file in the
lib directory listed in “Contents of the AR System Java API installation” on
page 50.

C API library files in the lib directory in the correct path:

AIX, Linux®, and Solaris™—LD_LIBRARY_PATH

HP-UX—SHLIB_PATH

Windows—PATH

To override the default Java API configuration, create the arsys_api.xml
configuration file and make sure it is in the CLASSPATH environment variable or
the java command -classpath command-line parameter. See the sample
configuration file, arsys_sample.xml, in the lib directory for descriptions,
valid values, and default values for the API configuration options.

WARNING
Installing BMC Remedy Encryption—Premium Security changes any active Java
installation. If you install Premium Security encryption on a system that is running
a client written using the AR System Java API and later change the Java installation
by installing a different version of the JRE or Java Development Kit (JDK™) or
switching the system from one installed Java version to another, you must reinstall
Premium Security encryption to make sure that the new or other Java installation
has the changes that installation makes.

Java driver
Test your environment by running the AR System server and the JavaDriver
program. This program illustrates the capabilities of the Java API. The JavaDriver
program works almost exactly the same as the C driver program. For more
information, see the C API Reference.

Programming model
Consistent with object-oriented design, the AR System Java API represents
AR System server objects as Java objects. Classes are defined for forms, fields,
menus, active link, filter, escalations, and all other objects in an AR System
application. Entry objects represent entries (requests) so your Java client can
manipulate AR System data as well as definitions.
52 Integration Guide

Programming model
The following paragraphs summarize a few frequently used classes in the API. For
more information, see the Java API online documentation HTML files in the
ardoc76.jar file listed in “Contents of the AR System Java API installation” on
page 50. To access the Java API documentation, unzip the ardoc76.jar file to
create a tree of directories, then open the index.html file to see an overview of the
entire AR System Java API documentation with links to the details. (To unzip a
JAR file, use a zip utility the Java jar executable, which is in the bin directory of
the Java JRE is installation. For example, jar -xvf ardoc76.jar.)

ARServerUser
The ARServerUser object represents the connection between your Java client
program and the AR System server. It include session information such as user
name, password, and server. A typical program starts by creating an
ARServerUser object with user name, password, server name, and the like. Using
the ARServerUser instance methods, it logs in to the AR System server; creates,
gets, searches for, updates, and deletes server objects; and log out. A call to a get
method returns a server object; a call to a getList (search) method returns a list of
object identities (for example, names for forms or IDs for fields); and a call to a
getListObjects method returns a list of objects.

Server objects
The Java API includes classes for all server objects: Form, Field, View,
ActiveLink, Escalation, Filter, Container, Menu, Entry, and SupportFile.
The Form, Field, Container, and Menu classes have subclasses to represent
specialized types, for example, RegularForm, IntegerField,
ApplicationContainer, and SqlMenu.

The ARServerUser create methods create the server objects. The get and
getListObjects methods return them. Each set methods takes a server object
parameter that specifies which object the server should update. For example, the
ARServerUser method setField takes a Field parameter.

Cloning objects
Objects in the AR System Java API are cloneable. The clone() method performs a
deep copy of the object. A deep copy is a copy of an object that contains the
complete encapsulated data of the original object, allowing it to be used
independently of the original Java object. Of course, if the original Java object
represents an AR System server object, the clone represent the same object.

Exception handling
Errors are modeled through the ARException class. All error messages that are
returned by the server are thrown as an ARException in the Java API. Warnings
and informational status messages are not treated as exceptions, but are available
using the getLastStatus method of the ARServerUser class.
Chapter 5 Java API 53

BMC Remedy Action Request System 7.6.04
Programming with the Java API
� Follow these steps to write the program:

1 Make sure your programming environment is set up correctly. You need:

Java Development Kit (JDK) 5 or later. (Java SE 5 is also know as Java 1.5.0.)

The AR System Java API files. (See “Installed files” on page 50 for installation
and verification.)

2 Create a Java project in your IDE.

3 Include the arapi76.jar and the other required JAR files in the AR System API
lib directory in the class path.

4 Create a new class for the methods that call the Java API.

5 Import the com.bmc.arsys.api package and other packages you might use in
your program. The API uses collection classes, so you are likely to need
java.util.ArrayList, java.util.List, and java.util.Map.

6 Instantiate an ARServerUser object. Set the user name, password, server, and
other connection attributes. If the program needs to interact with different servers
or as different users, it can create more than one ARServerUser object.

7 Use the ARServerUser login method to open the connection to the server.

8 Perform the required operations using the ARServerUser methods and other API
objects and methods to create, retrieve, update, and delete AR System system
objects as needed and creating criteria objects and using server object methods as
required.

9 Use the ARServerUser logout method to close the connection to the server.

Troubleshooting
Use these techniques to find errors in your Java API program:

Program fails to start—Make sure all Java API and application dependant JAR
files are in the class path.

Logging—Configure logging using the log4j.xml file.
54 Integration Guide

Sample
Sample
The following sample code illustrates how to use the Java API to create, modify,
and query records in AR System:

package com.bmc.arsys.demo.samples;

import com.bmc.arsys.api.*;

import java.util.*;

public class JavaAPITest {
 private ARServerUser server;
 private String formName= "JavaAPITest";

 public JavaAPITest() {
 server = new ARServerUser();
 server.setServer("localhost");
 server.setUser("Demo");
 server.setPassword("");
 }

 public static void main(String[] args) {
 JavaAPITest test = new JavaAPITest();
 test.connect();
 test.createEntry("Demo","1","test1");
 test.createEntry("Demo","2","test2");
 String entryID = test.createEntry("Demo","3","test3");
 test.modifyEntry(entryID);
 test.queryEntrysByID(entryID);
 test.queryEntrysByQual(
 "(\'Create Date\' > \"1/1/2004 12:00:00 AM\")");
 test.queryEntrysByQual("(\'Create Date\' > \"1/1/2010\"
)");
 test.cleanup();
 }

 // Connect the current user to the server.
 void connect() {
 System.out.println();
 System.out.println("Connecting to AR Server...");
 try {
 server.verifyUser();
 } catch (ARException e) {
 //This exception is triggered by a bad server,
password or,
 //if guest access is turned off, by an unknown
username.
 ARExceptionHandler(e, "Cannot verify user " +
 server.getUser() + ".");
 System.exit(1);
 }
 System.out.println("Connected to AR Server " +
Chapter 5 Java API 55

BMC Remedy Action Request System 7.6.04
 server.getServer());
 }

 // Create an entry in a form using the given field values.
 public String createEntry (String submitter, String status,
 String shortDesc) {
 String entryIdOut= "";
 try {
 Entry entry = new Entry();
 entry.put(Constants.AR_CORE_SUBMITTER, new
Value(submitter));
 entry.put(Constants.AR_CORE_STATUS,
 new Value(status, DataType.ENUM));
 entry.put(Constants.AR_CORE_SHORT_DESCRIPTION,
 new Value(shortDesc));
 entryIdOut = server.createEntry(formName, entry);
 System.out.println();
 System.out.println("Entry created. The id # is " +
 entryIdOut);
 } catch (ARException e) {
 ARExceptionHandler(e, "Cannot create the entry.");
 }
 return entryIdOut;
 }

 // Modify the short description field on the specified entry.
 void modifyEntry(String entryId) {
 try {
 Entry entry = server.getEntry(formName, entryId, null);
 entry.put(Constants.AR_CORE_SHORT_DESCRIPTION,
 new Value("Modified by JavaAPITest"));
 server.setEntry(formName, entryId, entry, null, 0);
 System.out.println();
 System.out.println("Entry #" + entryId +
 " modified successfully.");
 }
 catch(ARException e) {
 ARExceptionHandler(e,"Cannot modify the entry. ");
 }
 }

 // Retrive an entry by its entry ID and print out the number
of
 // fields in the entry. For each field in the entry, print out
the
 // value, and the field info (name, id and the type).
 void queryEntrysByID(String entryId) {
 System.out.println();
 System.out.println("Retrieving entry with entry ID#" +
entryId);
 try {
 Entry entry = server.getEntry(formName, entryId,
null);
 if(entry == null){
56 Integration Guide

Sample
 System.out.println("No data found for ID#" +
entryId);
 return;
 } else
 System.out.println("Number of fields: " +
entry.size());

 // Retrieve all properties of fields in the entry.
 Set<Integer> fieldIds = entry.keySet();
 for (Integer fieldId : fieldIds){
 Field field = server.getField(formName,
 fieldId.intValue());
 Value val = entry.get(fieldId);
 // Output field's name, value, ID, and type.
 System.out.print(field.getName().toString());
 System.out.print(": " + val);
 System.out.print(" , ID: " + field.getFieldID());
 System.out.print(" , Field type: " +
 field.getDataType());
 // Handle DateTime value.
 if (field instanceof DateTimeField){
 System.out.print(", DateTime value: ");
 Timestamp callDateTimeTS =
(Timestamp)val.getValue();
 if (callDateTimeTS != null)
 System.out.print(callDateTimeTS.toDate());
 }
 System.out.println("");
 }
 } catch(ARException e){
 ARExceptionHandler (e,
 "Problem while querying by entry ID.");
 }
 }

 // Retrieve entries from the form using the given
qualification. With
 // the returned entry set, print out the ID of each entry and
the
 // contents in its shortDescription field.
 void queryEntrysByQual(String qualStr) {
 System.out.println();
 System.out.println ("Retrieving entryies with
qualification " +
 qualStr);
 try {
 // Retrieve the detail info of all fields from the
form.
 List <Field> fields =
server.getListFieldObjects(formName);
 // Create the search qualifier.
 QualifierInfo qual =
server.parseQualification(qualStr,
 fields, null, Constants.AR_QUALCONTEXT_DEFAULT);
Chapter 5 Java API 57

BMC Remedy Action Request System 7.6.04

 int[] fieldIds = {2, 7, 8};
 OutputInteger nMatches = new OutputInteger();
 List<SortInfo> sortOrder = new ArrayList<SortInfo>();
 sortOrder.add(new SortInfo(2,
Constants.AR_SORT_DESCENDING));
 // Retrieve entries from the form using the given
 // qualification.
 List<Entry> entryList = server.getListEntryObjects(
 formName, qual, 0,
Constants.AR_NO_MAX_LIST_RETRIEVE,
 sortOrder, fieldIds, true, nMatches);

 System.out.println ("Query returned " + nMatches +
 " matches.");
 if(nMatches.intValue() > 0){
 // Print out the matches.
 System.out.println("Request Id " +
 "Short Description");
 for(int i = 0; i < entryList.size(); i++){
 System.out.println
(entryList.get(i).getEntryId() +
 " " +

entryList.get(i).get(Constants.AR_CORE_SHORT_DESCRIPTION));
 }
 }
 } catch(ARException e) {
 ARExceptionHandler(e,
 "Problem while querying by qualifier. ");
 }
 }

 public void ARExceptionHandler(ARException e, String
errMessage){
 System.out.println(errMessage);
 printStatusList(server.getLastStatus());
 System.out.print("Stack Trace:");
 e.printStackTrace();
 }

 public void printStatusList(List<StatusInfo> statusList) {
 if (statusList == null || statusList.size()==0) {
 System.out.println("Status List is empty.");
 return;
 }
 System.out.print("Message type: ");
 switch(statusList.get(0).getMessageType())
 {
 case Constants.AR_RETURN_OK:
 System.out.println("Note");
 break;
 case Constants.AR_RETURN_WARNING:
 System.out.println("Warning");
58 Integration Guide

Sample
 break;
 case Constants.AR_RETURN_ERROR:
 System.out.println("Error");
 break;
 case Constants.AR_RETURN_FATAL:
 System.out.println("Fatal Error");
 break;
 default:
 System.out.println("Unknown (" +
 statusList.get(0).getMessageType() + ")");
 break;
 }
 System.out.println("Status List:");
 for (int i=0; i < statusList.size(); i++) {

System.out.println(statusList.get(i).getMessageText());

System.out.println(statusList.get(i).getAppendedText());
 }
 }

 public void cleanup() {
 // Logout the user from the server. This releases the
resource
 // allocated on the server for the user.
 server.logout();
 System.out.println();
 System.out.println("User logged out.");
 }
}

Chapter 5 Java API 59

BMC Remedy Action Request System 7.6.04
60 Integration Guide

Chapter

6
 Web services
This chapter provides information about using web services with AR System. It
describes how to publish AR System functionality as a web service and how to
invoke external web services to exchange data between AR System and web
service applications.

The following topics are provided:

Overview of web services in AR System (page 62)
Setting up the environment for web services (page 66)
AR System web services architecture (page 69)
Publishing a web service (page 72)
Registering a web service (page 80)
Consuming a web service (page 89)
SOAP headers and authentication (page 95)
Supported schema constructs and AR System web service limitations (page 101)
Chapter 6 Web services 61

BMC Remedy Action Request System 7.6.04
Overview of web services in AR System
Web services provide a simple, platform-agnostic method for application
integration. By using standard messaging protocols and service definitions to
support computer-to-computer interaction over a network, web services allow
application integration regardless of the hardware or software platforms and
independent of the programming languages in which the applications are written.

You publish a web service to make AR System functionality available over the web
by creating a web service object, associated forms, and optional workflow.
AR System developers can use a web service to make AR System operations, such
as submit, modify, and query, available to other applications. Web services that are
published in AR System can be very basic, such as creating a record in the
AR System database, or more complex, such as processing a purchase order that
spans multiple AR System forms.

You consume a private or public web service to obtain external information for use
in an AR System application by creating a form and an associated filter that uses a
Set Fields action.

Web service standards
AR System web services use most standard web service messaging and transport
protocols, XML schema constructs, message types, and operation types.

Protocols
AR System uses standard web service protocols, including:

HyperText Transfer Protocol (HTTP)—The standard communication protocol
for exchanging information the Web.

Extensible Markup Language (XML)—A markup language defined in the XML
1.0 Specification, used to encode documents and represent data structures by
describing data types. XML facilitates sharing data across different hardware
and software platforms.

Simple Object Access Protocol (SOAP) —The standard messaging protocol for
exchanging information with web services. It is based on HTTP and XML and
provides the envelope format for transferring information and a set of rules for
translating applications and platform-specific data types into XML.

Web Services Description Language (WSDL)—An XML-based language used to
define a web service, it’s operations, and how to access it. For an example of a
WSDL file, see Figure 6-6 on page 75.

NOTE
The AR System web services implementation is based on SOAP 1.1 and WSDL 1.1
specifications from the World Wide Web Consortium (W3C). SOAP 1.2 is
supported for consuming web services only.
62 Integration Guide

Overview of web services in AR System
Universal Description Discovery and Integration (UDDI)—A specification used
to provide directories of information about available web services. The
BMC Atrium Web Services Registry uses this standard, and if it is installed,
AR System developers can use it to register and locate web services. See
“Registering a web service” on page 80.

For more information about web service standards and protocols, see the W3C
website at http://www.w3.org.

IMPORTANT
The web services namespace format structure was changed between the AR
System version 7.0.1.3 release and the AR System version 7.0.1.4 release. In the
earlier release, the tags were prepended with ns1, and with the newer release they
are prepended with ns0. Because of that change, some customer implemented web
services that were created on a version before the change may not work after
upgrading to a version after that change was implemented. For any web services
that stop running after upgrading, the SOAP Input document needs to be
regenerated using the ns1 tag.

Operation types
Each web service has a list of operations. AR System supports four operation
types: Get, Create, Set, and Service. You can rename, delete, and even create
operations, but they must be one of these supported operation types. You can have
multiple operations of the same type, or you can have no operations of a particular
type.

By default, when you create a web service, it automatically has these five
operations:

Get

Create

GetList (of the type Get)

Set

Service

For the procedures to add and remove operations, see “Creating a web service” on
page 72 and “Consuming a web service” on page 89. For details about using each
operation type, see Appendix A, “Web service operation types.”

Each web service is associated with an XML Schema Definition (XSD file). The
XML schema defines the global elements and complex types that are used in the
field mappings associated with operations. For a basic web service using the
default operation types, AR System populates the XML Schema automatically.
You can also define your own XML schema or use an existing one.

For more information about working with the XML schema, see “XML editing” on
page 351. For a list of supported and unsupported XML constructs, see “Supported
schema constructs and AR System web service limitations” on page 101.
Chapter 6 Web services 63

BMC Remedy Action Request System 7.6.04
WSDL types
In general, web services use these messaging styles:

Remote Procedure Call (RPC-style)—One application makes a function call to
another application, passing arguments and receiving return values.

Document-style—Applications exchange XML documents whose syntax are
defined by an XML schema, for example a Purchase Order document.

These styles can be divided into literal substyles (messages are encoded according
to the XML schema) or encoded substyles (messages are constructed according to
SOAP encoding rules). This results in four WSDL styles:

RPC-literal

RPC-encoded

Document-literal

Document-encoded

NOTE
For publishing, AR System supports only document-literal web services. For
consumption, AR System supports document-literal and RPC-encoded web
services.

Predefined AR System web services
The following web services are installed with AR System:

User web service

Group web service

Roles web service

You can use or customize these three web services to allow external applications
to find, create, and update entries in the User, Group, and Roles forms.

These web services are also defined in the SystemWebService.def file, located in
the ~InstallForm/en directory.

Forms and field mappings for web services
For both publishing and consuming web services, you specify a base form that is
associated with the web service object (publishing) or with a filter (consuming).
The information exchanged in the web service action is set in this form or pushed
through it to other forms or applications. For web services that involve multiple
AR System forms, the base form is the master form.

For each operation in the web service, you define an input mapping and an output
mapping. Mappings are essentially the input and output parameters of the web
service. The mapping describes how the elements of the incoming and outgoing
XML document are mapped to the fields in the form.
64 Integration Guide

Overview of web services in AR System
AR System provides default input and output mappings for each of the default
operations.You can use the mappings that AR System automatically creates or you
can customize them. You can map to a simple flat WSDL document or to a complex
hierarchical document involving parent and child relationships.

For the procedures used to define input and output mappings, see “Creating a web
service” on page 72 and “Consuming a web service” on page 89. For details about
defining mappings see “Mapping to simple and complex documents” on page 340.

Basic and custom web services
A web service published in AR System can be a basic or custom web service.

A basic AR System web service has five operations: Get, Create, GetList, Set,
and Service. For each field on the base form, BMC Remedy Developer Studio
generates an XML-compliant element name and maps it to an input and output
parameter. The XML-compliant element names are used in the WSDL file that
Developer Studio also generates for the web service. An external client can then
call this web service and create, modify, or get records from your form. For the
procedure to create a basic web service, see “Creating a basic web service” on
page 72.

To customize a web service, you can change some of the web service definitions:

Rename the web service. The default name is the same as the base form name.

Rename operations.

Remove operations and add new ones.

Remove fields and add new ones to the mapping.

Include only some parts of special fields in your mapping. For example, for an
attachment field with multiple parts such as attachmentName,
attachmentData, and attachmentOrigSize, you can select only the parts that
you require.

Rename XML element names. BMC Remedy Developer Studio names the XML
elements the same as the field names but removes any special characters and
spaces to make the names compliant with XML naming conventions. You can
choose any XML-compliant name to map to your fields. You can also import an
XML document and use the existing XML names to map to your fields.

Modify the XML structure. For example, group certain fields to make complex-
types or SOAP-structures, or designate a field as an attribute rather than a
subelement.

Specify an external XML schema.
Chapter 6 Web services 65

BMC Remedy Action Request System 7.6.04
Creating web service clients
When you publish an AR System web service, a WSDL document that describes
the web service is created in Developer Studio. A web service client must be
created to interact with this web service. Many environments can be used to create
web service clients. Most have tools that automatically generate code to invoke a
web service, given the WSDL. Apache AXIS, a third-party library, is installed with
the mid tier for this purpose, but you can use other web service frameworks as
well.

Popular environments for writing web service clients include these:

Apache AXIS

In AXIS, run WSDL2java from the command line with the WSDL URL as a
command-line parameter. The autogenerated code is a class that has methods
that correspond exactly to the operations you created in the web service. Each
method has input and output parameters corresponding to the mappings you
created. To invoke the web service, instantiate the class and invoke a method
with the correct parameters. For more information, see http://
ws.apache.org/axis/java/user-guide.html and http://ws.apache.org/
axis2/1_2/quickstartguide.html.

JAX-WS

In JAX-WS, run wsimport from the command line with the WSDL URL as a
command-line parameter. The autogenerated code contains the necessary class
to invoke any operation on the web service. For more information, see https:/
/jax-ws.dev.java.net/guide/.

Microsoft.NET

In Microsoft.NET Visual Studio, autogenerate the invocation code by adding a
web reference. When prompted for a URL, enter your WSDL URL. For more
information, see http://msdn2.microsoft.com/en-us/library/
w3h45ebk.aspx.

Setting up the environment for web services
To use web services, you must install the BMC Remedy AR System server with the
Web Services installation option, which is a Java plug-in, along with the BMC
Remedy Mid Tier. For information about the environment prerequisites for the
Java plug-in server and the mid tier, see the Installation Guide.

You must also install BMC Remedy Developer Studio to create and manage
AR System forms, web services, and workflow.

If you are using the BMC Atrium Web Services Registry, additional components
are required. See “Registering a web service” on page 80.
66 Integration Guide

http://ws.apache.org/axis/java/user-guide.html
http://ws.apache.org/axis/java/user-guide.html
http://ws.apache.org/axis2/1_2/quickstartguide.html
http://ws.apache.org/axis2/1_2/quickstartguide.html
https://jax-ws.dev.java.net/guide/
https://jax-ws.dev.java.net/guide/
http://msdn2.microsoft.com/en-us/library/w3h45ebk.aspx
http://msdn2.microsoft.com/en-us/library/w3h45ebk.aspx

Setting up the environment for web services
Verifying the AR System server configuration for web services
AR System uses the Java plug-in server to consume web services. To do so, the
following line must appear in your ar.conf (ar.cfg) file:

Server-Plugin-Alias: ARSYS.ARF.WEBSERVICE ARSYS.ARF.WEBSERVICE
serverName:portNumber

In addition, the XML definition for ARSYS.ARF.WEBSERVICE must appear in the
Java plug-in server configuration file, pluginsvr_config.xml.

The installation program creates these entries when you select the Web Services
plug-in for an AR System installation or upgrade. If you need to update the files
manually, make sure to stop and restart the AR System server before attempting
to use web services. Alternatively, you can restart only the plug-in server. For more
information, see “Restarting the plug-in server using the Set Server Info
command” on page 118.

For more information about the Java plug-in server, see “Plug-ins” on page 105.

Configuring for a proxy server
If you will be using web services with a proxy server, perform the procedures in
this section.

The first procedure modifies the BMC Remedy Developer Studio initialization file
to enable communication with the proxy server. The second procedure enables the
Java plug-in server to communicate with the proxy server (for example, with filters
that consume web services). For more information about the Java plug-in server,
see “Plug-ins” on page 105.

AR System does not automatically retrieve proxy settings from your browser.
However, if the browser is configured to use a proxy server, you might be able to
use those settings in the procedures below.

NOTE
The web services plug-in no longer uses the Proxy Server Setting For Java VM field
on the Connection Settings tab of the Server Information form.

� To configure BMC Remedy Developer Studio for use with a proxy server

1 Verify that BMC Remedy Developer Studio is not running.

2 Open ARSystemInstallDir\DevStudio\devstudio.ini in a text editor.

3 Add the following lines to the file:

-Dhttp.proxySet=true
-Dhttp.proxyHost=hostName
-Dhttp.proxyPort=portNumber

4 Save and close the devstudio.ini file.

� To configure the Java plug-in server for use with a proxy server

1 Stop the AR System server.
Chapter 6 Web services 67

BMC Remedy Action Request System 7.6.04
2 Open armonitor.conf (armonitor.cfg) in a text editor. Default locations are:

UNIX—/etc/arsystem/serverName/
Windows—ARSystemServerInstallDir\Conf\

3 Locate the Java plug-in server command.

4 In the Java command, add the following proxy information immediately before the
-classpath specification:

-Dhttp.proxySet=true -Dhttp.proxyHost=hostName
-Dhttp.proxyPort=portNumber

A typical Java command in armonitor.cfg might look like this:

"C:\Program Files\Java\jreVersion\bin\java" -Xmx512m
-Dhttp.proxySet=true -Dhttp.proxyHost=hostName
-Dhttp.proxyPort=portNumber -classpath "C:\Program Files\BMC
Software\ARSystem\pluginsvr;C:\Program Files\BMC
Software\ARSystem\pluginsvr\arpluginsvr75.jar"
com.bmc.arsys.pluginsvr.ARPluginServerMain -x serverName -i
"C:\Program Files\BMC Software\ARSystem" -m

5 Save and close armonitor.conf (armonitor.cfg).

6 Restart the AR System server.

Accessing WSDL or web services over https
Make sure that a supported version of the Java Runtime Environment (JRE) is
specified as the current JRE in the system where BMC Remedy Developer Studio
and the web service filter plug-in are installed. Newer JRE installations include
JSSE.jar and related settings that enable Java programs to communicate over
https without manual changes in configuration files. If you must use an older
version of the JRE, go to http://www.oracle.com/technetwork/java/
index.htmlto learn more about JSSE-related jar files and how to make the related
configuration changes.
68 Integration Guide

http://java.sun.com
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html

AR System web services architecture
You can check the validity of the certificate by using your browser. Browsers
indicate errors and warnings in detail while communicating over https. For
example, Figure 6-1 displays the warning that the certificate at the target server is
not trusted by the local client.

Figure 6-1: Security alert for certificate that is not trusted

Browsers allow you to continue if you ignore warnings or errors; however,
AR System does not allow you to continue in case of errors or warnings. You can
easily diagnose the problem with your browser, fix the root cause, and continue
with AR System. To address the alert shown in Figure 6-1, you would update the
certificate store to trust the specified company or certificate. See http://
www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
or your local administrator to learn more about frequent issues with certificates.

AR System web services architecture
This section describes how information flows between AR System and client
applications for web services published in AR System, and how information flows
between AR System and an external web service consumed by an AR System
application.

Information flow for web services published in AR System
When a client contacts an AR System web service, the interaction works as follows:

Step 1 The external client sends a Simple Object Access Protocol (SOAP) request to the
mid tier. The URL for the service is either built into the application or is obtained
from the web services registry at run time.
Chapter 6 Web services 69

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

BMC Remedy Action Request System 7.6.04
Figure 6-2: External web service client calling AR System (publishing)

Step 2 The mid tier extracts the web service name, the operation name, and the
authentication information from the SOAP request packet. It retrieves the web
service object corresponding to the web service name from the AR System server
and searches the web service for details about the operation, such as the operation
type (Get, Create, Set, or Service), the query string, and the input and output
mappings. Then it expands the XPATH expressions in the query string, extracts the
XML document from the SOAP request packet, and sends it to the AR System
server along with the operation type, the input and output mappings, and the
expanded query string.

Step 3 The AR System server parses the XML document using the mapping information
and converts it into field data. The operation type determines how the data is
treated:

For Get, the AR System server ignores the input fields.

For Create, the AR System server creates an entry with the input fields.

For Set, the AR System server searches for an entry using the expanded query
string and then modifies the data using the input fields.

For Service, the AR System server sends the input fields to the Service Entry
call.

For complex documents, the data is pushed into one or more forms. This action
might trigger some filters.

Step 4 The AR System server also uses the mapping information to get the data from one
or more records and generate an XML document. The operation type determines
how the data is treated:

For Get, the AR System server performs a query based on the query string.

For Create, the AR System server reads the record that was created.

For Set, the AR System server reads the record that was modified.

For Service, the AR System server reads the output fields from the Service
Entry call. This action might also trigger some filters.

Step 5 The XML document is returned to the mid tier.
70 Integration Guide

AR System web services architecture
Step 6 The mid tier packages the XML document as a SOAP response and returns it to the
external client.

Information flow for consuming a web service in AR System
An external web service can be one created on another AR System server, or one
based in some other environment, such as one that provides stock quotes, weather
information, or currency exchange rates.

AR System communicates with the web service through the Web Service plug-in,
using the third-party web service server (Apache AXIS) installed with the Java
plug-in server.

The flow for consuming a web service in AR System is as follows:

Step 1 A filter process triggers a Set Fields filter action that sets fields using data from a
web service.

Step 2 The filter uses the mapping information stored on the server to construct an XML
document with data from the base form and the child form (if any).

Step 3 The AR System server sends the XML document to the web service plug-in.

Step 4 The web service plug-in receives the XML document, packages it into a SOAP
request packet, and calls the external web service.

Step 5 The external web service replies with the SOAP response packet.

Step 6 The web service filter plug-in extracts an XML document from the SOAP packet
and returns it to the AR System server.

Step 7 The AR System server receives the XML document and uses the mapping
information to parse the document and push data into the current record and any
child forms.

Step 8 The Set Fields filter action is finished.

Figure 6-3: Consuming an external web service with AR System

Web Service
Plug-in Filter

External
Web Service

AR System Server

XML
Processing

DLL

Data
access
and
filter
processing

XML2AR

SOAP Request

AR2XML
SOAP Response

AR
Structures

SOAP
Handler

AR
Structures
Chapter 6 Web services 71

BMC Remedy Action Request System 7.6.04
Publishing a web service
When you create and publish an AR System web service, you can make AR System
operations available over the Internet or an intranet. This section describes how to
create and configure the web service in AR System.

If the BMC Atrium Web Services Registry is installed, you can register the web
service to allow applications to locate it at run time. For information about using
the BMC Atrium Web Services Registry, see “Registering a web service” on
page 80.

For information about creating the web client, see “Creating web service clients”
on page 66 and your web application API documentation.

Creating a web service
You create and configure the web service in BMC Remedy Developer Studio. You
can create a basic web service or a custom web service.

Each web service includes the following resources:

A base form on which the web service operates. For web services use multiple
AR System forms, the base form is the master form.

An AR System web service object, which includes these definitions:

An associated XML Schema (.xsd file). Global elements and complex types
defined in the XML schema can be used in the mappings for each operation.
AR System provides a default schema, or you can select another one.

A list of Create, Get, GetList, Set, and Service operations. By default, an
AR System web service is created each of these operation types. You can have
more than one operation of the same type, or you can have no operations of a
particular type.

A mapping for each operation that specifies how the elements of incoming
and outgoing XML documents are mapped to fields in the base form.

Creating a basic web service
When you right-click a form in BMC Remedy Developer Studio and choose Create
Web Service, AR System generates a basic web service. It is automatically
associated with the form, and includes the default XML schema and the WSDL
operations Get, Create, GetList, Set, and Service. Each of these operations
includes a set of pre-defined input and output parameters using the fields on your
base form. An external client can call this web service and create, modify, or get
records from your form.

� To create a basic web service

1 Create a form to use as your base form, if you do not already have one.
72 Integration Guide

Publishing a web service
2 In AR System Navigator, expand serverName > All Objects and double-click
Forms.

3 Right-click your base form and choose Create Web Service.

Figure 6-4: Right-click the base form to create a web service

4 Right-click the General panel, then choose Expand All Panels.

These are the default settings for web services:

Form Name—The name of the base form.

Label, Description, and XML Schema—Blank.

XML Schema Source—Embedded. The source type applies only if a schema file
is specified in the XML Schema field.

Port Name—The default value is Port.

Operations—Default input and output mappings are automatically set for each
WSDL operation.

Qualification—An automatically generated qualification for Get, Set, and
GetList operations. No qualification is needed for the Create or Service
operations.

Start Record and Max Limit—When GetList is selected, these fields are filled
in. See “Setting the start record and the maximum limit” on page 337.

NOTE
The Start Record and Max Limit fields apply only to the GetList operation. For
other Get operations, data entered in these fields is ignored.

Set Query Options—The default setting is Set All Entries. See “Set operations
with line items” on page 344.
Chapter 6 Web services 73

BMC Remedy Action Request System 7.6.04
Composite Options—The default setting is Full. See “Set operations with line
items” on page 344.

Figure 6-5: Web Services editor and Properties tab

5 In the Properties tab, set Permissions, Change History, and Help Text. The
permissions are the same whether the web service is visible or hidden.

IMPORTANT
If you intend to publish your web service over an internet or intranet for general
use, set the permissions to Public.

6 Click File > Save to save your web service.

The name of the web service should be descriptive and indicative of the web
service’s function. The name should not be the same as any existing active link
guide, filter guide, packing list, or application. The default web service name is
name of the base form you chose when creating the service.

7 Click the WSDL Publishing Location panel.

A sample URL for your WSDL file is displayed in the “Specify mid-tier’s WSDL
handler URL” field.

8 Adjust the URL for your configuration:

a Replace <midtier_server> with the name of the web server where the mid tier
is running.

b Add /public or /protected after “WSDL,” depending on the permissions of
the web service.

c Replace “Untitled Web Service” with the name of the web service.

For example, if the web service has public permissions, use this format:

http://midtierServer/arsys/WSDL/public/ARServer/webServiceName

If the web service does not have public permissions, use this format:

http://midtierServer/arsys/WSDL/protected/ARServer/
webServiceName

9 Click File > Save.
74 Integration Guide

Publishing a web service
10 Click View to display your WSDL file in the panel.

This step also verifies that BMC Remedy Developer Studio can access the WSDL
file.

To enable your clients to communicate with your web service, see “Creating web
service clients” on page 66.

Figure 6-6: WSDL file displayed in WSDL panel of web services editor

Creating a custom web service
A custom web service is one in which you modify or add to the basic operation
types or XML elements created by AR System. It might also use an existing XML
schema (XSD file), rather than the default XSD created by AR System. To create a
custom web service, follow the steps in this section.

� To create a custom web service

1 In BMC Remedy Developer Studio, choose File > New > Web Service.

2 Select the server on which you want to create the web service, and click Finish.

3 Right-click the General panel, then choose Expand All Panels.
Chapter 6 Web services 75

BMC Remedy Action Request System 7.6.04
Figure 6-7: Web services editor with collapsed panels

4 Click the ellipsis button [...] next to the Form Name field, and choose a Base Form
from the list of forms.

The web service operations function through the Base Form.

5 In the XML Schema field, perform one of these actions:

Enter or browse to an external XML schema, and go to step 6.

With an external XML schema, the elements or complex types in the file are used
to map AR System form fields to operation parameters. See “Importing an
external XML schema” on page 358.

Leave the field blank, and go to step 8.

BMC Remedy Developer Studio creates an XML schema with default element
names.

6 Click Reload.

AR System verifies the XML schema and loads it into memory. You might see a
“schema imported successfully” message or a message informing you that your
existing XML elements and mappings will be lost.

7 Choose the XML Schema Source type in the drop-down list.

If you entered a local file system path for your schema, select Embedded.

AR System stores the entire XSD file and all other files that the XSD file includes
or imports. The WSDL also has all the XSDs embedded in the types section. This
is the default option.

If you entered a network accessible path (http or ftp) for the schema, select
Linked.

AR System does not store the XSD files, and the WSDL does not embed the XSDs
in the types section. Instead, it refers to them. Some WSDL parsing tools (early
versions of Microsoft.NET and MSSOAP) do not support these kinds of WSDL.

NOTE
System-generated schemas are always embedded in the WSDL.
76 Integration Guide

Publishing a web service
8 (optional) In the Label field, enter a label for the web service.

Label names can have 80 or fewer characters, including spaces. The label is
displayed in the Web Services list in the server window. If no label is specified, the
web service name is used.

9 (optional) In the Description field, explain what the web service does and how it
can be used so that callers of the web service can determine whether the web
service includes the functionality they need.

10 Right-click the Port tab, choose Add Operation, and select an operation type from
the list.

The default operations are displayed in this list. The default operation types are
Create, Get, Set, and Service. The default operation names are Create, Get, Set,
Service, and GetList. Each operation is defined by its name and type. When you
add an operation, the Name field is automatically filled in. You can add multiple
operations of the same type.

For Set operations, there are two additional parameters. You can choose to set all
the fields on the form, or you can choose a partial or full composite option. See “Set
operations with line items” on page 344 for situations in which this is applicable.

11 Customize operations as required.

To create an operation

Default mappings are set when you create a new operation.

a Right-click the Port tab and choose Add Operation.

b Select an operation type from the list.

c In the Name field, enter a name for the new operation.

To copy an operation

Copying an operation retains the existing mapping information.

a Right-click the tab corresponding to the operation you want to copy.

b Click Add Operation, then choose Copy of Selected Operation. The new
operation appears under a new tab in the WSDL Operations list.

c In the Name field, enter a name for the new operation.

To delete an operation

a In the WSDL Operations list, right-click the operation.

b Click Remove.

To change the name of an operation

a Locate the operation in the WSDL Operations list, and expand the
corresponding tab.

b In the Name field, enter the new name.
Chapter 6 Web services 77

BMC Remedy Action Request System 7.6.04
12 (optional) In the Qualification field, enter a qualification.

When you select a Set or Get operation, the Qualification field is enabled. You
cannot use an attachment field as a field reference in a qualification.

For the Set operation, you can enter a query that enables the web service to find
the request ID of the fields involved if the request ID is not known.

For the Get and GetList operations, you can enter a query that identifies the
field whose value you want to pass to the web service as the output parameter.

If you select a GetList operation, the Start Record and Max Limit fields are
populated with the appropriate paths. See “Setting the start record and the
maximum limit” on page 337.

13 Map your parameters.

See “Mapping to simple and complex documents” on page 340.

14 In the Properties tab, set Permissions, Change History, and Help Text.

The permissions are the same (Public) whether the web service is visible or hidden.

IMPORTANT
If you publish your web service over an internet or intranet for general use, set the
permissions to Public.

15 Click File > Save to save your web service.

The name of the web service should be descriptive and indicative of the web
service’s function. The name should not be the same as any existing active link
guide, filter guide, packing list, or application.

16 Click the WSDL Publishing Location tab.

A sample URL for your WSDL file is displayed in the “Specify mid-tier’s WSDL
handler URL” field (see Figure 6-6 on page 75).

17 Adjust the URL for your configuration:

a Replace <midtier_server> with the name of the web server where the mid tier
is running.

b Add /public or /protected after “WSDL,” depending on the permissions of
the web service.

c Replace “Untitled Web Service” with the name of the web service.

For example, if the web service has public permissions, use this format:

http://midtierServer/arsys/WSDL/public/ARServer/webServiceName

If the web service does not have public permissions, use this format:

http://midtierServer/arsys/WSDL/protected/ARServer/
webServiceName

18 Click View.

Your WSDL file is displayed in the tab. (See Figure 6-6 on page 75.)

19 After all adjustments are made, save the web service.
78 Integration Guide

Publishing a web service
When you save the web service in BMC Remedy Developer Studio, the program
creates a WSDL file that describes the web service. This file contains all the details
necessary to interact with the service, including message formats, transport
protocols, and end point location.

The WSDL file can be accessed with a URL using one of the following syntaxes.

If the web service has public permissions, use this syntax:

http://midtierServer/arsys/WSDL/public/ARServer/webServiceName

If the web service does not have public permissions, for example, if it used only
inside a private network, use this syntax:

http://midtierServer/arsys/WSDL/protected/ARServer/
webServiceName

After you save your web service, it is ready to use. To verify that your web service
is ready, enter the WSDL URL into a browser address field.

Figure 6-8: WSDL file displayed in WSDL panel of web services editor
Chapter 6 Web services 79

BMC Remedy Action Request System 7.6.04
Viewing a list of web services
You can view a list of available web services stored in AR System by entering the
following URL in a browser:

http://midtierServer/arsys/WSDL/protected/list

Registering a web service
When you publish a web service, you need to provide a way for the users of the
web service to find it. One way to do this, such as with a private web service used
only on the company network, is to provide the URL of the WSDL directly to the
users or build it into the client application. However, for many applications it is
preferable to allow the client application to discover the web service at run time.
To do this, the developer can register the service with a web services registry.

A web services registry is a database that stores descriptions of available web
services and their end point URLs, using a standard description language.
AR System developers can register, modify, deregister, and query registry entries
for AR System web services and any other registered web service in the BMC
Atrium Web Services Registry. Installation programs for web service applications
can use AR System to register a web service at install time. At run time, AR System
applications can use the BMC Atrium Web Services Registry to locate web services
and obtain web service definitions.

The BMC Atrium Web Services Registry is installed with BMC Atrium Core, and
is compliant with the UDDI standard. AR System integrates with this registry
through a set of forms, workflow, and plug-ins.

This section describes how to use the AR System integration to this registry. For
information about the BMC Atrium Web Services Registry itself, including a
description of its metadata elements, see the BMC Atrium CMDB 7.6.04
Developer’s Reference Guide.

NOTE
Using a web service registry is not required for AR System web services. If a
registry is not available, the web service developer can provide the end point
directly in the application. If the end point changes after the application is
installed, use the utility arwsendpoint.jar to modify the address.

Web Services Registry prerequisites and configuration
This section describes the components of BMC Atrium Core and AR System that
must be installed to support AR System use of the BMC Atrium Web Services
Registry. It also describes the necessary AR System configuration settings.

To install and configure the BMC Atrium Core components described in this
section, see the BMC Atrium Core 7.5.00 Patch 001 Installation Guide.
80 Integration Guide

Registering a web service
Prerequisites
To use the BMC Atrium Web Services Registry, the following BMC Atrium Core
and AR System components must be installed and running:

BMC Remedy AR System server and Java plug-in server

BMC Remedy Mid Tier

BMC Atrium Web Services Infrastructure (installed with BMC Atrium Core)

BMC Atrium Web Services Registry (installed with BMC Atrium Core)

Configuring the Web Services Registry integration
To activate the connection to the BMC Atrium Web Services Registry, use the
WS Registry Integration tab of the AR System Administration: Server Information
form.

� To configure the connection to the BMC Atrium Web Services Registry

1 In a browser or BMC Remedy User, open the AR System Administration Console,
and click System > General > Server Information.

2 In the The AR System Administration: Server Information form, click the
WS Registry Integration tab.

Figure 6-9: Server Information form—WS Registry Integration tab

3 In the BMC Atrium Web Services Registry Settings area, enter the options:

Registry Location—The URL of the BMC Atrium Web Services Registry.

Registry Admin User—The user name of the administrator for the web services
registry.

Registry Admin Password—The password of the web services registry
administrator.
Chapter 6 Web services 81

BMC Remedy Action Request System 7.6.04
4 Click Apply.

NOTE
If the Registry Location is changed after AR System has registered web services
and categories in the registry, AR System updates the new registry location with
the existing web services and categories, but does not delete the web services and
categories from the old location.

Plug-in server configuration file entries

Two registry plug-ins communicate with the BMC Atrium Web Services Registry
API. A filter API plug-in (ARSYS.ARF.REGISTRY) handles all updates to the
registry as a result of workflow on the AR System Web Services Registry,
Category, and Registry Pending Delete forms. An ARDBC plug-in
(ARSYS.ARDBC.REGISTRY) handles queries from the AR System Web Services
Registry Query form.

The AR System installation program installs these plug-ins and creates the
necessary configuration file entries. The AR System configuration file (ar.conf or
ar.cfg) entries are:

Server-Plugin-Alias: ARSYS.ARF.REGISTRY ARSYS.ARF.REGISTRY
plugInServerHostName:plugInServerPort

Server-Plugin-Alias: ARSYS.ARDBC.REGISTRY ARSYS.ARDBC.REGISTRY

In the Java plug-in server configuration file (pluginsvr_config.xml), the
installation program creates XML <plugin> definitions for ARSYS.ARF.REGISTRY
and ARSYS.ARDBC.REGISTRY. See the pluginsvr_config.xml file for the
complete XML definitions.

For information about the BMC Atrium Web Services Registry API, see the BMC
Atrium CMDB 7.6.04 Developer’s Reference Guide.

Managing web services registry entries
AR System provides the following forms that support the BMC Atrium Web
Services Registry integration:

Form name Purpose

AR System Web Services Registry The AR System interface to the BMC Atrium Web
Services Registry. Creating a request in this form and
marking it for publication registers a web service.

AR System Web Services Category A supporting form that stores web service categories to
help identify the web service. Each entry in the Category
form is associated with one entry in the Registry form.
An entry in the Registry form can be associated with one
or more entries in the Category form.

AR System Web Services Registry Pending Delete A supporting form that temporarily stores entries
marked for deregistration.

AR System Web Services Registry Query A vendor form that works with the ARDBC registry
plug-in to query the registry at design time.
82 Integration Guide

Registering a web service
The following sections describe how to work with these forms:

“Registering, modifying, and deregistering web services” on page 83—Register
and deregister web services, and use categories to further define registry entries.

“Exporting and importing data in the Registry and Category forms” on
page 88—Best practices for importing and exporting data from these forms, for
example, when distributing an application.

“Querying the registry” on page 91—Use the Registry Query form to find
existing registry entries by business name, web service name, application name,
or category.

Registering, modifying, and deregistering web services
The procedures in this section describe how to use the AR System Web Services
Registry form (Figure 6-10) and the AR System Web Services Category form to
register, modify, and deregister web services. To use the procedures in this section,
the web service must already be defined. See “Creating a web service” on page 72.

� To register a web service

1 Open the AR System Web Services Registry form in New mode in a web browser
or in BMC Remedy User.
Chapter 6 Web services 83

BMC Remedy Action Request System 7.6.04
Figure 6-10: AR System Web Services Registry form

2 Supply the required information in the following fields:

Business Name—Use a consistent name to identify your organization.

Application Name—Use a name that identifies the application that provides the
web service.

The web service is registered in the BMC Atrium Web Services Registry in the
<businessEntity> named businessName:applicationName. The values are
taken from the Business Name and Application Name fields in the form. The
form workflow creates the <businessEntity> entry in the registry if necessary.

Description—Your description of the web service.

Web Service—The web service to register. Either select an AR System web
service from the drop-down list or type the name of another web service.
84 Integration Guide

Registering a web service
Application Version—The version of the application for which the web service
exists.

Interface Version—The version of the web service client API that defines the
methods used in the web service.

WSDL URL—The URL used to retrieve the WSDL for the web service.

If this registry entry is for an AR System web service, Developer Studio can
build the WSDL URL. Select Yes for Build WSDL URL and type the components
of the URL in the fields provided:

Web Server Address—The URL of the web server that provides the WSDL.
Include the port number if required.

Mid Tier Root—The root name of the AR System mid tier.

AR Server—The name of the AR System server that hosts the web service.

If this registry entry is for an external web service, you must type the WSDL
URL. Select No for Build WSDL URL, and then type the URL in the WSDL URL
field.

End Point URL—The URL used to call the web service.

If this registry entry is for an AR System web service, Developer Studio can
build the End Point URL. Select Yes for Build End Point URL and type the
components of the URL in the fields provided.

If this registry entry is for an external web service, you must type the End Point
URL. Select No for Build End Point URL and then type the URL in the End Point
URL field.

Publish To Registry?—Controls whether the information in the request is sent to
the BMC Atrium Web Services Registry.

Select Yes to have the form workflow make the entry in the registry consistent
with the information in the request.

Select No to be able to create the request without updating the registry.

Recommended Value—Specifies whether the default setting for Publish to
Registry was Yes or No when the application was developed. An application
author sets this value to recommend whether this web service should be
registered, and the customer should not change this value.

Category—A table field in the Registry form that lists any categories assigned to
the web service definition. This field is supported by the AR System Web
Services Category form, which opens when you take any action in the table field.
The Category form is shown in Figure 6-11.

To add a new category to the registry entry, click Add in the Category table
field of the Registry form.

The Category form opens and is populated with information from the current
Registry form. Enter the appropriate values in the Category Name and
Category Value fields. You can use any format in the Category Name and
Category Value fields, except semicolons.
Chapter 6 Web services 85

BMC Remedy Action Request System 7.6.04
To select from a list of existing entries, click the field menu button on the
Category Name field.

IMPORTANT
Do not use a semicolon (;) as part of a category name or category value. The
semicolon is used to separate category name and value pairs when the registry is
queried.

Figure 6-11: The AR System Web Services Category form

To modify a category already associated with the registry entry, select the
category in the table and click Modify. Then make the appropriate changes in
the Category form.

TIP
If you do not see a recently added category in the field menu for the Category
Name field, close and reopen the AR System Web Services Category form. This
forces the list to refresh.

3 Save the Category form entry, if any, and the Registry form entry.

When you save the entries, workflow sends the changes to the registry plug-in,
which in turn sends the updates to the registry. After the registry updates have
been made, workflow updates the Registration Status field to “Registered.”

� To remove an entry for a web service from the registry

1 Open the AR System Web Services Registry form in Search mode in a web browser
or in BMC Remedy User.
86 Integration Guide

Registering a web service
2 Select the AR System web service from the Web Service list or type search values
in other fields.

3 Click Search.

4 Select the correct request from the search results.

5 For Publish To Registry?, select No.

6 Save the request.

The form workflow removes the entry from the BMC Atrium Web Services
Registry. After the entry is removed, workflow updates the Registration Status
field to “Not Registered.”

You can also remove an entry from the registry by deleting the corresponding
request from the AR System Web Services Registry form.

NOTE
If an entry in the AR System Web Services Registry form is de-registered, the
related entries in the AR System Web Services Category form remain. If an entry
in the Registry form is re-registered, it is created in the Registry along with the
corresponding entries in the Category form. If an entry in the Registry form is
deleted, then the corresponding entries in the Category form are also deleted.

� To modify an existing registry entry for a web service

1 Open the AR System Web Services Registry form in Search mode and find the
correct request in the form.

2 Change the appropriate fields in the request.

3 Save the request.

Synchronizing the Registry and Category forms with the registry
By default, workflow on the Registry and Category forms attempts to update the
registry when you save entries in those forms and the field Publish to Registry is
set to “Yes.” This is usually sufficient to keep the registry in sync with the entries
in the Registry form. However, the two can get out of sync if the registry is not
available at the time an update is attempted, or if changes are made directly to
existing AR System entries in the registry. In this case, the registry can be
re-synchronized with the entries in the Registry form by two methods: workflow
installed with AR System (automatic) and a forced update (manual).

Automatic registry synchronization
The “AR System Web Services Registry - check and update” escalation runs daily
at 2 a.m. For each entry in the Registry form, the escalation compares the values in
the Publish to Registry? and Registration Status fields. It updates the registry for
any entry where Publish to Registry? and Registration Status do not match.
Conditions that cause an update include:
Chapter 6 Web services 87

BMC Remedy Action Request System 7.6.04
Publish to Registry? is set to “Yes”, but Registration Status is not set to
“Registered.”

Publish to Registry is set to “No”, but Registration Status is set to “Registered.”

This update includes all Category form entries associated with the Registry form
entries that are updated. Administrators can modify this escalation to change the
frequency and time if necessary.

Forcing an update to the registry
You can also use the Update Registry button on the WS Registry tab of the
AR System Administration: Server Information form to force a registry update. In
this case, AR System pushes to the registry all entries in the Registry form for
which the Publish to Registry? field is set to “Yes”, regardless of the registration
status. The associated entries in the Category form are also all pushed to the
registry.

NOTE
This procedure does not move entries made directly in the registry into
AR System. To add a new registry entry to AR System, you must create the entry
in the Registry form.

� To force an update to the registry

1 In a browser or BMC Remedy User, open the AR System Administration Console,
and select System > General > Server Information.

2 On the WS Registry Integration tab of the AR System Administration: Server
Information form, click Update Registry.

Workflow attempts to update the BMC Atrium Web Services Registry to reflect the
requests in the AR System Web Services Registry form.

Exporting and importing data in the Registry and Category forms
If you deploy a web service to another AR System server and you want to also
deploy the related registry entries, you must export the related Registry and
Category form entries along with the application that contains the web service.

Use the following guidelines to optimize the performance of registry updates
when importing to the destination server:

When the Registry form entry does not already exist on the destination server,
import the Category form entries first, and then import the Registry form
entries. In this case the registry update is triggered by the Registry form entry
and all the registry updates are made in one call by the plug-in server. (In other
words, if an entry is imported to the Category form and the corresponding
Registry form entry does not yet exist, the registry server is not updated.)
88 Integration Guide

Consuming a web service
If you import Category form entries and the corresponding Registry form entry
already exists, then the plug-in makes a separate call to update each Category
form entry. For this reason, modifying a large number of existing Registry and
Category form entries by importing them has a potential performance impact

Consuming a web service
Consuming a web service is using an external private or public web service to
obtain information for use in an AR System application. This section describes
how to create and configure a filter to obtain the web service information.

Creating a Set Fields web service filter action
To use an external web service, you create a Set Fields filter action with WEB
SERVICE as the data source to enter data from the web service into the base form.
You can then view the form in an AR System client. The Set Fields filter action
invokes the web service using its WSDL.

Make sure that other filters are not acting on the same form that might skew the
data from the external web service or prevent the data from appearing.

� To create a Set Fields web service filter action

1 In BMC Remedy Developer Studio, create a form to use as your base form for the
external web service.

Before you create fields to hold the web service data, review the XML element
types in the WSDL file of your external web service. You can map only fields and
elements of the same type. See “Data types” on page 360.

2 Choose File > New > Filter.

3 Select the server on which you want to create the filter, and click Finish.

4 Right-click the Associated Forms panel, then choose Expand All Panels.

5 In the Associated Forms panel, click the Add button.

6 In the Form Selector dialog box, select the base form and click OK.

The data is set to this form. To push the data to other forms, create workflow.

TIP
Use the filtering options and the Locate field to navigate through the list of forms.

7 In the State list, choose Enabled.

You might want to disable the filter during development, or when you detect a
problem.

8 In the Execution Order field, enter the execution order for the filter.
Chapter 6 Web services 89

BMC Remedy Action Request System 7.6.04
The value you enter in this field determines the order in which the filter executes
relative to other filters with the same triggering condition. Numbers between 0 and
1000 are valid values; lower numbers are processed first. Some filter actions might
be queued and performed at a later time.

9 Select a check box corresponding to the operation that activates the filter.

If you select multiple options, the filter executes when any of your selected
operations runs.

10 To refine the selection criteria, enter a qualification statement in the Run If
Qualification panel.

When the qualification is met, If Actions are executed. When the qualification is
not met, Else Actions are executed.

TIP
You can type or paste the qualification, or you can use the Expression Editor to
build it. To open the Expression Editor, click the ellipsis button [...] adjacent to the
field.

11 In the Error Handler panel, verify that error handling is disabled.

12 Right-click the If Actions panel or the Else Actions panel, choose Add Action, and
select Set Fields.

13 From the Data Source list, choose WEB SERVICE.

14 From the Server Name list, select the server on which to store the web service
mappings as a server object.

15 In the WSDL File field, enter the URL for the WSDL file of your external web
service.

a To select a WSDL file located on your local hard drive or LAN, click the ellipsis
button and navigate to the WSDL file.

b To search for the WSDL of a web service that is registered in the BMC Atrium
Web Service Registry, use the AR System Web Services Registry Query form.
See “Querying the registry” on page 91. Cut and paste the resulting WSDL URL
into the WSDL File field.

16 When Developer Studio parses the WSDL, the End Point field appears and is
populated with the end point stored in the WSDL. You can use the existing end
point or modify it as follows:

Directly enter a different end point URL.

Enter an expression to cause AR System to query the registry at runtime to
obtain the end point URL. See “Obtaining an End Point URL at run time” on
page 93.

17 Click Reload.

BMC Remedy Developer Studio parses the WSDL file, identifies viable operations,
and lists them in the Operation list.
90 Integration Guide

Consuming a web service
18 If prompted, enter the user name and password required by the remote web server
for basic authentication.

19 From the Port list, select the web service Port from which to choose the operation.

20 From the Operation list, select the operation for the web service to perform.

21 Select an authentication method from the Authentication list. (See “Authentication
information for consuming a web service” on page 97.)

22 Create input and output mappings. For mapping procedures, see “Mapping to
simple and complex documents” on page 340.

23 Click File > Save to save the filter.

To view the web service data in an AR System client, open the base form and other
forms to which the data is pushed.

Querying the registry
To find a WSDL or end point URL for a web service in the registry when
configuring a Set Fields filter action to consume a web service, you can search the
registry using the AR System Web Services Registry Query form in BMC Remedy
User or a browser.

To cause AR System to query the registry for an end point URL at run time, you
can use a special syntax in the End Point field of the Set Fields filter action.

This section describes both methods.

Using the Registry Query form at design time
To search the registry for a registered web service and obtain the WSDL or End
Point URL for use in a Set Fields filter action, follow the procedure in this section
using Registry Query form, shown in Figure 6-10.
Chapter 6 Web services 91

BMC Remedy Action Request System 7.6.04
Figure 6-12: The AR System Web Services Registry Query form

� To query the registry

1 In BMC Remedy User or a browser, open the AR System Web Services Registry
Query form in Search mode.

2 Enter the known information about the web service in the form and click Search.

You can use Java regular expression wildcards in the fields Business Name,
Application Name, Web Service, and Version. For example, enter BM* to match
“BMC Software, Inc.” or BM. to match “BMC”.

You can search on all fields in the form except the WSDL URL and End Point
URL fields. These fields are populated by the search results.

Search values are hierarchical. You can search on either the Business Name or
the Application Name alone, but to search the remaining fields, you must also
enter values in each of the preceding fields. For example, to search on the Web
Service field, you must also enter values in the Business Name and Application
Name fields. The field hierarchy is Business Name >Application Name >Web
Service >Interface Version > Category List.

To use more than one category in the search, use a semicolon-separated list in
the Category List field, for example, name1=value1; name2=value2. In the
search results, the Category list is also populated using this syntax.

3 When the search results are returned, open the correct entry, and then cut and
paste the returned WSDL into the Set Fields action in the Web Services filter.

AR System parses the WSDL and the web service end point appears in End Point
field.
92 Integration Guide

Consuming a web service
Obtaining an End Point URL at run time
To cause AR System to search the registry for the end point URL at run time, you
enter a search phrase using a keyword, a registry key, and an optional list of
categories in the End Point field of the Set Fields filter action. The registry key must
provide enough information to obtain an unambiguous result. The key can include
a list of categories associated with the web service. At run time, AR System builds
the key using the values provided and retrieves the correct end point URL from the
Registry.

To build the registry key, you use the keyword REG::, followed by name-value
pairs separated by semicolons, in the following format:

REG::BN=businessName;AN=appName;W=webService;WV=webServiceVersion

For example:

REG::BN=BMC;AN=ARSystem;W=HelpDesk;WV=5.0

The element REG, followed by two colons (::), acts as a keyword to direct
AR System to search the registry for the correct entry

The registry key consists of these elements:

BN—The Business Name, a required field.

AN—The Application Name, a required field.

W—The Web Service name, a required field.

WV—The Web Service Version, an optional field. If there is no web service version,
this field is not required.

To further narrow the search, you can add an optional list of categories following
the registry key. The registry key must precede the category list.

The category list is also constructed of name value pairs separated by semicolons,
in the format:

CN1=CV1; CN2=CV2

In this format, CN is replaced by the Category Name and CV by the Category Value,
for example, Location=Paris; Owner=Marie.

The category list is separated from the registry key by another set of two colons
(::). For example:

REG::BN=BMC;AN=ARSystem;W=HelpDesk;WV=5.0::Location=Paris

You can enter the category list directly if you know the category names and values.
Alternatively, you can enter field names in which the values will be supplied. For
example:

REG::BN=BMC;AN=ARSystem;W=HelpDesk;WV=5.0::8 or 8=536870913.

If you use field references, test to verify that they are correct. The AR System server
returns an error if the value is incorrect, which will cause the filter action to fail.
Chapter 6 Web services 93

BMC Remedy Action Request System 7.6.04
WSDL limitations for consumption
Most WSDL files are accepted during consumption, but some files can cause
problems:

SOAP-encoded arrays and SOAP-encoded structures are not supported. This
means that RPC-encoded and document-encoded web services with complex
input or output parameters do not work. For example, Amazon Web Services
API and Google Web Services API fall into this category.

All operations should be of one kind—that is, all rpc encoded or all doc/literal.

Only SOAP operations are considered. MIME and HTTP operations are ignored.

Overloaded operations are not allowed.

Both input and output should be present; one-way messaging is not allowed.

A WSDL file cannot have both a <wsdl:include> and a <wsdl:types> element.

TIP
As a workaround, use <xsd:include> inside <wsdl:types>. There is no
restriction on the number of <xsd:include> elements that you can use.

A WSDL file cannot have more than one <wsdl:include> element.

AR System supports Message Parts that point to XML Elements or XML Simple
Types only.

Managing web service performance issues
This section describes configuration changes that might be required when using
web services with AR System.

Server threads
If an AR System server calls itself through a web service, twice the number of fast
and list threads are used. Therefore, the minimum number of fast and list threads
should be more than two. The number of server threads should be two times the
expected number of users that will use the web-services feature if they are
consuming on the same server.

NOTE
It is easy to get into a deadlock situation by running out of threads, because each
web service call consumes two threads.
94 Integration Guide

SOAP headers and authentication
To consume a web service created on the same AR System server, you must
increase the number of threads. To do so, open the AR System Administration:
Server Information form, select the Ports and Queues tab, and adjust the number
of threads.

Threads in the Plug-in
By default, the web service plug-in uses only one thread. If you use multiple web
services, either external or within the AR System server, configure the plug-in with
multiple threads. To specify the number of plug-in server threads for the filter API
(which is used in webservices.dll), use the Plugin-Filter-API-Threads:
minThreads maxThreads entry in the ar.cfg file. Configure the number of
threads according to the load; initially, set the minimum number of threads to five.
If the plug-in server does not respond in time, increase the minimum threads.

Time-out
If an external web service is too slow, AR System times out in 40 seconds, by
default. To set the time-out to 20 seconds, set Filter-API-Timeout:20.

Log File
Set Plugin-Log-Level:100 to log to a file specified in the Log Files tab of the
AR System Administration: Server Information form.

SOAP headers and authentication
This section describes how AR System authenticates requests that come in to a web
service published by AR System, and how to configure authentication information
in order to consume an AR System or other external web service. Authentication
information consists of a user name and password, which are included in the
SOAP packet, usually in the header.

WARNING
Authentication information in SOAP headers or other web services
communication can be in plain text. To ensure the security of the authentication
information in a SOAP header in this case, configure the web server to use https.
Chapter 6 Web services 95

BMC Remedy Action Request System 7.6.04
Authentication information for a published web service
When you publish a web service, the consuming application can specify which
user is authorized to perform the web service operations. AR System checks
whether the SOAP header contains the root XML data type AuthenticationInfo.
This is an AR System XML data type, and consists of the child elements userName,
password, authentication, locale and timeZone. The timeZone child element
is optional. When the AuthenticationInfo data type is included in the SOAP
header, it should look like the following example:

<AuthenticationInfo>
<userName>Joe</userName>
<password>ILoveDogs</password>
<authentication>ARSystem</authentication>
<locale>en_US</locale>
<timeZone> </timeZone>

</AuthenticationInfo>

If the authentication information is not specified, AR System uses the Anonymous
User Name and Anonymous Password defined in the BMC Remedy Mid Tier
Configuration Tool.

Figure 6-13: BMC Remedy Mid Tier Configuration Tool—Web service settings

You can use any name as the Anonymous User Name for development purposes,
but for production, create a user name specific to the published web service.
96 Integration Guide

SOAP headers and authentication
Authentication information for consuming a web service
When you create workflow to consume an AR System or external web service that
requires a SOAP header, BMC Remedy Developer Studio checks the SOAP header
elements specified in the WSDL. If the WSDL specifies the SOAP header elements,
Developer Studio automatically creates a SOAPHeader element under the ROOT
element. To communicate with any web service that requires authentication, you
must use the Input Mapping table to map the source of the user name and
password in the web services workflow.

When you add a Set Fields action to a filter or escalation and choose WEB SERVICE
as the data source, the Authentication field appears. Use this field to define the
authentication type required for the web service. The options are:

None—The web service does not require authentication.

Custom—The external web service must be designed to recognize the fields that
contain the user name and password. The SOAPHeader is not used to carry the
user name and password. The password is sent unencrypted.

AR Authentication—The web service is provided by an AR System server. This
option uses the AR System AuthenticationInfo data type in the SOAP header.
The password is sent unencrypted.

Username Token—The web service is an external web service that supports WS-
Security Username Token 1.0. (Web Services that use Username Token 1.1 can
be used, if they support 1.0 as well.) The password can be sent either as plain text
or as a digest as specified in the WS-Security specification.

Mapping the user name and password XML data types
To define the user name and password to be used when consuming the web
service with a SOAP header, map the SOAP attributes for user name and password
in the Input Mapping table of the Set Fields action. Figure 6-14 shows an example
using the AR Authentication option.
Chapter 6 Web services 97

BMC Remedy Action Request System 7.6.04
Figure 6-14: Mapping authentication data types in the SOAP header—AR Authentication

For each authentication type and based on the selected WSDL, the authentication
elements in the XML Data Type column change. The mapping options in the
Form/Field and Mapping Info columns also change depending on the
Authentication type. In general, you can use any of these methods to map the user
name and password values:

Map the XML data types to character fields in the associated form.

Provide static values (the default XML data type).

Use the AR System user name and password of the user currently executing the
filter.

You can also use a combination of these mappings. If the user name and password
elements are mapped to fields, the AR System server first attempts to retrieve the
values from those fields. If the field values are NULL, then the AR System server
checks for the static value (in the default attribute) of userName and password,
and uses it if present. If the mapped fields and the default values are NULL the
current AR System user name and password of the user executing the filter action
are used.

TIP
You can see the XML attributes and their values for any element in the XML Data
Type column by hovering the mouse cursor over the element.

AR Authentication method

Use this method when the web service is hosted on an AR System server. In this
case, Developer Studio automatically sets the XML attributes arUsername: true
and arPassword: true. In the Input Mapping table, this is represented by the
entries User Name and Password in the Mapping Info column. This allows
AR System to use the current user’s user name and password at run time.
98 Integration Guide

SOAP headers and authentication
� To enter static values for userName and password with the
AR Authentication method

1 In the Form/Field column, click in the cell corresponding to the userName
attribute.

2 Type the user name, and then press Enter.

3 Repeat steps 1 and 2 in the cell corresponding to the password attribute, typing the
password.

The password is obscured as you type.

� To map the userName and password attributes to fields in the form

1 In the Form/Field column, click in the cell corresponding to the userName
attribute, and then click the ellipsis (...) button.

2 In the Field Selector dialog box, select the appropriate field, and then click OK. For
example, map the Requester field to userName.

3 Repeat steps 1 and 2 for the password attribute.

TIP
To configure the input mapping to have both a field mapping and a static value,
enter the static value first. Then, click in the cell again without deleting the static
value, click the ellipsis, and select the field to map. To verify that the static value
has been assigned, hover the cursor over the appropriate field and check the value
of the default attribute. If you delete the field mapping after doing this, the static
value is also deleted.

Custom authentication method

Use this method for an external web service, not hosted by AR System, where the
Username Token is not required. The consumed web service must be designed to
recognize the fields that contain the user name and password. In this case, the
SOAPHeader element is not used in the input mapping. Figure 6-15 shows the
input mapping being configured for the Custom authentication method.

Figure 6-15: Input mapping for the Custom authentication method
Chapter 6 Web services 99

BMC Remedy Action Request System 7.6.04
With the custom method, you can enter a static value for the user name and
password, map fields to the appropriate attributes, use the run time user’s
AR System user name and password, or any combination of the three. With the
Custom method, when you use the Mapping Info column to identify which
element the web service should use as the User Name and password, Developer
Studio also sets the attributes arUsername and arPassword to true.

To map fields or assign static values for the user name and password, follow the
procedures in “AR Authentication method” on page 98, selecting the appropriate
XML data types that you want to use.

� To assign the User Name and Password flags to the appropriate elements

1 In the Mapping Info column, click in the appropriate cell for the XML data type
you are using as the user name.

2 Click the drop-down menu icon that appears, and select User Name.

3 Press Enter.

If you click elsewhere on the table instead of pressing Enter, the attribute is not set
correctly.

4 Repeat steps 1 through 3 for the XML data type you are using as the password.

Username Token authentication method

The WS-Security WS-Security Username Token 1.0 standard allows you to specify
whether you send the password in digest or plain text format. Digest format is a
hash, and the consuming web service must know the password in order to
authenticate the password.

For documents describing the WS-Security Username Token 1.0 standard, see
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.

NOTE
For a web service that requires the Username Token, the selected WSDL might not
indicate that a Username Token is required. In that case, the designer must know
whether the web service requires the Username Token and create the workflow
accordingly.

With the Username Token method, you can enter a static value for the user name
and password, map fields to the appropriate attributes, use the run time
AR System user name and password, or any combination of the three. With this
method, Developer Studio automatically sets the XML attributes
arUsername: true and arPassword: true, but this is not reflected in the
Mapping Info column. For this method, the Mapping Info column defines whether
to send the password in digest or plain text format.
100 Integration Guide

Supported schema constructs and AR System web service limitations
Figure 6-16: Input mapping for the Username Token authentication method

To map fields or assign static values for the user name and password elements,
follow the procedures in “AR Authentication method” on page 98.

� To assign digest or plain text format to the password element

1 Click in the Mapping Info cell for the Password element.

2 Click the drop-down menu that appears, and then select Digest or Text.

Supported schema constructs and AR System
web service limitations

AR System supports most common schema constructs, but not all. AR System does
not perform XML validation, so developers must check this list to make sure the
application uses only supported schema constructs.

Supported XML schema constructs
The following XML schema constructs are supported in AR System:

Elements
global element declaration

local element declaration

nillable for an element

minOccurs=0 for an element

default for an element

an element that has a ref to another element
Chapter 6 Web services 101

BMC Remedy Action Request System 7.6.04
Attributes
attribute

default for attributes

attributeGroup

Types
named simpleType

inlined simpleType

named complexType

inlined complexType

Derivation
complexType derived from complexContent by extension

complexType derived from complexContent by restriction

complexType derived from simpleContent by extension

simpleType derived from simpleContent by restriction

simpleType derived from simpleType by restriction (The restriction is ignored)

Model group
sequence directly under a complexType with maxOccurs=1 and minOccurs=1
(if maxOccurs and minOccurs are unspecified, they default to 1)

choice directly under a complexType with maxOccurs=1 and minOccurs=1

all directly under a complexType with maxOccurs=1 and minOccurs=1

sequence directly inside a sequence with maxOccurs=1 and minOccurs=1

choice directly inside a choice with maxOccurs=1 and minOccurs=1

choice directly inside a sequence with maxOccurs=1 and minOccurs=1

group

maxOccurs=unbounded for an element which is the sole child of a sequence. In
all other situations, maxOccurs must be 1 or not be specified. Instead of
maxOccurs=unbounded, it could also be maxOccurs=20 (or some other number
greater than 1) in which case any XML generated by AR System would have 20
or fewer elements. This element must be of a complexType.

Namespaces

targetNamespace

chameleon namespaces
102 Integration Guide

Supported schema constructs and AR System web service limitations
Multiple documents

include

import

Miscellaneous

annotation

The choice element
The choice element in the XML schema gives the flexibility of listing a set of
elements. The XML instance document using this schema can specify only one of
the elements mentioned for choice. But when you generate an output XML
document from AR System forms, it is not obvious that you need to select only one
of the choice elements. To resolve this, a choice node in the XML schema can be
mapped to a character field. When an input XML document is received, the name
of the element given for choice is stored in this character field. The value in this
character field is used in generating the output XML document for choice.

In addition:

Direct or indirect children of choice cannot be mapped to another form.

Choice can have only elements. It cannot have immediate choice, sequence,
group and so on.

A choice can appear in a sequence or in a complex type.

Recursion in choice is not allowed.

“minOccurs” attribute of choice can be either 0 or 1. Any number greater than 1
or unbounded is not supported.

“maxOccurs” attribute of choice must be 1. Any number greater than 1 or
unbounded is not supported.

Choice does not reset other items during a Set or Create operation. It sets only
the item that is sent.

XML schema constructs not supported in AR System
The following XML schema constructs are not supported in AR System:

Recursive definitions

list

union

Type substitution

An element of a simpleType having maxOccurs>1

sequence with two elements having the same name

sequence with maxOccurs>1 or minOccurs=0

choice with maxOccurs>1 or minOccurs=0
Chapter 6 Web services 103

BMC Remedy Action Request System 7.6.04
all with maxOccurs>1 or minOccurs=0

sequence directly inside a choice

Multiple choices under a sequence

An element under a choice having maxOccurs>1

Multiple elements under a sequence with one or more of them having
maxOccurs>1 (if there is only one element that could have maxOccurs>1)

substitutionGroup

redefine

noNamespaceSchemaLocation

any

anyAttribute

abstract

mixed="true"

ID, IDREF, NOTATION, normalizedString, NCName, ENTITY, token,
language (treated as strings, ignoring any restrictions)

Name (not supported)

IDREFS, ENTITIES, NMTOKENS (not supported)

key, unique, keyref (ignored)
104 Integration Guide

Chapter

7
 Plug-ins
AR System plug-ins enable you to extend AR System server functionality to
external data (data not contained in the AR System database). This section
describes each type of AR System plug-in and provides some general information
about plug-ins.

NOTE
To extend client functionality, you use the AR System C API or Java API. See
Chapter 4, “AR System C API,” Chapter 5, “Java API,”, and the C API Reference.

The following topics are provided:

About AR System plug-ins (page 106)
Installing plug-in components (page 108)
Creating C plug-ins (page 110)
Creating Java plug-ins (page 112)
Configuring the Java plug-in server (page 114)
Configuring the AR System server (page 118)
Running the plug-in server (page 120)
Common plug-in C functions and Java methods (page 123)
AREA plug-ins (page 124)
ARDBC plug-ins (page 127)
AR filter API plug-ins (page 132)
Chapter 7 Plug-ins 105

BMC Remedy Action Request System 7.6.04
About AR System plug-ins
The AR System plug-in server allows integration between AR System and external
programs or environments by managing the interaction between the plug-in code
and the AR System server. All plug-ins are registered with the plug-in server,
which runs them as needed and coordinates all interaction.

A plug-in is defined by using one of the plug-in APIs to write code to handle the
integration with the external program. Plug-in API functions provide the main
routine, threading control, and communication with the AR System server. The
plug-in application that you write provides the logic for one or more callback
routines, defined by the API, that perform operations against the external program
or environment.

When a plug-in function is invoked, the AR System server makes a call to the plug-
in server, requesting a specific plug-in to perform an operation with a set of
parameters. The plug-in server passes the parameters to the appropriate callback
routine in the external application and awaits the response. When the response is
received, it is returned to AR System and processing continues.

AR System supports the following types of plug-ins that you create:

AR System External Authentication (AREA)

AR System uses AREA plug-ins to authenticate the identity of users. AREA
plug-ins access network directory services or other authentication services to
verify user login names and passwords. When you use an AREA plug-in, you
do not have to maintain duplicate user authentication data in the AR System
directories because the AR System server can access user identification
information from external sources.

NOTE
If you have users with fixed licenses or users who use BMC Remedy applications,
you must maintain user authentication data in AR System directories because
users must exist in the User form for the license tracking feature and for the
applications.

NOTE
See “AREA plug-ins” on page 124. In this release of AR System, a ready-to-use
Atrium SSO plug-in is introduced for the purpose of single sign-on. This plug-in is
used for integrating the AR System server and the Atrium SSO server and
authenticates the user against the Atrium SSO server by calling the Atrium SSO
APIs. For more information, see “Configuring Atrium SSO integration” on
page 161.

AR System Database Connectivity (ARDBC)

ARDBC plug-ins enable AR System to access data stored in external sources.
You can integrate ARDBC with the external data sources through their own
APIs. ARDBC plug-ins, which you access through vendor forms, enable you to
perform these tasks:
106 Integration Guide

About AR System plug-ins
Search external data sources

Create, delete, modify, and set entries in external data sources

Populate search-style character menus from external data sources

Implement workflow that accesses external data sources

See “ARDBC plug-ins” on page 127.

AR System Filter (AR Filter)

AR filter API plug-ins are used when server-side workflow objects, such as
filters and escalations, reference filter API calls. AR filter API plug-ins offer an
alternative method to send information requests to and from external servers. In
previous versions of AR System, run processes performed external information
requests. AR Filter uses fewer system resources than run processes use and
enables the AR System server to return to its workflow faster.

See “AR filter API plug-ins” on page 132.

NOTE
AR System also offers two ready-to-use Lightweight Directory Access Protocol
(LDAP) plug-ins that you access through BMC Remedy Developer Studio. See
Chapter 8, “LDAP plug-ins.”

“Installed files” on page 109 shows how the AR System server calls the plug-in
server that calls the plug-in.
Chapter 7 Plug-ins 107

BMC Remedy Action Request System 7.6.04
Figure 7-1: AR System plug-in architecture

NOTE
The arrows in this figure identify the directions in which each program or process
can initiate API function calls. Data can flow in any direction.

Installing plug-in components
Before you can create AR System plug-ins, you must install these components:

AR System plug-in servers—Automatically installed with AR System.

API component of the AR System server—Includes the plug-in APIs. You must
select this option during the AR System installation. The API component
includes:

The header files you use to compile C plug-ins and create the shared libraries.
See the arplugin.h file for C plug-in definitions and declarations.

The files you need to write Java plug-ins.

For more information, see the Installation Guide.

Client

Client
API Call

AR System
Server

External
Data Source

External
Data Source

External
Data Source

Server
Request

ARDBC
Plug-in

AREA
Plug-in

AR Filter
Plug-in

Plug-in
Server
108 Integration Guide

Installing plug-in components
NOTE
In addition to the AR System 7.6.04 Java plug-in server and its API, the C plug-in
server, arplugin, and its API are installed.

Installed files
The plug-in server and Java plug-in API files are typically installed in the
following directories:

UNIX—/usr/ar/serverName/pluginsvr

Windows—C:\Program Files\AR System\serverName\pluginsvr

The arplugin.h file is installed with the other C API include files in the include
subdirectory.

Component Description

arapi75.jar Includes the AR System Java API, Java utilities,
and AR System server communications.
This file is called by Java plug-ins.

arplugin.log Plug-in server log file.
This file is generated when the Java plug-in
server starts.

arpluginjni75.dll (Windows) C plug-in server interface for C
plug-ins.

arpluginsvr75.jar Java plug-in server and plug-in interfaces.
This file is called by the Java plug-in server.

log4j_pluginsvr.xml Java plug-in server logging configuration file.

log4j-1.2.14.jar Java logging utility.

pluginsvr_config.xml Java plug-in server configuration file.

pluginsvrstartup.bat Java plug-in server start-up file for Windows.

pluginsvrstartup.sh Java plug-in server start-up file for UNIX.
Chapter 7 Plug-ins 109

BMC Remedy Action Request System 7.6.04
Creating C plug-ins
You must create a separate plug-in for each of the three types of plug-ins. For
example, you cannot create one plug-in that supports both AREA and ARDBC.

NOTE
On Windows platforms, plug-ins created for pre-7.0 servers must be recompiled
with Microsoft Visual Studio .NET 2003 to be used successfully in the
AR System 7.0 environment.

� To create a C plug-in

1 Write a C or C++ program that includes these elements:

A reference to the arplugin.h file for plug-in definitions and declarations.

Plug-in API calls for initialization, termination, object creation, and object
deletion (see “Common plug-in C functions and Java methods” on page 123).

One of these type-specific API calls:

AREA (see page 126)

ARDBC (see page 128)

AR Filter (see page 132)

Code to implement the calls. Use sample Microsoft Developer Studio projects
(Windows) or makefiles (UNIX), which you install with AR System, to build
your program into your DLL or shared object library.

For examples and templates for C plug-ins, see the ardbc, area, and
arfilterapi subdirectories of the Api directory in your AR System server
installation.

Figure 7-2 on page 124 shows the general structure of a plug-in program.

2 Compile and link your plug-in as follows:

On Windows platforms, compile your plug-in using Microsoft Visual Studio
.NET 2003.

On Linux, you must use the -malign-double option when compiling plug-ins
to make sure that your plug-in library is correctly aligned for the plug-in server.
If you do not, the plug-in might produce unexpected results.

If you compile and link your plug-in on HP-UX using aCC and enable exception
handling, your plug-in will have dependencies on libraries that are not standard
C/C++ libraries, for example libCsup_v2 and libstd_v2. If your plug-in has
dependencies on any libraries like these, you must explicitly link to them and
make sure they are available at run time in the shared library path for the
plug-in server to find them.
110 Integration Guide

Creating C plug-ins
3 Put your plug-in DLL or shared library file in the directory that contains the
AR System server and plug-in server executable files or any other directory listed
in you PATH environment variable.

4 Add an entry for the plug-in to the plug-in server configuration file. See
“Configuring the Java plug-in server” on page 114.

At run time, the plug-in server reads the configuration file and loads the specified
plug-ins.

C plug-in conventions
When you create a C plug-in, use the following naming conventions and memory
management practices.

Memory management
Do not free memory that the plug-in passes to your functions as arguments or that
you return to the plug-in. Plug-ins can allocate and deallocate memory associated
with the object argument for each call. The plug-in does not deallocate this
memory.

Input and return values
In a C API program, developers specify input values for the functions and receive
return values. In a plug-in program, the plug-in provides the input values to the
plug-ins, and the plug-ins provide return values.

If the AR System server returns AR_RETURN_WARN or AR_RETURN_OK to the
arplugin log file after a call is issued, the plug-in considers that call successful.
The plug-in considers the call unsuccessful if the server returns AR_RETURN_ERROR
or AR_RETURN_FATAL.

If you do not implement a call, the plug-in performs a default action. The default
action might be to proceed or to return an error message.

Protection for global information
To ensure thread safety, you must protect any global information or resources that
you access through plug-in API calls with appropriate mutual exclusion locks.
Global information and resource protection applies to all plug-in calls except
ARPluginIdentify, ARPluginInitialization, ARPluginSetProperties, and
ARPluginTermination, which are always called by one thread at a time.

At run time, the plug-in server reads the configuration file and creates the plug-ins
that the file specifies. After the plug-in server creates the plug-ins, they remain
active until a system failure or until you modify the plug-in configuration
information and restart the plug-in server. For information about restarting the
plug-in server, see “Restarting the plug-in server using the Set Server Info
command” on page 118.
Chapter 7 Plug-ins 111

BMC Remedy Action Request System 7.6.04
Creating Java plug-ins
The Java plug-in API includes an interface and an abstract class for each plug-in
type. Your Java plug-in program must implement one of the interfaces or extend
one of the abstract classes.

The interfaces and classes are described in detail in the Javadoc-generated online
documentation in the arpluginsdoc.jar file. This file is located in the
javaplugins subdirectory of the Api (or api) directory in your AR System server
installation directory. To access the Java plug-in API documentation, unzip the
contents of the file. (To unzip a JAR file, use a zip utility or the Java jar executable,
which is in the bin directory of the Java JRE is installation. For example, jar -xvf
arpluginsdoc.jar.) Then, navigate to the javadoc folder, and open the
index.html file to see an overview of the entire AR System Java plug-in API
documentation.

Classes, instances, and shared data
Two or more Java plug-in classes can be configured in a plug-in set or group as
described in the comments in the pluginsvr_config.xml file. When the Java
plug-in server starts, it loads each configured plug-in class or group in a separate
class loader and any static initialization in the classes is executed. It also initializes
an instance of each plug-in class listed in the pluginsvr_config.xml file for each
worker thread in its worker thread pool. Each time the AR System server makes a
connection to the Java plug-in server, a selector thread adds the request associated
with the connection to a task queue. As soon as a worker thread is free, it processes
the next request in the task queue.

Different instances of a class can share data in the static class variables. To be
thread safe, however, the class implementation must protect this static data.

The class can use instance variables to store data that is not shared. Because each
thread has a separate instance, this data is thread safe.

Interface Extends

ARDBCPluggable ARPluggable

AREAPluggable ARPluggable

ARFilterAPIPluggable ARPluggable

Abstract class Extends Implements

ARDBCPlugin ARPlugin ARDBCPluggable

AREAPlugin ARPlugin AREAPluggable

ARFilterAPIPlugin ARPlugin ARFilterAPIPluggable
112 Integration Guide

Creating Java plug-ins
Writing a Java plug-in

� Follow these steps to write the program:

1 Make sure your programming environment is set up correctly. You need:

Java Development Kit (JDK) 5 or later. (Java SE 5 is also know as Java 1.5.0.)

AR System Java plug-in API files. (See “Installed files” on page 109 for
installation and verification.)

AR System Java API files. (See “Installed files” on page 109 for installation and
verification.)

2 Create a Java project in your IDE.

3 Include the arpluginsvr75.jar file in the AR System API library directory in the
CLASSPATH. (For the directory location, see “Installed files” on page 109.)

4 Create a new class that will implement one of the interfaces listed in “Creating Java
plug-ins” on page 112 or extend one of the abstract classes listed in that section.

5 Import the com.bmc.arsys.pluginsvr.plugins and com.bmc.arsys.api.*
packages and other packages, such as java.util.List, into your program.

6 Implement the methods of the interface or abstract class you are using. See the Java
plug-in API online documentation for details, and consider these tips:

When implementing the init() and initialize() methods, do not put the
plug-in into a long loop to wait to connect to the AR System server or another
server. Such loops prevent the Java plug-in server from finishing its
initialization. To determine whether the plug-in has been instantiated inside the
plug-in server, the plug-in server must receive either a return from init() or
initialize(), or an exception. If the plug-in server learns that the method
failed to instantiate the plug-in, it can still instantiate its other plug-ins and
complete its initialization. The failed plug-in, however, will be unable to receive
calls.

If a plug-in must perform a long process, such as establishing a database
connection, before the plug-in can accept a call, create a separate thread for the
process so that the init() and initialize() methods are not blocked. If the
plug-in receives any call other than init() and initialize() before it
completes the process, the plug-in can generate an ARException to notify the
caller that it is not ready and to tell the caller its current state. When it is ready,
it can process the call.

To enable the Java plug-in server to load and instantiate all plug-ins inside the
plug-in server, a plug-in should not throw a runtime exception or an
ARException from the init() and initialize() methods for nonfatal errors.
Chapter 7 Plug-ins 113

BMC Remedy Action Request System 7.6.04
7 Add an entry that identifies the plug-in to the plug-in server configuration file. See
“Configuring the Java plug-in server.”

8 If the Java plug-in uses native libraries, do this:

Include the native libraries in the PATH variable.

(UNIX only) Include the native libraries in the LD_LIBRARY_PATH variable.

If the libraries need to know the remote host character set, call the
getRemoteHostCharSet() method of the ARPluginContext object. For details,
see the Java plug-in API online documentation.

Configuring the Java plug-in server
Configure the Java plug-in server in the pluginsvr_config.xml file in the
pluginsvr subdirectory of your AR System server installation directory. This file
should be in the same directory as the plug-in server JAR files and startup script.
(It must be in the class path for the plug-in server.) When you add a plug-in to the
plug-in server configuration in the pluginsvr_config.xml file and save the file,
the plug-in server loads the new plug-in after a configured delay. If you remove a
plug-in server or make other configuration changes, you must use armonitor to
stop and restart the plug-in server for it to process the changes.

In AR System 7.5.00, the file encoding of the pluginsvr_config.xml file was
changed from ISO 8859-1 to UTF-8. This change enables you to use localized
plug-in names in the configuration file. If you modify the pluginsvr_config.xml
file, save it as a Unicode file. Some text editors, such as Windows Notepad, save
files as single-byte ANSI (ASCII) by default.

TIP
You should install critical plug-ins, such as an LDAP plug-in that performs LDAP
authentication, in separate plug-in servers. If multiple plug-ins are installed on a
single server, problems with one plug-in might affect the use of the other plug-ins.

See the sample configuration file, pluginsvr_config.xml, for descriptions, valid
values, and default values for the Java plug-in server configuration options.

NOTE
See the Configuration Guide for configuration of the C-based plug-in server,
arplugin.

Multithreading in the Java plug-in server
In previous releases, the Java plug-in server created a thread to handle each RPC
connection as it was received from the AR System server, often creating many
threads. If a connection failed, the plug-in server programmatically shut down the
plug-in instances associated with the thread for that connection, often losing data
in the process.
114 Integration Guide

Configuring the Java plug-in server
To improve performance, the Java plug-in server now uses a configurable pool of
worker threads to handle RPC calls. The pool and its associated plug-in instances
are created at startup, rather than as RPC calls are received. If a connection fails,
the plug-in instances associated with the thread remain instantiated and can still
process calls from other connections.

NOTE
Do not send any requests to the Java plug-in server before the plug-ins are loaded
and instantiated. (If the plug-in log level is Warn or higher, a message is recorded
in the log file when the plug-in server is ready to receive RPC calls.)

When an RPC call is received from the AR Server, a selector thread adds the call to
the worker thread task queue. By default, the system uses two selector threads. To
prevent bottlenecks, you can increase the number of selector threads by using the
numSelectorThreads tag in the sample pluginsvr_config.xml file.

Whenever a worker thread is free, it starts processing the next request in the task
queue. By default, the pool contains five worker threads. To prevent bottlenecks,
you can increase the number of worker threads by using the numCoreThreads tag
in the sample pluginsvr_config.xml file.

An unlimited number of tasks can be added to the worker thread task queue. To
be notified when too many tasks accumulate in the queue, you can specify a task
threshold. When the threshold is exceeded, a message is logged in the
arjavaplugin.log file. This enables you to avoid potential queue bottlenecks by
creating more worker threads in a timely fashion.

To specify the task threshold, use the workQueueTaskThreshold tag in the sample
pluginsvr_config.xml file.

To specify how frequently the system checks to see whether the task threshold has
been exceeded, use the workQueueMonitorLogInterval tag in the sample
pluginsvr_config.xml file.

See the plug-in server configuration file (pluginsvr_config.xml).

Dynamic plug-in loading
Dynamic plug-in loading is adding or loading a new plug-in definition in the
plug-in server without stopping and restarting the BMC Remedy AR System
server. In previous releases, most changes made to the pluginsvr_config.xml
file required a plug-in server restart to take effect.
Chapter 7 Plug-ins 115

BMC Remedy Action Request System 7.6.04
Java plug-in server
To enable dynamic plug-in loading, you must specify a reload delay before
starting the plug-in server (use the reloadDelay tag in the sample
pluginsvr_config.xml file). When a delay is specified, the system automatically
loads plug-ins and initiates them for all worker threads after the delay period
without requiring a plug-in server restart. During the delay period, you can
modify the new plug-in configuration if necessary. (If you modify it after the delay,
you must restart the plug-in server to make your changes take effect.) For
information about restarting the plug-in server, see “Restarting the plug-in server
using the Set Server Info command” on page 118.

See the plug-in server configuration file (pluginsvr_config.xml).

� To configure the Atrium SSO plug-in using only the Java plug-in server

1 Make the following changes in the ar.cfg file:

a Comment out the Plugin: areaatriumsso.dll entry (if it exists) and also
comment out all the native area plug-in related entries.

b Modify the Server-Plugin-Alias entry for Atrium SSO (if it exists), from
Server-Plugin-Alias: ARSYS.AREA.ATRIUMSSO ARSYS.AREA.ATRIUMSSO
iBMC-66r37bs.adprod.bmc.com:9999 to Server-Plugin-Alias: AREA AREA
iBMC-66r37bs.adprod.bmc.com:9999.

NOTE
Add the entry for Server-Plugin-Alias entry if it does not exist for Atrium SSO.

2 Make the following changes in the pluginsvr_config.xml file:

a Change the Atrium SSO plug-in entry from <name>ARSYS.AREA.ATRIUMSSO</
name> to <name>AREA</name>.

3 Restart the AR System server and the Java plug-in server.

NOTE
For more information on Atrium SSO integration, see “Configuring Atrium SSO
integration” on page 161.

C plug-in server
Plug-ins are configured in the ar.cfg file. A new plug-in is added to the plug-in
server through the BMC Remedy AR System server. Previously, adding a new
plug-in definition required that you stop and restart the BMC Remedy AR System
server. In this release of the BMC Remedy AR System, an API interface in the
plug-in server can add the new plug-in definitions dynamically, without stopping
and restarting the BMC Remedy AR System server.

See the plug-in server configuration file (ar.cfg).
116 Integration Guide

Configuring the Java plug-in server
� To add the plug-in information to the C plug-in server configuration file

1 Double-click the driver.exe file.

The default location of this file is
C:\Program Files\BMC Software\ARSystem\Arserver\api\driver.

2 Enter the required login and server information.

3 Enter the gsi (Get Server Info) command to get the current plug-in information.

4 Enter the following details:

Number of server info operations—The number of servers for which you want
the current plug-in information.

Operation—The operation number for getting the current plug-in information
that is present in the ar.cfg file.

A list of current plug-ins is displayed.

5 Enter the ssi (Set Server Info) command to add the new plug-ins.

NOTE
If you enter the ssi command without entering the gsi command first, the old
plug-in entries are overwritten and only the new entries are recorded.

6 Enter the following details:

Number of server info operations—The number of servers for which the new
plug-ins are to be added.

Operation—The operation number for adding the new plug-ins.

Datatype—The number for the type of data.

A list of new plug-ins that are added is displayed. The value for the ReturnCode
must be OK.

The plug-in information is now updated in the ar.cfg file.

Plug-in naming conventions
Plug-in names must be unique. BMC Software, Inc. recommends the following
naming format:

companyName.pluginType.uniquePluginIdentifierName

For example, if your company name is ACME, the type of plug-in is ARDBC, and
the unique plug-in identifier is pluginexample1, your plug-in name could be this:

ACME.ARDBC.pluginexample1

Plug-in names cannot include spaces or tab characters. In addition,
uniquePluginIdentifierName cannot contain the word AREA by itself because
that word is reserved for AREA plug-ins. However, you can use the word AREA
as the pluginType value.
Chapter 7 Plug-ins 117

BMC Remedy Action Request System 7.6.04
Restarting the plug-in server using the Set Server Info command
When any changes such as C plug-in or Java plug-in-related changes, binary
updates that take place during installation, plug-in related updates to the ar.conf
file, or changes to the pluginsvr_config.xml file are done to the C plug-in or Java
plug-in files, you are able to restart only the plug-in server instead of restarting the
AR System server.

� To restart the plug-in server using the Set Server Info command

1 Double-click the driver.exe file.

The default location of this file is
C:\Program Files\BMC Software\ARSystem\Arserver\api\driver.

2 Enter the required login and server information.

3 (If AR System server is not registered with portmapper) Enter the ssp (Set Server
Port) command and then enter the server port number.

4 Enter the ver command to verify the login information.

5 Enter the ssi (Set Server Info) command to then enter the number of server info
operations that you want to perform.

6 Enter the operation number (value is 348) to forcefully shut down the plug-in
server.

7 Enter the data type as Integer (value is 2) and the integer value.

When the AR monitor detects that the plug-in server is down, it checks if any
changes are made to the ar.cfg file. If the changes are detected, the recent ar.cfg
is loaded before the stopped plug-in server is automatically restarted.

Configuring the AR System server
To access a plug-in server, the AR System server needs its host name and port
number. The server searches for the host name and port number in this order:

1 The plug-in alias, if any.

2 The plug-in server entry on the Connection Setting tab of the AR System
Administration: Server Information form. (This entry is also required to set a
password for a plug-in server.)

3 The local host and the port number specified by the Plugin-Port setting in the
ar.cfg or ar.conf file. (See the Configuration Guide for information about the
AR System Administration: Server Information form and the server configuration
file.)

4 The port number that the plug-in server registered with the portmapper.
118 Integration Guide

Configuring the AR System server
To access one C or Java plug-in server with no password running on the same
computer as the AR System server, only the Plugin-Port option in the ar.cfg or
ar.conf file is required. To specify a password for a plug-in server, an entry on the
Connection Setting tab of the AR System Administration: Server Information form
is required.

To access two or more plug-in servers, for example, to access both the C and Java
plug-in servers or to access plug-in servers on two or more computers, define
aliases for all plug-ins other than those loaded by the primary plug-in server that
is set up as described in the previous paragraph.

Defining plug-in aliases
You define plug-in aliases in the ar.cfg or ar.conf configuration file. Use this
format:

Server-Plugin-Alias: aliasName realName hostName[:portNumber]

Examples of plug-in aliases
Following are examples of how aliases affect the behavior of the AR System server
when it accesses plug-ins.

Example 1
Server-Plugin-Alias: RMDY.ARDBC.XML RMDY.ARDBC.XML myhost

A vendor form that accesses the ARDBC plug-in named RMDY.ARDBC.XML is
redirected to the plug-in by the same name on the plug-in server running on
myhost.

Example 2
Server-Plugin-Alias: RMDY.ARF.PERL.myhost RMDY.ARF.PERL myhost

Workflow that accesses the ARF plug-in named RMDY.ARF.PERL.myhost is
redirected to the RMDY.ARF.PERL plug-in on the plug-in server running on myhost.

Example 3
Server-Plugin-Alias: RMDY.ARDBC.LDAP.fred RMDY.ARDBC.LDAP
myhost:11001

Parameter Description

aliasName Name referenced in AR System applications. AR Filter API calls and
vendor forms reference this alias name.
This is an arbitrary string, but it cannot include semicolons or blank-
space characters, such as spaces, tabs, or new lines.

realName Actual name that the plug-in exposes to the plug-in server.

hostName Name of the host the AR System server accesses to find the associated
plug-in server.

portNumber Port number the AR System server connects with when accessing the
associated plug-in server. This is optional. If you do not specify a port
number, the Plugin-Port is used.
Chapter 7 Plug-ins 119

BMC Remedy Action Request System 7.6.04
A vendor form that accesses the ARDBC plug-in named
RMDY.ARDBC.LDAP.myhost.1 is redirected to the RMDY.ARDBC.LDAP plug-in on the
plug-in server running on myhost and listening at port number 11001.

Example 4
Server-Plugin-Alias: AREA AREA myhost

When the AR System server accesses the AREA plug-in, it connects to the plug-in
on the plug-in server that is running on myhost. Only one AREA plug-in can exist,
so use the reserved name AREA for the alias.

Running the plug-in server
The plug-in server is set up in the armonitor configuration to start automatically
at system startup. It stops and restarts with the rest of the AR System services
controlled by armonitor, the AR System UNIX daemon, or the Windows service.

To start the plug-in server manually, run the pluginsvrstartup command in the
pluginsvr directory. This command file (pluginsvrstartup.sh for UNIX or
pluginsvrstartup.bat for Windows) is customized for your installation. To
change command-line options, see the description of the Java plug-in server in the
list of AR System components in the Configuration Guide.

Logging plug-in information
Plug-ins can write information to the plug-in server log file. C plug-ins can use the
ARPluginSetProperties function to call the plug-in log function:

typedef int (*AR_PLUGIN_LOG_FUNCTION)(

ARPluginIdentification *id,
int logLevel,
char *text);
120 Integration Guide

Running the plug-in server
The C plug-in log function has no return value.

Set the log level for the C-based plug-in server using the Plugin_Log_Level
option in the ar.cfg or ar.conf file or on the Log Files tab of the AR System
Administration: Server Information form. For more information, see the
Configuration Guide, “Server Information—Log Files tab,” page 150.

Java plug-ins can log messages using the logMessage method of their
ARPluginContext object. See the Java plug-in API online documentation for
details.

The Java plug-in server uses the log4j utility. Set the log level and other logging
configuration in the log4j_pluginsvr.xml file. Comments in the sample file
describe the log configuration options.

Argument Description

id The plug-in type, name, and version.

logLevel The log level to which the information applies:
AR_PLUGIN_LOG_OFF (10000)—No plug-in messages are logged.
(Some plug-ins may ignore this setting.)
AR_PLUGIN_LOG_SEVERE (1000)—Messages that report fundamental
problems that prevent a plug-in from working (for example, the inability
to open a required resource during plug-in initialization).
AR_PLUGIN_LOG_WARNING (900)—Messages that might be precursors
to severe problems or identify incorrect configuration settings (for
example, for a bad configuration setting, a plug-in might log a warning
and reverts to a default value).
AR_PLUGIN_LOG_INFO (800)—Messages that identify intermittent
milestones or events that do not have negative repercussions. This should
not be used for information that is likely to occur frequently.
AR_PLUGIN_LOG_CONFIG (700)—Messages that describe the current
configuration settings of the plug-in.
AR_PLUGIN_LOG_FINE (600)—Messages that identify the result of
every decision made throughout processing. This level, along with the
FINER and FINEST log levels, is primarily used while resolving problems.
AR_PLUGIN_LOG_FINER (500)—Supporting data that supplements
FINE messages.
AR_PLUGIN_LOG_FINEST (400)—Messages that contain information
to help users who have plug-in source code in front of them. At this level,
messages can reference internal function names or structures. (All
messages logged at higher levels should have meaning for users who
might not have access to the source code.)
AR_PLUGIN_LOG_ALL (100)—All plug-in messages are logged.

You can specify a log level for each situation. This enables the plug-in to
write different information to the log file depending on the log level
configured for the plug-in server The information is not written to the log
file unless the plug-in server log level is equal to or lower than the value of
logLevel.

text The message that is written to the plug-in server log file.
Chapter 7 Plug-ins 121

BMC Remedy Action Request System 7.6.04
Logging exceptions for calls to Java plug-ins
When a run-time exception or an ARException class error occurs during a Java
plug-in server call to a Java plug-in, the following information is now recorded in
the ARServerInstallDir\Arserver\Db\arjavaplugin.log file:

The name of the plug-in

This name matches the name of the corresponding plug-in library registered in
the Java plug-in configuration file, pluginsvr_config.xml. For example, if the
library is registered as <name>ARSYS.ARF.WEBSERVICE</name>, the plug-in
name in the log file is ARSYS.ARF.WEBSERVICE.

The method that the server tried to call in the plug-in

(Run-time exceptions only) The exception stack trace

In addition, when a run-time exception occurs, users receive Error 8753: Error
in plugin: pluginName.

When an ARException occurs, users receive the usual message associated with the
exception.

NOTE
When you restart the AR System server, the arjavaplugin.log might log warnings
that look similar to this:

2009-10-14 11:07:12,573 WARN [pool-2-thread-1]
com.bmc.arsys.pluginsvr.plugins.ARPluginContext (?:?) -
<ARSYS.ARF.REGISTRY>Null registry location

You can safely ignore these messages. If you want to use the Registry, then enter
the Registry location in the AR System Administration Console. For more
information, see “Registering a web service” on page 80.

C plug-in exception handling
Exception handling in the C plug-in server now produces a stack trace. The stack
trace includes the names of the operation, vendor, and plug-in library. It is written
to the arerror.log file.
122 Integration Guide

Common plug-in C functions and Java methods
Common plug-in C functions and Java methods
This section describes the calls or methods common to all plug-in types.

WARNING
Plug-in operations run synchronously; that is, AR System waits for a plug-in to
complete its processing before the server continues its processing. Thus, a badly
written plug-in can adversely impact AR System performance and stability. A
plug-in developer must (1) maintain thread safety, (2) use minimal processing
logic for optimal code execution, (3) implement only callback methods that are
required or that have custom logic for a given plug-in, (4) allocate or free resources
appropriately to prevent resource leaks, and (5) optimize any costly operation that
must be performed (or data structures that must be built) by employing a
meaningful caching strategy.

Common C plug-in functions
The following C API functions are common to every type of plug-in:

ARPluginCreateInstance

ARPluginDeleteInstance

ARPluginEvent

ARPluginIdentify

ARPluginInitialization

ARPluginSetProperties

ARPluginTermination

In general, these functions use the same structure as other AR System C API
functions. The plug-in server calls the functions and provides the necessary input
data. The plug-in accepts the data, processes it, and returns the appropriate
response data to the plug-in server.
Chapter 7 Plug-ins 123

BMC Remedy Action Request System 7.6.04
Figure 7-2 shows a typical sequence of calls that the plug-in server makes on a C
plug-in.

Figure 7-2: C plug-in call sequence

For more information, see the C API Reference.

Common Java plug-in methods
The methods defined in the ARPluggable interface and the ARPlugin abstract
class are common to all plug-in types. For more information, see the Java plug-in
API online documentation.

AREA plug-ins
AR System External Authentication (AREA) provides a way to validate users by
connecting AR System to a data source outside the AR System database. This can
be done using the AREA LDAP plug-in or by creating your own custom plug-in
for authentication services such as Kerberos. See “Creating C plug-ins” on
page 110 and “AREA plug-in C API functions” on page 126 for details.

When users first log in to AR System through a client or when a client issues an API
call to AR System, the AR System server verifies the user name and password.

If the server verifies that the user name and password are in the User form, it
authenticates the information and processes the login or API call.

ARPluginDeleteInstance ()

ARPluginInitialization ()

ARPluginSetProperties ()

ARPluginIdentify ()

AREA, ARDBC, or AR Filter calls

ARPluginTermination ()

ARPluginCreateInstance ()
124 Integration Guide

AREA plug-ins
If the user information is not in the User form or if the user password is blank in
the User form, the AR System server sends an authentication request to the plug-in
server. The request passes from the plug-in server through the AREA plug-in
instance to the external authentication source. The external authentication source
sends authentication information back through the same path to the AR System
server.

NOTE
For the AR System server to use an AREA plug-in to authorize logins, the
corresponding entries in the User form must have blank passwords.

If the authentication source verifies that the user information is valid, the
AR System server processes the API call or allows the user to log in.

When the authentication information is not verified (that is, the information is
incorrect, incomplete, or cannot be found in the external data source), the
AR System server returns an error message to the client.

The plug-in can load only one AREA plug-in instance at a time. An AREA plug-in
can be configured to access one or more data sources.

AREA plug-ins can selectively override field values entered in the User form.

NOTE
The plug-in behavior depends on how you configure the plug-in, such as whether
you enable the Cross Reference Blank Password and the Authenticate
Unregistered users options.
Chapter 7 Plug-ins 125

BMC Remedy Action Request System 7.6.04
Figure 7-3: External authentication architecture

AREA plug-in C API functions
These are the AREA plug-in API functions:

AREAFreeCallback

AREANeedToSyncCallback

AREAVerifyLoginCallback

For more information, see the C API Reference.

AREA plug-in Java API methods
The methods defined in the AREAPluggable interface and the AREAPlugin abstract
class are common to all plug-in types. For more information, see the Java plug-in
API online documentation.

AR System
server

AR System
server

Database serverDatabase server Data source containing
user information

(LDAP repository, etc.)

Data source containing
user information

(LDAP repository, etc.)

Data source-
specific
protocol

Data source-
specific
protocol

Plug-in
server

Plug-in
server

AREA
API

Data
source

interface

AREA
library

AR System userAR System user
126 Integration Guide

ARDBC plug-ins
Sample AREA implementations
When you install AR System, you can install a sample C AREA LDAP
implementation, including an AREA LDAP plug-in. That plug-in provides you
with an integration point between AR System and LDAP directory services.

You must create a custom plug-in to integrate AR System with external
authentication services such as Kerberos. See “Creating C plug-ins” on page 110
and “AREA plug-in C API functions” on page 126 for details.

Figure 7-4: Example flow of requests and data for an AREA plug-in

ARDBC plug-ins
AR System Database Connectivity (ARDBC) plug-ins provide access to data stored
outside the AR System database as if it were located in tables owned by
AR System. After an ARDBC plug-in is installed, the AR System administrator can
create a vendor form that references the table and columns of the external data
source. Views and workflow can then be built for vendor forms just as if they were
regular AR System forms. The source of data manipulated by the AR System API
client, such as BMC Remedy User or BMC Remedy Mid Tier, is transparent to the
user.
Chapter 7 Plug-ins 127

BMC Remedy Action Request System 7.6.04
When users enter requests in the vendor form, the AR System server sends the
requests to the plug-in server, which sends the requests to the ARDBC plug-in
instance. The plug-in retrieves the data (if any) from the external data source and
returns it in the opposite direction. The AR System server maps the external data
to fields in the vendor form, and the form displays the data. See Chapter 11,
“Vendor forms.”

Unlike AREA plug-ins, multiple ARDBC plug-ins can be loaded simultaneously
by the plug-in server.

Figure 7-5 shows the flow of requests and information for an ARDBC plug-in.

Figure 7-5: Flow of requests and information for the ARDBC plug-in

ARDBC plug-in C API functions
An ARDBC plug-in API enables AR System to:

Implement calls on an external data source that are analogous to set entry, get
entry, create entry, delete entry, and get list C API calls.

Use external data to implement Push Field and Set Field filter, escalation, and
active link actions.

Create, modify, and search for external data through API clients, such as BMC
Remedy User.
128 Integration Guide

ARDBC plug-ins
Construct query-style character menus.

Present forms, views, and active links on external data in the same manner as
internal data. The data source is transparent to the user.

When you create an ARDBC plug-in, be sure to completely document the
capabilities of your plug-in. For example, you might create a read-only plug-in,
which does not allow a user to create, set, or delete entries.

If the data source with which you integrate does not support a particular
functionality, do not implement that function. Instead, let the default behavior
occur. For example, if your data source does not support transactions, do not
define ARDBCCommitTransaction and ARDBCRollbackTransaction functions.

These are the ARDBC plug-in API functions:

ARDBCCommitTransaction

ARDBCCreateEntry

ARDBCDeleteEntry

ARDBCGetEntry

ARDBCGetEntryBLOB

ARDBCGetEntryStatistics

ARDBCGetListEntryWithFields

ARDBCGetListSchemas

ARDBCGetMultipleFields

ARDBCRollbackTransaction

ARDBCSetEntry

For more information, see the C API Reference.

Calling AR System API from an ARDBC plug-in
A C ARDBC plug-in can make AR System C API calls to the AR System server. In
pre-7.0 versions of AR System, such calls had to be made with a known user
account. Now, you can make the calls as the same user whose operation led to the
ARDBC plug-in call. This ensures that any call from the ARDBC plug-in has the
same permissions as the user who called the ARDBC plug-in.

When a plug-in call is made, AR System server creates a globally unique ID
(GUID) to identify the user instance calling the plug-in. The plug-in provides
callback routines to fetch the user name, authentication string, and GUID.
Subsequently, when a plug-in makes an API call, it uses those callback routines to
fetch the information it needs to authenticate itself as the user that made the
original call to the plug-in.
Chapter 7 Plug-ins 129

BMC Remedy Action Request System 7.6.04
The calling plug-in uses the following API calls to set the callback routines for the
API to fetch the user name, authentication string, and authenticating GUID:

ARSetUserNameSource

ARSetAuthStringSource

ARSetNativeAuthenticationSource

Pointers to the callback routines are made available to the plug-ins as members of
a properties list (ARPropList) passed as an argument to
ARDBCPluginSetProperties (if implemented by the plug-in) when the plug-in is
loaded. The plug-in must save these pointers and use them later as arguments to
API calls. These API calls must be made immediately after the
ARIntitialization call before any other API calls.

NOTE
When using the GUID authentication feature from a plug-in, internal users (such
as ESCALATOR and ARCHIVE) encounter errors. The errors occur because these
users are not valid users for making API calls.

For more information, see the C API Reference.

A Java ARDBC plug-in can make AR System Java API calls to the AR System
server. Use the ARPluginContext object to create a ARServerUser object. See the
Java plug-in server API online documentation.

ARDBC plug-in Java API methods
The methods defined in the ARDBCPluggable interface and the ARDBCPlugin
abstract class are common to all plug-in types. For more information, see the Java
plug-in API online documentation.

Creating a vendor form for an ARDBC plug-in
After you build and install an ARDBC plug-in and configure your server to
recognize it, you can create a vendor form. For information about configuring your
server to recognize a plug-in, see the Configuration Guide.

NOTE
Creating a vendor form for an ARDBC LDAP plug-in is a special case. See
“Creating a vendor form to represent a collection of LDAP objects” on page 140.

� To create a vendor form for an ARDBC plug-in

1 In BMC Remedy Developer Studio, choose File > New > Vendor Form.

2 In the New Vendor Form Wizard, select the server on which you want to create the
vendor form and click Next.

3 Select the ARDBC plug-in to use in the list of Available Vendor Names, and click
Next.
130 Integration Guide

ARDBC plug-ins
4 Choose a table from the list of Available Vendor Tables, and click Next.

Alternatively, type a table name in the Table field, click Validate, then click Next.

5 (optional) On the Field Selection page, choose a key column in the Key Field list
box.

6 In the Available Columns list on the Field Selection page, select columns to access
in AR System. Use the arrow buttons to move them to the Selected Columns list.

Figure 7-6: New Vendor Form Wizard, Selected Columns

7 Click Finish to create the vendor form.

8 Use Developer Studio to edit the new form, then click File > Save.

Issues and considerations
Keep these issues in mind when creating a vendor form:

The plug-in can load more than one ARDBC plug-in at a time.

Full Text Search (FTS) operations are not available on vendor form fields.

You can add only those Required and Optional fields that correspond to actual
columns in the data source. In addition, you can add a Display Only field only
when the column name does not correspond to a column in the data source.

For more information about vendor forms, see the Form and Application Objects
Guide.
Chapter 7 Plug-ins 131

BMC Remedy Action Request System 7.6.04
AR filter API plug-ins
AR System filter (AR filter) API plug-ins enable you to create tight, efficient
integrations between your systems and the AR System server. They are triggered
with Set Field actions in filters and escalations. Because this middleware is loaded
as a plug-in when AR System is started instead of as a standalone executable at
each event, it consumes fewer resources and less processor time than a Set Fields
$PROCESS$ action.

You use BMC Remedy Developer Studio to create AR Filter Set Field actions in
filters and escalations.

At run time, the AR System server sends AR filter API requests to the plug-in,
which directs the requests to the appropriate plug-in. The plug-in processes the
input arguments and can return values that can be used in the Set Fields action.

When you enter AR Filter API requests in the Create Filter form, the AR System
server sends the requests to the plug-in, which sends them to AR Filter. AR Filter
either processes the data or request itself or retrieves output data from the external
data source and returns it in the opposite direction.

Unlike AREA plug-ins, multiple AR filter API plug-ins can be loaded
simultaneously by the plug-in.
132 Integration Guide

AR filter API plug-ins
Figure 7-7 shows the flow of requests and information for AR filter API plug-ins.

Figure 7-7: Flow of requests and information for the AR filter API plug-in

AR filter API plug-in C function
The AR filter API plug-in API has one function, ARFilterApiCall. For more
information, see the C API Reference.

The AR filter API plug-in function is a blocking call, so the AR System server
thread that makes the call waits for the plug-in to respond. For best performance,
the plug-in should return quickly. Tell your plug-in installers about the expected
latency, and have them set their AR_SERVER_INFO_FILTER_TIMEOUT value
accordingly.
Chapter 7 Plug-ins 133

BMC Remedy Action Request System 7.6.04
The following example files, which can be used to create an AR Filter API DLL or
shared library, are located in the ARSystemServerInstallDir/Arserver/Api/
arfilterapi/example directory:

arfilterapisamp.c

arfilterapisamp.dep

arfilterapisamp.vcproj

arfilterapisamp.mak

AR filter API plug-in Java methods
The methods defined in the ARFilterPluggable interface and the
ARFilterPlugin abstract class are common to all plug-in types. For more
information, see the Java plug-in API online documentation.
134 Integration Guide

Chapter

8
 LDAP plug-ins
This section describes how to configure and use the ARDBC and AREA LDAP
plug-ins to integrate AR System with a directory service.

The following topics are provided:

Overview of LDAP and AR System (page 136)
ARDBC LDAP plug-in (page 136)
AREA LDAP plug-in (page 145)
Chapter 8 LDAP plug-ins 135

BMC Remedy Action Request System 7.6.04
Overview of LDAP and AR System
Lightweight Directory Access Protocol (LDAP) provides a standard method for
accessing information from a central directory. A common use for LDAP is user
authentication. After a user is set up in the LDAP directory, he or she can use the
same user name and password to log in to any application that supports the LDAP
protocol.

AR System provides these LDAP plug-ins:

AR System Database Connectivity (ARDBC) LDAP—Accesses data objects
stored in a directory service as if they were entries stored in a typical AR System
form. You can search for, modify, and create data in a directory service using
this plug-in. You can also use the data in workflow and to populate character
menus and table fields. See “ARDBC LDAP plug-in” on page 136.

AR External Authentication (AREA) LDAP—Authenticates AR System users
against external LDAP directory services. See “AREA LDAP plug-in” on
page 145.

ARDBC LDAP plug-in
The AR System Database Connectivity (ARDBC) LDAP plug-in enables you to
access data from an external LDAP system through vendor forms.

Vendor forms are AR System objects that present external data as entries in an
AR System form. Using vendor forms and the ARDBC LDAP plug-in, you can
view and manipulate external LDAP data as if it were stored in the AR System
database. See Chapter 11, “Vendor forms.”

Requirements
When using the ARDBC LDAP plug-in, remember these facts:

The ARDBC LDAP plug-in uses the LDAP v3 protocol to issue requests to
directory services.

Attributes of directory service objects consist of either character data, integer
data, or time stamps. Attachments are not supported.

By default, all attributes have one value. Multivalued attributes are supported
by a special notation. See “Multivalued attributes” on page 143.

LDAP does not support transactions. Consequently, when an object is created,
modified, or deleted, the change does not roll back if subsequent workflow in
the AR System server detects an error condition.

The distinguished name and password specified in the ARDBC LDAP
configuration are used to connect to any directory service referenced in LDAP
search URLs.

Only server-based certificates are supported.
136 Integration Guide

ARDBC LDAP plug-in
Configuring the ARDBC LDAP plug-in
You must configure the ARDBC LDAP plug-in before you create the vendor form
used to access user information in your particular LDAP server.

You configure ARDBC through parameters in the ar.cfg file and the properties of
the vendor form. To make configuration easier, the installation of the ARDBC
LDAP plug-in adds these forms:

ARDBC LDAP Configuration—A vendor form, using a separate plug-in, that
reads and writes to the ar.cfg file.

Configuration ARDBC—A display-only form that uses filters to push values to
the Configuration ARDBC Form and, as a result, to the ar.cfg file.

� To configure the ARDBC LDAP plug-in

1 In the AR System Administration Console, click System > LDAP > ARDBC
Configuration.

The ARDBC LDAP Configuration form opens in New mode.

Figure 8-1: ARDBC LDAP configuration form

2 In the Host Name field, enter one or more host names of the directory service from
which you want information for the vendor form. You can specify a space-
separated list of host names up to 255 characters long. Starting with the first host
name in the list, AR System tries to connect to each server until it is successful.

If you use Secure Socket Layer (SSL), this host name should match the name for
which the server’s certificate was issued.

3 In the Port Number field, enter a port number for this directory service. The default
port number is 389. (For an SSL connection, the default is 636.)
Chapter 8 LDAP plug-ins 137

BMC Remedy Action Request System 7.6.04
4 In the Bind User field, enter the distinguished name of the user account that the
ARDBC LDAP plug-in uses to log in to the directory service. The administrator
who set up the LDAP service designated this name. With the vendor form, some
LDAP servers allow you to make an anonymous connection. If you plan to use an
anonymous connection, leave the Bind User and Bind Password fields blank.

Otherwise, use a standard distinguished name such as cn=manager, dc=remedy,
dc=com.

5 In the Bind Password field, enter the password for the user account. (For security,
asterisks replace the characters you enter for the password.)

If you leave the Bind Name and Password fields blank, you are connected
anonymously.

6 To use a Secure Socket Layer (SSL) connection, select Yes in the Using Secure
Socket Layer field; otherwise, accept the default value No. If you select Yes, the
Certificate Database field becomes active, and you can enter a certificate database
as described in step 7. Because SSL requires additional setup in this form and
outside AR System, you might first want to experiment without SSL and then add
this option later.

7 In the Certificate Database field, enter the path to the directory containing the
certificate database file. Do not include the file name in the path.

To create a certificate database, see “Adding a certificate to a certificate database”
on page 401.

8 In the LDAP Date-Time Format field, select the format to use to represent date and
time to LDAP servers.

For more information, see the Configuration Guide.

9 In the Failover Timeout field, specify the number of seconds in which the directory
service must respond to the plug-in server before an error is returned. The
minimum value is 0 (which means the connection must be made immediately).
The failover time-out cannot be set higher than the value of the Server-Plugin-
Default-Timeout parameter.

Format Value Description Example:
6 a.m. Sept. 28, 2001

Generalized Time 0 YYYYMMDDHHMMSSZ
This format is recognized by all
LDAP servers, and it is
recommended.

20010928060000Z

AD Generalized Time 1 YYYYMMDDHHMMSS.0Z
This format is recognized only
by Microsoft Active Directory
servers.

20010928060000.0Z

UTC Time 2 YYMMDDHHMMSSZ
This is a historical format and
does not indicate the century. It
is not recommended.

010928060000Z
138 Integration Guide

ARDBC LDAP plug-in
10 In the Directory Page Size field, enter the number of entries to return in a single
page to the client from the external directory server when a search request is
processed.

TIP
Setting the Directory Page Size to 1000 can help improve your system’s
performance while you design and create vendor forms.

11 In the Base DN For Discovery field, enter a base distinguished name to use instead
of the root distinguished name as the basis for obtaining the list of vendor tables.

TIP
Specifying a value in the Base DN For Discovery field can help improve your
system’s performance while you design and create vendor forms.

12 In the ARDBC Plugin Cache box, specify this ARDBC plug-in caching information:

a In the Enable field, select Yes to enable ARDBC plug-in caching.

b In the Time To Live field, specify how long data should be kept in the ARDBC
plug-in cache.

c In the Maximum Size field, specify the maximum size of the cache.

TIP
Enabling the ARDBC plug-in cache can help improve your system’s performance
at run time.

13 Click Save.

The system updates the ar.cfg (ar.conf) file with the parameters you specified
in this form.

For more information, see the Configuration Guide.
Chapter 8 LDAP plug-ins 139

BMC Remedy Action Request System 7.6.04
Building AR System forms for directory services
This section describes the concepts and generic procedures involved in building
vendor forms and workflow in AR System to access data stored in a directory
service. The following topics are covered:

“Organizing data”

“Creating a vendor form to represent a collection of LDAP objects” on page 140

“Identifying objects uniquely” on page 141

“Supporting object creation” on page 142

Organizing data
Data in a directory service is organized differently from traditional database
applications. Traditional database applications organize data in tables that have a
fixed number of columns. Each row in a table represents a single entity and
contains a value for each column in the table.

A directory service organizes data as a collection of objects. Each object is
characterized by one or more object classes that define the values, or attributes,
that the object defines. In addition, objects might be grouped into organizational
units.

Because of these differences, there is no one-to-one mapping between rows/
columns/tables and objects/attributes/object classes. The following table shows
relationships among directory service, AR System, and typical database concepts.

The following sections describe how to map the directory service and AR System
data sources.

Creating a vendor form to represent a collection of LDAP
objects
A table in a database can be described as a collection of rows. The data associated
with an AR System form is described as a collection of entries.

A collection of objects in a directory service is similar to entries in a form or a
collection of rows in a table. When working with a directory service, you can use a
standard LDAP search URL to describe a collection of objects. An LDAP search
URL looks something like this:

ldap://orangina/o=remedy.com??sub?(objectclass=inetorgperson)

Directory service AR System Database

Object class Form Table

Attributes Field Column

Object Entry Row
140 Integration Guide

ARDBC LDAP plug-in
This URL contains the components described in the following table.

NOTE
The LDAP URL standard enables you to specify a list of attributes to be returned
by the search. This attribute list would ordinarily fall between the base name and
search scope in the URL. In the previous example, no attributes are listed because
the LDAP plug-in ignores the attribute list. Instead, you identify attributes in the
field properties. See “Alternative method of adding a field to represent the uid
(User ID) attribute” on page 366.

Each object selected by the LDAP search can be represented as an entry in a vendor
form. You use BMC Remedy Developer Studio to create a vendor form and add
fields to which you attach LDAP data.

By default, the AR System server returns the Short Description field (field ID 8) in
a results list. Because vendor forms do not have a Short Description field, so you
must define the fields that will appear in the results list. Include the vendor form’s
key field in the results list so that each record is uniquely identified. For more
information, see Form and Application Objects Guide, “Defining search results,”
page 178.

For general information about creating vendor forms, see Chapter 11, “Vendor
forms.”

For an example of how to create a vendor form for LDAP data, see Appendix C,
“ARDBC LDAP example: Accessing inetorgperson data.”

Identifying objects uniquely
AR System uniquely identifies entries in a form through the Request ID field.

Objects in a directory service have an attribute called the distinguished name (dn),
which uniquely identifies each object. An object’s distinguished name often
consists of one attribute or multiple concatenated attributes. For example:

uid=abarnes,ou=People,o=remedy.com

URL component Description

ldap:// LDAP protocol.

orangina Directory service host name.

o=remedy.com Search base name.

sub Search scope. In this case, sub indicates that the search
applies to the entire subtree under the base name.

(objectclass=inetorgpers
on)

Filter that selects the objects.

Note: You should define the search URL to retrieve
objects that inherit from a particular object class.
You should not mix unrelated objects (for example,
people and computers). They might have different
sets of attributes, making the search difficult to
manage and administer.
Chapter 8 LDAP plug-ins 141

BMC Remedy Action Request System 7.6.04
AR System Request IDs are 15 bytes maximum in length and are assigned by
AR System when the entry is created. Distinguished names, on the other hand, are
often longer than 15 bytes. However, you can map distinguished names longer
than 15 bytes to AR System Request IDs.

When designing an AR System form to access data stored in a directory service,
you must determine what attribute to use to distinguish one object from another.

NOTE
If you specify an attribute for the Request ID that resolves to an empty value for an
object in the directory service, you receive an ARERR (100) Entry ID list is
empty message, and no records are displayed in the client. If more than one record
has the same value, you retrieve data only for the first matching entry.

For example, in a typical system the dn attribute uniquely identifies objects defined
by the inetorgperson object class. You would create a field for User ID and
associate both the Request ID field and the User ID field with the dn attribute.

NOTE
This is the only case where you should associate one attribute with more than one
AR System field. Associating an attribute with more than one field might lead to
run-time errors or incorrect behavior.

Supporting object creation
This section describes how to use the ARDBC LDAP plug-in to create objects in the
directory service. To support the creation of objects by using the ARDBC LDAP
plug-in, you must perform the following tasks:

Create an AR System field that is associated with the objectclass attribute.
The objectclass attribute is a multivalue attribute.

Create a field (other than Request ID) associated with dn, and define workflow
that assigns a value to it. Although entries in AR System are uniquely identified
by the Request ID, objects in a directory service are uniquely identified by the dn
(distinguished name) attribute.

Add any attributes that are required to your AR System form. Many object
classes require that you specify values for certain attributes. These are similar to
required fields in AR System.

Creating an objectclass field

objectclass is a multivalued attribute that describes all object classes from which
an object inherits. Each object class defines a set of attributes. If an object inherits
from an object class, it can have values for those attributes. An object can inherit
from more than one object class; therefore, an object can have values for all
combined attributes.
142 Integration Guide

ARDBC LDAP plug-in
When you create an object, you must specify all the object classes from which the
object inherits. You must add a character field to your form, attach this field to the
objectclass attribute, and use the multivalue attribute notation (see
“Multivalued attributes”).

Because all objects associated with an AR System form belong to the same object
classes, you can easily set the default value of the field to the object class list. For
example, the default value for the object class field associated with an
inetorgperson object class is this:

top,person,organizationalperson,inetorgperson

The inetorgperson class inherits from the top, person, and
organizationalperson classes.

Because the value does not change for this field, you should make this field Read
Only. You might also want to make the field Hidden.

Multivalued attributes

Most attributes in an object class are defined to support one value. Some attributes,
however, can have many values. For example, a “person” object includes a
“telephone number” attribute that allows you to specify many phone numbers.
When this attribute is retrieved, the directory service can return any number of
telephone numbers as atomic values.

This differs from typical database applications and AR System, in which a column
or field stores only one value. To store two phone numbers in such applications,
you must add a new column or field to accommodate the additional data.

To resolve this difference between the two data models, use a special notation
when specifying the attribute name in the Field Properties window:

attributeName[*separatorString]

Values associated with attributeName are concatenated into a single value in
AR System but separated with separatorString. For example, to concatenate all
values associated with the telephoneNumber attribute and separate each value
with a comma you would enter the following as the attribute name in the Form
Properties window:

telephoneNumber[*,]

You could then define workflow to extract, add, or modify values in the comma-
separated list of telephone numbers.

Generating and assigning a distinguished name

The distinguished name (dn) attribute is generally assigned a value through
workflow. The workflow takes one or more values and assembles the values for
the dn attribute. After the dn is assigned at creation, it typically does not change
just as the Request ID does not change in an entry under an AR System form.

This is done using a filter that executes on a submit operation. You define the filter
to perform a Set Fields operation. For more information about creating filters, see
the Workflow Objects Guide.
Chapter 8 LDAP plug-ins 143

BMC Remedy Action Request System 7.6.04
ARDBC LDAP run-time performance tips
You can improve your ARDBC LDAP run-time performance by using time-based
queries and caching.

Time-based queries
Time-based queries reduce the time it takes to search your directory service.

AR System retrieves modifyTimestamp and whenChanged attributes from the
directory service. When creating a vendor form, add one of these fields to store a
time stamp. In the Advanced Search Bar, enter a query for records that meet your
time-stamp criteria. For example, use modifyTimeStamp >= “8/9/2007 4:00:00
PM” to consider only records modified after 4:00 PM on 8/9/07.

This query is evaluated by the plug-in, which uses it to query the directory server
so that it returns only records modified after a specified time.

Caching
The ARDBC LDAP plug-in uses client-side caching. Before a search request is sent
to the directory server, AR System checks the cache to determine whether the same
request was made before. If an earlier request was cached, the search results are
retrieved from the cache to avoid running a new search on the server.

Use the ARDBC LDAP Configuration form to enable caching and to control
caching by specifying the maximum size of the cache and the maximum amount
of time to keep an item in the cache.

ARDBC LDAP vendor form
If you have problems with your ARDBC LDAP vendor form, consider these tips:

Any field (except display-only fields) on the vendor form must reference an
LDAP attribute that exists in the specified context. For example, if you use MS
Active Directories, the uid attribute does not exist by default and should not be
referenced in your vendor form. If you specify invalid attributes, you might
receive unexpected results on your searches.

If data is not being returned correctly, create a vendor form with only a Request
ID and one other field (referring to valid LDAP attributes). Test a search. If it
works, continue adding fields until you identify the one that does not work.

If any values are NULL, you receive ARERR (100) Entry ID list is empty, and
no records are displayed in the client.

If more than one record has the same value, you retrieve data only for the first
matching entry.

For most LDAP servers, dn is the attribute of choice for the Request ID. For
MS Active Directories, sAMAccountName is usually a good choice.
144 Integration Guide

AREA LDAP plug-in
For optimal performance, set the Directory Page Size field to 1000.

If you configure the Base DN For Discovery field, the plug-in searches from this
Base DN rather than from the root DN. This offers better performance.

AREA LDAP plug-in
The AR System External Authentication (AREA) LDAP plug-in enables you to
authenticate AR System users against external LDAP directory services. This
section describes how to configure the AREA LDAP plug-in and your AR System
server to use LDAP authentication.

After you configure your AR System server, you configure AR System to use
external authentication processing. See “Configuring authentication processing”
on page 155.

Configuring the AREA LDAP plug-in
To configure the AREA LDAP plug-in, use the AREA LDAP Configuration form
in the AR System Administration Console. The settings you specify in the form are
saved in the ar.cfg or ar.conf file. As of release 7.0, AR System supports
multiple AREA LDAP configurations.

NOTE
The form is added to your system when you install the plug-in. If you did not
install the plug-in during installation of the AR System server, you can install it by
rerunning the AR System server installer and selecting the AREA LDAP plug-in
installation option. See the Installation Guide.

Before configuring the AREA LDAP plug-in, set up user and group information in
an LDAP directory service. Then, use the following procedure to enter the settings
into the AREA LDAP Configuration form.
Chapter 8 LDAP plug-ins 145

BMC Remedy Action Request System 7.6.04
� To configure settings for the AREA LDAP plug-in

1 In the AR System Administration Console, click System > LDAP >
AREA Configuration.

The AREA LDAP Configuration form appears.

Figure 8-2: AREA LDAP configuration form

If any AREA LDAP adapters are configured for your AR System server, they are
displayed in the Configuration List at the top of the form. When AR System
attempts to authenticate a user, it searches each LDAP adapter configuration in the
list.

2 In the Configuration List, perform one of these actions:

To create a configuration, click Clear Fields. All fields in the form are cleared.

To modify a configuration, select it in the list. The fields in the form are
populated with data from that configuration.
146 Integration Guide

AREA LDAP plug-in
3 In the Directory Service Information section, fill in (for new configuration) or
change (for modified configuration) the values in these fields:

Host Name—Name of one or more servers on which the directory service is
hosted. You can specify a space-separated list of host names up to 255 characters
long. Starting with the first host name in the list, AR System tries to connect to
each server until it is successful.

Port Number—Number of the port on which the directory service is listening.

Bind User—Distinguished name for this configuration. The distinguished name
is the name for a user account that has read permissions and can search the
directory service for user objects.

Bind Password—Password for the distinguished name specified in step n.

Use Secure Socket Layer?—Yes/No toggle field. To specify an SSL connection
to the directory service, select Yes to enable the Certificate Database field.

Certificate Database—Name of the directory containing the certificate database
file. To create a certificate database, see “Adding a certificate to a certificate
database” on page 401.

Failover Timeout—Number of seconds in which the directory service must
respond to the plug-in server before an error is returned. Minimum value is 0
(connection must be made immediately). This value cannot be higher than the
value of the External-Authenticaion-RPC-Timeout parameter.

Chase Referral—Yes/No toggle field. When the AREA LDAP plug-in sends a
request to a directory server, the server might return a referral to the plug-in if
some or all of the requested information is stored in another server. Attempting
to chase the referral by connecting to the other server can cause authentication
problems. By default, referrals are not chased. Yes enables automatic referral
chasing by the LDAP client. No prevents referral chasing.

NOTE
This option is only for Microsoft Active Directory servers. Select No for all other
directory servers.

IMPORTANT
AR System does not support referrals that use a domain name rather than a host
name as a reference. When Active Directory automatically configures referrals
(such as when a trust or parent/child domain relationship is created), it uses a
domain name in the referral. Therefore, such referrals do not work in AR System
even when Chase Referral is set to Yes.
Chapter 8 LDAP plug-ins 147

BMC Remedy Action Request System 7.6.04
4 In the User and Group Information section, fill in or change the values in these
fields:

User Base—Base name of the search for users in the directory service (for
example, o=remedy.com).

User Search Filter—Search criteria for locating user authentication information.
You can enter the following keywords in this field. At run time, the keywords
are replaced by the values they represent.

\USER—Name of the user logging in (for example, uid=\USER).

\DN—Distinguished name of the user logging in.

\AUTHSTRING—Value users enter in the Authentication String field when
they log in.

\NETWORKADDR—IP address of the AR System client accessing the AR System
server.

Group Membership—If this user belongs to a group, select Group Container;
otherwise, select None. When None is selected, the Group Base, Group Search
Filter, and Default Group(s) fields are disabled.

Group Base—Base name of the search for groups in the directory service that
includes the user who is logging in (for example, ou=Groups).

AR System performs a subtree search within the group you specify.

Group Search Filter—Search criteria for locating the groups to which the user
belongs. For the user’s distinguished name, enter the keyword \DN (for
example, uniqueMember=\DN). At run time, \DN is replaced with the
distinguished name.

Default Group(s)—If the search finds no matching groups, the group specified
in this field is used.
148 Integration Guide

AREA LDAP plug-in
5 In the Defaults and Mapping Attributes to User Information section, perform these
actions:

In the LDAP Attribute Name column, enter the corresponding LDAP attribute
names for the following AR System fields.

In the Default Value If Not Found In LDAP column, select or enter a default value
for each field if no value is found in the directory service.

License Mask—Number for the license mask. The license mask specifies
whether the AREA plug-in overrides existing information from the User form
for write and reserved licenses. It also specifies which license types are
overridden by the value returned by the plug-in. Use a number from the
following table. An X in a license type column means that the value returned
from the plug-in overrides that license in the User form for the specified user.

Write License—Type of AR System license assigned to the user (Fixed, Read,
Floating, or Restricted Read).

Full Text Search License—Type of FTS license assigned to the user.

Reserved License—License type to select for a reserved license.

Application License—Name of the application license granted to the user.

Email Address—Default email address for notifications sent to the user.

License mask number Overridden license types

Application FTS Reserved Write

0

1 X

2 X

3 X X

4 X

5 X X

6 X X

7 X X X

8 X

9 X X

10 X X

11 X X X

12 X X

13 X X X

14 X X X

15 X X X X
Chapter 8 LDAP plug-ins 149

BMC Remedy Action Request System 7.6.04
Default Notification Mechanism—Notification method used in your
environment (none, alert, email, or default).

Roles List—Name of the LDAP attribute that lists the user roles. For example,
the roledn attribute contains role definitions for some LDAP systems. Add any
default roles to the Default Value If Not Found In LDAP field.

6 Click Save Current Configuration.

The system updates the ar.cfg or ar.conf files with the parameters you
specified in this form.

7 (optional) To change the order in which AR System searches the listed
configurations when attempting to authenticate a user, do this:

a In the Configuration List, select the appropriate configuration.

b Click one of these buttons:

Decrease Order—Moves the selected configuration down in the
authentication attempt order.

Increase Order—Moves the selected configuration up in the authentication
attempt order.

NOTE
To make the changes take effect, restart your AR System server.

� To delete configurations for the AREA LDAP plug-in

1 In the AR System Administration Console, click System > LDAP >
AREA Configuration.

The AREA LDAP Configuration form appears.

2 In the Configuration List, select the configuration to delete.

3 Click Delete Configuration.

The system removes the corresponding parameters from the ar.cfg or ar.conf
files.

NOTE
To make the changes take effect, restart your AR System server.

Configuring AREA LDAP group search
In releases previous to AR System 7.0, external authentication required that every
LDAP group to which a user belonged have a matching AR System group. If a user
belonged to an LDAP group without a matching AR System group, external
authentication failed. Hence, administrators had to create an AR System group for
each LDAP group, and AR System searched for groups at only one level in the
defined base group. Now, you can map LDAP groups to AR System groups and
ignore excess LDAP groups.
150 Integration Guide

AREA LDAP plug-in
Mapping LDAP groups to AR System groups
This section explains how to map LDAP groups to AR System groups.

NOTE
For maximum benefit, map LDAP groups to AR System groups and ignore excess
LDAP groups (see “Ignoring excess LDAP groups” on page 152).

� To map LDAP groups to AR System groups

1 Open the AR System Administration: Server Information form, and click the EA
tab.

2 Click in the Group Mapping table to add a row, and enter the names of the LDAP
and AR System groups to map. Enter only one group name in each column.

NOTE
You can map many LDAP groups to a single AR System group. If you map a single
LDAP group to many AR System groups, AR System uses only the first mapping.

Figure 8-3: LDAP Group Mapping table on EA tab

3 Click Apply and OK.
Chapter 8 LDAP plug-ins 151

BMC Remedy Action Request System 7.6.04
Ignoring excess LDAP groups
Formerly, a user was authenticated only when each LDAP group to which the user
belonged matched an AR System group. Now, you can configure AR System to
authenticate a user when any single LDAP group to which the user belongs
matches an AR System group. You do this by specifying that AR System ignore
excess LDAP groups.

NOTE
For maximum benefit, ignore excess LDAP groups and map LDAP groups to
AR System groups (see “Mapping LDAP groups to AR System groups” on
page 151).

� To configure AR System to ignore excess groups

1 Open the AR System Administration: Server Information form, and click the EA
tab.

2 In the Group Mapping box, select the Ignore Excess Groups check box.

3 Click Apply and OK.

Configuring AR System servers to use the AREA LDAP plug-in
To configure AR System servers to work with the AREA LDAP plug-in, use the EA
(external authentication) tab in the AR System Administration: Server Information
form. External authentication (including chaining) works only if you do the
following in the EA tab:

Set RPC to 390695

Select either Authenticate Unregistered Users or Cross Reference Blank
Password or both

For more information, see the Configuration Guide.

What’s next?
After you configuring your AREA LDAP plug-in and your AR System server, you
configure AR System to use external authentication processing. See “Configuring
authentication processing” on page 155.
152 Integration Guide

Chapter

9
 AR System external
authentication
You can use plug-ins and the AR System External Authentication (AREA) API to
integrate AR System with external user authentication services. In addition, you
can configure AR System to use a combination of internal and external
authentication, including OS-based authentication.

The following topics are provided:

Overview of AREA authentication (page 154)
Configuring authentication processing (page 155)
Setting up the AREA hub (page 164)
Chapter 9 AR System external authentication 153

BMC Remedy Action Request System 7.6.04
Overview of AREA authentication
You use the AR System External Authentication (AREA) API to create an AREA
server, which mediates between the data source and AR System. (The AREA API
is installed with the AR System C API.) The AR System server provides the name,
password, and IP address in a remote call to the AREA server, which validates the
name and password and then passes the account information back to the
AR System server. The AR System server combines the account and user schema
information. To implement external authentication, follow these steps:

Step 1 Create a library (.dll or .so) to handle AREA API calls. See these sections:

“Creating C plug-ins” on page 110

“Common plug-in C functions and Java methods” on page 123

“AREA plug-in C API functions” on page 126

Step 2 Link to the AREA library.

Step 3 Install the AREA library on the computer or computers that contain the AR System
server.

Step 4 Configure the AR System server to use external authentication. See “Configuring
authentication processing” on page 155.

About the AREA LDAP plug-in
AR System includes a sample AREA LDAP plug-in. It is installed during
installation of the AR System server if you select the AREA LDAP Directory
Service Authentication plug-in option. If you did not select this option during the
original installation, you can install the plug-in by rerunning the AR System server
installer and selecting the plug-in option.

For information about configuring the plug-in, see “Configuring the AREA LDAP
plug-in” on page 145.

Specifying AREA plug-in server settings
For information about configuring your AR System server to work with the AREA
LDAP plug-in, see “Configuring AR System servers to use the AREA LDAP plug-
in” on page 152.
154 Integration Guide

Configuring authentication processing
Configuring authentication processing
To authenticate users, AR System can use internal (User form) authentication,
external authentication, or a combination of the two. If you use a combination, you
can specify the order in which each type of authentication is attempted.

Specifying when to use internal and external authentication
By default, AR System attempts to authenticate users internally. In all cases, if the
user and password match a record in the User form, authentication succeeds.
Similarly, in all cases, if the user and password do not match a record in the form,
authentication fails.

To use external authentication, select one of the following options in the EA tab in
the AR System Administration: Server Information form:

Authenticate Unregistered Users—If a user is not in the User form, AR System
tries external authentication. See “Authenticating unregistered users” on
page 155.

Cross Reference Blank Password—If a user does not provide a password,
AR System tries to cross-reference the user with an external source. See “Cross-
referencing blank passwords” on page 156.

IMPORTANT
To use external authentication, you must set the External Authentication Server
RPC Program Number field to 390695.

Authenticating unregistered users
When the Authenticate Unregistered Users option is selected, AR System first
attempts to find the user in the User form. If the user exists in the User form,
AR System attempts authentication through that form. If the user does not exist in
the User form, AR System attempts authentication through the AREA plug-in.

� To authenticate unregistered users

1 Open the AR System Administration: Server Information form, and click the EA
tab.

2 In the External Authentication Server RPC Program Number field, enter 390695.

3 Select the Authenticate Unregistered Users check box.

4 Click Apply and OK.
Chapter 9 AR System external authentication 155

BMC Remedy Action Request System 7.6.04
Cross-referencing blank passwords
When the Cross Reference Blank Password option is selected, AR System attempts
to authenticate through the User form if the user provides a password. If the user
and password match a record in the User form, the user passes authentication. If
the user does not provide a password, AR System attempts to cross-reference the
user with an external system through the AREA plug-in.

� To cross-reference blank passwords

1 Open the AR System Administration: Server Information form, and click the EA
tab.

2 In the External Authentication Server RPC Program Number field, enter 390695.

3 Select the Cross Reference Blank Password check box.

4 Click Apply and OK.

Specifying authentication chaining mode
You can specify the order in which internal and external authentication methods
are attempted by specifying a value for the Authentication Chaining Mode field.

When Authentication Chaining is enabled, all authentication methods in the chain
are attempted in the specified order until either authentication succeeds or all the
methods in the chain fail.

� To set the authentication chaining mode

1 Open the AR System Administration: Server Information form, and click the EA
tab.

2 In the External Authentication Server RPC Program Number field, enter 390695.

3 Select Authenticate Unregistered Users, Cross Reference Blank Password, or both.

4 From the Authentication Chaining Mode list, select one of these values:

Mode Description

Off Disables authentication chaining.

ARS - AREA AR System attempts to authenticate the user by using the User form
and then the AREA plug-in.

AREA - ARS AR System attempts to authenticate the user by using the AREA
plug-in and then the User form.

ARS - OS - AREA AR System attempts to authenticate the user by using the User form,
then Windows or UNIX authentication, and then the AREA plug-in.

ARS - AREA - OS AR System attempts to authenticate the user by using the User form,
then the AREA plug-in, and then Windows or UNIX authentication.
156 Integration Guide

Configuring authentication processing
NOTE
AR System behaves differently depending on the authentication chaining mode
you choose and other external authentication parameters you specify. See
“Determining AREA behavior” on page 157.

5 Click Apply and OK.

NOTE
If you use the AREA hub, the authentication chaining mode treats it like a single
plug-in, and plug-ins installed in the AREA hub are considered in sequence until
a valid response is returned. See “Setting up the AREA hub” on page 164.

Determining AREA behavior
Several factors affect how AR System authenticates users, including these:

Whether Authenticate Unregistered Users is selected

Whether Cross Reference Blank Password is selected

The value of the External Authentication Server RPC Program Number field

Whether the user exists in the User form and, if so, whether a password exists
for the user

The following sections describe AR System authentication behavior for given
configurations.

RPC program number is 390695
These tables show AR System authentication behavior for this configuration:

Authenticate Unregistered Users is selected

Cross Reference Blank Password is selected

External Authentication Server RPC Program Number is 390695

User does not exist in User form

Authentication
chaining mode

Authentication behavior

Off Authentication is performed using AREA LDAP. User information
is retrieved from AREA LDAP.

ARS - AREA Authentication is not performed using AR System because the user
does not exist in the User form.
Authentication is performed using AREA LDAP. If successful, user
information is retrieved from AREA LDAP.

AREA - ARS Authentication is performed using AREA LDAP. If successful user
information is retrieved from AREA LDAP.
Authentication is not performed using AR System because the user
does not exist in the User form.
Chapter 9 AR System external authentication 157

BMC Remedy Action Request System 7.6.04
User exists with no password in User form

ARS - OS - AREA Authentication is not performed using AR System because the user
does not exist in the User form.
Authentication is performed using OS authentication. If successful,
user information is retrieved from the OS.
If OS authentication fails, user authentication is performed using
AREA LDAP. If AREA LDAP authentication is successful, user
information is retrieved from AREA LDAP.

ARS - AREA - OS Authentication is not performed using AR System because the user
does not exist in the User form.
Authentication is performed using AREA LDAP. If successful, user
information is retrieved from AREA LDAP.
If AREA LDAP authentication fails, the user is authenticated using
OS authentication. If OS authentication is successful, user
information is retrieved from the OS.

Authentication
chaining mode

Authentication behavior

Off Authentication is performed using AREA LDAP password. User
information is retrieved from the User form.
Authentication process stops when it fails using AREA LDAP.

ARS - AREA Authentication is performed using AREA LDAP password. User
information is retrieved from User form.
Authentication process stops when it fails using AREA LDAP.

AREA - ARS Authentication is performed using AREA LDAP. If successful, user
information is retrieved from AREA LDAP. If AREA LDAP
configuration does not contain all the information in the form,
missing information is retrieved from the User_Cache.
If AREA LDAP authentication fails, authentication processing
stops.

ARS - OS - AREA User authentication is performed using AREA LDAP. If successful,
user information is retrieved from AR System.
If AREA LDAP authentication fails, the user is authenticated using
OS authentication. If OS authentication is successful, user
information is retrieved from AR System.
The user is never authenticated using User form.

ARS - AREA - OS User authentication is performed using AREA LDAP. If successful,
user information is retrieved from AR System.
If AREA LDAP authentication fails, the user is authenticated using
OS authentication. If OS authentication is successful, user
information is retrieved from AR System.
The user is never authenticated using User form.

Authentication
chaining mode

Authentication behavior
158 Integration Guide

Configuring authentication processing
User exists with password in User form

Authentication
chaining mode

Authentication behavior

Off Authentication is performed using the AR System User Form. If
successful, user information is retrieved from the User form.
If User form authentication fails, authentication is not attempted
using AREA LDAP.

ARS - AREA Authentication is performed using the AR System User form. If
successful, user information is retrieved from the User form.
If User form authentication fails, AREA LDAP authentication is
attempted. If AREA LDAP authentication is successful, user
information is retrieved from AREA LDAP.

AREA - ARS Authentication is performed using AREA LDAP. If successful, user
information is retrieved from AREA LDAP.
If AREA LDAP authentication fails, authentication is attempted
using User form. If User form authentication is successful, user
information is retrieved from the User form.

ARS - OS - AREA Authentication is performed using the AR System User form. If
successful, user information is retrieved from the User form.
If AR System authentication fails, OS authentication is attempted.
If OS authentication is successful, user information is retrieved
from the OS.
If OS authentication fails, AREA LDAP authentication is
attempted. If AREA LDAP authentication is successful, user
information is retrieved from AREA LDAP.

ARS - AREA - OS Authentication is performed using the AR System User form. If
successful, user information is retrieved from the User form.
If AR System authentication fails, AREA LDAP authentication is
attempted. If AREA LDAP authentication is successful, user
information is retrieved from AREA LDAP.
If AREA LDAP authentication fails, OS authentication is
attempted. If OS authentication is successful, user information is
retrieved from the OS.
Chapter 9 AR System external authentication 159

BMC Remedy Action Request System 7.6.04
RPC program number is 0
These tables show AR System authentication behavior for this configuration:

Authenticate Unregistered Users is selected

Cross Reference Blank Password is selected

External Authentication Server RPC Program Number is 0

User does not exist in User form

User exists with no password in User form

User exists with password in User form

Authentication
chaining mode

Authentication behavior

All Authentication
chaining modes

Authentication is performed using OS authentication. If successful,
user information is retrieved from the User form.
If OS authentication fails, authentication processing stops.

Authentication
chaining mode

Authentication behavior

All Authentication
chaining modes

Authentication is performed using OS authentication. If successful,
user information is retrieved from the User form.
If OS authentication fails, authentication processing stops.

Authentication
chaining mode

Authentication behavior

Off Authentication is performed using the AR System User form. If
successful, user information is retrieved from the User form.
If AR System authentication fails, authentication processing stops.

ARS - AREA Authentication is performed using the AR System User form. If
successful, user information is retrieved from the User form.
If AR System authentication fails, OS authentication is attempted.
If OS authentication is successful, user information is retrieved
from the OS.

AREA - ARS Authentication is performed using OS authentication. If successful,
user information is retrieved from the OS.
If OS authentication fails, User form authentication is attempted. If
AR System authentication is successful, user information is
retrieved from the User form.
160 Integration Guide

Configuring authentication processing
Configuring Atrium SSO integration
To activate the connection to BMC Atrium SSO, use the Atrium SSO Integration
tab of the AR System Administration: Server Information form.

� To configure the connection to the BMC Atrium SSO Solution

1 In a browser or BMC Remedy User, open the AR System Administration Console,
and click System > General > Server Information.

2 In the AR System Administration: Server Information form, click the Atrium SSO
Integration tab.

ARS - OS - AREA Authentication is performed using the AR System User form. If
successful, user information is retrieved from the User form.
If AR System authentication fails, OS authentication is attempted.
If OS authentication is successful, user information is retrieved
from the OS.

ARS - AREA - OS Authentication is performed using the AR System User form. If
successful, user information is retrieved from the User form.
If AR System authentication fails, OS authentication is attempted.
If OS authentication is successful, user information is retrieved
from the OS.

Authentication
chaining mode

Authentication behavior
Chapter 9 AR System external authentication 161

BMC Remedy Action Request System 7.6.04
Figure 9-1: AR System Administration: Server Information form—Atrium SSO Integration tab

3 Enter the values for the following BMC Atrium SSO Server Settings (configuration
parameters):

Table 9-1: Atrium SSO Integration tab fields(Sheet 1 of 2)

Field Name Description

Atrium SSO Server Location The Atrium SSO Server Location consists of the following information:
Host Name—The host name of the computer where Atrium SSO server is
configured. If the AR System server and Atrium SSO server are in same
domain, enter the machine name or the machine name with domain name.
Make sure that the Atrium SSO host name is accessible from the machine
where AR System server is installed. If the AR System server and Atrium
SSO server are in different domains, a trust relationship between these two
domains must be established before configuring Atrium SSO server.
Port number—The port on which Atrium SSO server is configured.
Protocol—(optional parameter) The default value for this parameter is
https. However, this field can also be set to http.

For example: https://<server>:<port>/<AtriumSSO-URI>

Atrium SSO Admin User The Atrium SSO administrator name.

Atrium SSO Admin Password The Atrium SSO administrator password.
162 Integration Guide

Configuring authentication processing
4 Click Apply.

Manually configuring the mid-tier for Atrium SSO user
authentication
For the midtier to communicate with the Atrium SSO server for user
authentication, follow the steps given below to manually configure the midtier.

IMPORTANT
If you do not select the Configuration of Atirum SSO option during the AR System
server installation or during the stand-alone installation of mid-tier, only then
perform the steps in this section.

1 Stop the midtier service, if it is already running.

2 Copy all the jar files from the WebAgent\dist\jee\WEB-INF\lib directory to the
MidtierInstallDir\WEB-INF\lib directory (for example, C:\Program
Files\BMC Software\ARSystem\midtier\WEB-INF\lib.)

3 Go to the MidtierInstallDir\Web-Inf directory and open the web.xml file in an
editor.

4 Uncomment the <filter> and <filter-mapping> tags for the Atrium SSO filter.

5 Go to the MidtierInstallDir\Web-Inf\classes directory (for example,
C:\Program Files\BMC Software\ARSystem\midtier\WEB-INF\classes) and
open the config.properties file in an editor.

6 Add an attribute in the config.properties file. For this, uncomment the
DefaultAuthenticator line (arsystem.authenticator=com.remedy.arsys.
session.DefaultAuthenticator) and add the following line for the Atrium SSO
Authenticator:

arsystem.authenticator=com.remedy.arsys.sso.AtriumSSOAuthenticator

7 Copy the cacerts file from the
C:\ProgramFiles\Java\jdk1.6.0_18\jre\lib\security\ directory or from
any other location where JDK is located and place it under the conf folder in the
Tomcat directory generally located at C:\Program Files\Apache Software
Foundation\Tomcat6.0\conf\.

8 Execute the deployer script to deploy the WebAgent. For this, run the following
script through command line interface under the deployer directory
(webagent\deployer):

Atrium SSO Keystore Path The keystore file location where the Atrium SSO keystore is saved. This path
includes the keystore file name.

Atrium SSO Keystore
Password

Password for the keystore.

Table 9-1: Atrium SSO Integration tab fields(Sheet 2 of 2)

Field Name Description
Chapter 9 AR System external authentication 163

BMC Remedy Action Request System 7.6.04
java -jar deployer.jar --install --container-type tomcat --atrium-
sso-url AtriumSSOURL<FQDNofAtriumSSOServer>:<port>/atriumsso --
web-app-url MidtierSSOURL<FQDNofMidtierServer>:<port>/arsys --
container-base-dir AppServerHome --admin-name
AtriumServerAdminUsername --admin-pwd AtriumServerAdminPassword --
jvm-truststore "JavaHome\jre\lib\security\cacerts" --jvm-
truststore-password TruststorePassword --truststore
"AppServerHome\conf\cacerts" --truststore-password
TruststorePassword

For example:

java -jar deployer.jar --install --container-type tomcat --atrium-
sso-url https://ibmc-7ws26bs.adprod.bmc.com:8443/atriumsso --web-
app-url http://ibmc-7ws26bs.adprod.bmc.com:8080/arsys --container-
base-dir "c:\Program Files\Apache Software Foundation\Tomcat6.0" -
-admin-name amadmin --admin-pwd Let$in09 --jvm-truststore
"c:\Program Files\Java\jdk1.6.0_21\jre\lib\security\cacerts" --
jvm-truststore-password changeit --truststore "c:\Program
Files\Apache Software Foundation\Tomcat6.0\conf\cacerts" --
truststore-password changeit

9 Start the midtier service.

NOTE
By default, this plug-in is configured to work with the native plug-in server
(C plug-in). You can also use this plug-in directly with the Java plug-in server. For
more information on the configuration settings, see “Java plug-in server” on
page 116.

Setting up the AREA hub
The AR System plug-in server supports only one AREA plug-in directly. You can,
however, add a single AREA Hub plug-in to the plug-in server and then add
multiple AREA plug-ins to the AREA Hub plug-in. Plug-ins you add to the AREA
Hub are referred to as Hub-plug-ins. The AREA Hub propagates the calls it
receives from the Hub-plug-ins to the Plug-in server.

The AREA Hub loads the Hub-plug-ins in the order in which they appear in the
ar.cfg or ar.conf file. That is, the first entry the AREA Hub finds in the ar.cfg
file is the first plug-in loaded, the second entry the second, and so on.

NOTE
You do not need to configure the AREA Hub manually to use multiple AREA
LDAP plug-ins. See “Configuring the AREA LDAP plug-in” on page 145.

� To set up the AREA Hub plug-in

1 Create the following entry for the AREA Hub in the ar.cfg file:

plug-in: areahub.dll
164 Integration Guide

Setting up the AREA hub
NOTE
Make sure this is the only entry for an AREA plug-in in your ar.cfg file.

2 Create an entry for the first AREA plug-in as follows:

AREA-Hub-Plugin: my_area_plug-in.dll

3 If necessary, create entries for subsequent AREA plug-ins as follows:

AREA-Hub-Plugin: my_area_plug-in_1.dll
AREA-Hub-Plugin: my_area_plug-in_2.dll
AREA-Hub-Plugin: my_area_plug-in_3.dll

4 Restart the AR System plug-in server.

NOTE
For information about restarting the plug-in server, see “Restarting the plug-in
server using the Set Server Info command” on page 118.
Chapter 9 AR System external authentication 165

BMC Remedy Action Request System 7.6.04
166 Integration Guide

Chapter

10
 Data visualization fields
This section provides an overview of data visualization fields and their use in
enabling graphical elements in AR System forms.

The following topics are provided:

Overview (page 168)
Services provided to the data visualization modules on BMC Remedy Mid Tier
(page 168)
Services provided on clients (page 170)
Using Java classes (page 171)
Working with native libraries (page 172)
Storing shared library files on the mid tier (page 172)
Creating data visualization fields (page 174)
Configuring right-to-left format in a data visualization field (DVF) (page 182)
Chapter 10 Data visualization fields 167

BMC Remedy Action Request System 7.6.04
Overview
AR System provides a seamless integration of web content through the data
visualization field (DVF). This integration deploys the web content generation
module (the server-side component that generates web content) through the data
visualization module (DVM).

Because the DVM is a server-side component, it needs the BMC Remedy Mid Tier
as a hosting environment. The mid tier must be running if you want to view the
web content while authoring in BMC Remedy Developer Studio.

For example, a flashboard is implemented as a DVM. To see the flashboard during
authoring time, the mid tier must be running, and the AR System server must be
configured so that it can obtain default web content from the mid tier (set the
Default Web Path setting on the AR System Administration: Server Information
form).

The DVF provides the following benefits:

Data visualization module developers need to write only the image generation
and user interface code.

Authentication is handled automatically.

Authorization for the definitions is handled automatically.

Ease of deployment and version control. Modules are automatically deployed
on all mid tier systems that get requests for the data visualization.

Data visualization definition objects smoothly integrate into the AR System
import/export model.

Client-side workflow integration is supported. (The mid tier can generate code
for such integrations when users click hotspots.)

By implementing the PluginContext interface and appropriate data model
pluggability, the code for a module can be reused in environments that do not
include BMC Remedy Mid Tier.

Services provided to the data visualization
modules on BMC Remedy Mid Tier

The data visualization feature includes the following services to ease integration
with AR System.

Authentication services—Supplied by BMC Remedy Mid Tier.

Authorization services—Supplies meta-information needed to generate the
graphical elements. This information is retrieved only if a user has permission
to view the graphical elements. The meta-information is stored in a special form.
168 Integration Guide

Services provided to the data visualization modules on BMC Remedy Mid Tier
Deployment services—The module code is stored as a JAR file attachment on
the AR System server. The module container automatically downloads this code
from the AR System server and uses it to serve up requests. This makes
installation and deployment of the module code a simple data import operation
into a form on the AR System server.

Signaling (event) services—Signals (events) are sent on the client side. For the
module writer to use signals, the module needs to generate HTML content in
response to requests. These responses can include an HTML script tag that
contains event dispatching JavaScript code that is generated by the module
container. This script snippet can be obtained at the mid tier by calling the
PageService.getEventInfrastructureCode() method. The PageService
also returns the name of the Javascript eventDispatcher object in the
PageService.getEventDispatcherName() method. It can be used to send and
receive events on the client side. This name might change in portlet
environments to prevent name clashes.

The following signals are available:

Signals from module client side to module mid tier—Generates internal code
for sending signals to the mid tier. Module code must be written to call the
EventDispatcher.sendEventToMidTier(eventtype, eventData)
JavaScript object method in the HTML response that is generated by the
module in response to a request, which returns a string value.

Signals from module client-side to parent AR System form—Generates the
internal code that sends signals from the module in the main form. Module
code must be written to call the EventDispatcher.sendEventToParent
(eventType, eventData) JavaScript object method in the HTML response
that is generated by the module.

Signals from AR System form workflow to module—Generates the code to
receive events from the main form in the module. Module code must be
written to register a JavaScript function with the EventDispatcher java script
object on the client side by calling
EventDispatcher.setEventHandler(object, functionRefence). The
object parameter is the name of a variable that refers to the object that has the
functionReference as one of its members. For functions that are not
members of an object, null can be passed in for the object parameter.

Drill down from client module to an AR System form—Generates code to
perform the drill-down into an AR System form without being dependent on
the module HTML being present in an AR System form. This allows the
module code to generate HTML that can be just fragments in a portlet
environment, while still providing the drill-down capability.

The function call is EventDispatcher.drillDownToForm(server, form,
view, qualification).
Chapter 10 Data visualization fields 169

BMC Remedy Action Request System 7.6.04
Configuration services:

Surfaces configuration properties of the module into the BMC Remedy Mid
Tier configuration page.

Stores the configuration properties and sends them to the module when it is
initialized.

Definition storage and retrieval services—Definitions in AR System are
retrieved from the AR System server and sent to the module when it is asked to
handle a request.

Caching services—The module container can be requested to cache objects
created and repeatedly used by the module.

Locale services—Retrieves messages for a specific locale for a supplied key.
Numbers, dates, and times are formatted based on the locale.

Page generation services—URLs are generated for various types of hotspots
used in signaling for this module.

Session services—Enables module objects to be stored in the user session so that
they are available throughout the lifetime of the session.

Services provided on clients
The main services provided on the clients are the signaling services. For sending
signals to the data visualization module from an AR System form, remember the
following guidelines:

Workflow must be written to call the PERFORM-ACTION-SEND-EVENT Run
Process action, specifying the target window ID as a field by specifying the ID
as F<fieldID>.

The $EVENTTYPE$ and $EVENTDATA$ keywords are used to pass the event type
and data separately, instead of using only the $EVENTTYPE$ keyword.

The Send Event Run Process uses an additional argument to represent the event
data ($EVENTDATA$). This argument is a string that must be enclosed in double
quotation marks if it contains spaces (with the AR System standard of escaping
of double quotation marks being two double quotation marks together,
representing a single double quotation mark character.)

To send signals to the mid tier, call the
EventDispatcher.sendEventToMidTier(evttype, evtData) through a
JavaScript call.

To send signals to the parent form, call
EventDispatcher.sendEventToParent(evtType, evtData). This results in
an event being generated on the AR System form containing the data
visualization field. Workflow can be added to act on an event with the run if
condition being defined on the $EVENTTYPE$/$EVENTDATA$/$EVENTWINSRCID$
keywords. The $EVENTTYPE$ and $EVENTDATA$ keywords are set to the values
passed in the call. The EVENTSRCWINID is set to F<moduleFieldID>.
170 Integration Guide

Using Java classes
To drill down to another form, call
EventDispatcher.drillDownToform(server, form, view,
qualification) on the client side opens the form from the server (if current
credentials are valid for that server) in Modify mode, with the entries matching
the qualification displayed in the results list. Use the signaling to parent form
mechanism with appropriate workflow on the main form to drill-down into
forms and have them open up in modes other than modify.

Using Java classes
Data visualization modules are packaged and deployed as JAR files. The following
Java classes and interfaces are provided for data visualization developers. The
Javadocs contain more information about these classes.

NOTE
When searching for a class name, remember that each class is in the
com.remedy.arsys.plugincontainer package. So, the Plugin class is named
com.remedy.arsys.plugincontainer.Plugin.

Data visualization developers can implement these interfaces:

Plugin—Interface that must be implemented by data visualization developers.

DefinitionFactory—Interface that can optionally be implemented by data
visualization developers to parse their definition data into Java objects. These
Java objects must imported into the Definition or the CacheableDefinition
interfaces described in the following list.

Definition—Marker interface implemented by the modules’ definition objects.

CacheableDefinition—Marker interface to use if the module needs the
container to cache the definition objects. The cached objects are returned when
the module requests the DefinitionSevice to get the definition. For more
information, see the cache service.

Other interfaces include:

ARPluginContextEX—Extends the PluginContext class to provide AR System
specific services. To use this class in a plug-in, you must typecast objects to
com.bmc.arsys.api.ARServerUser. (In version 7.0.01, the ARPluginContext
is used, and it returned com.remedy.arsys.api.ARServerUser object in its
functions. For more information, see the 7.6.04 AR System API Javadocs.)

AuthenticationException—Extends the Exception class.

CacheableDefinition—Uses the caching services of the plug-in container.

DefaultDefinition—Default implementation of the Definition class.

Definition—Acts as a marker interface for data visualization definition.

DefinitionService—Provides the definition service for the data visualization
container.
Chapter 10 Data visualization fields 171

BMC Remedy Action Request System 7.6.04
LocaleService—Provides services such as getting appropriate strings for the
locale to enable the module writer to localize the plug-in. For example, you can
format dates, time, and numbers for locale conventions.

ARLocaleServiceEX—As a subset of LocaleService, provides a simpler way to
access localized messages from the Message Catalog.

PluginContext—Provides the context that can be used to make API calls.

NoPermissionException—Occurs when the data visualization tries to retrieve a
definition for a user who does not have authorization to access the definition.

PageService—Generates URLs that provide a reference back to the data
visualization.

NOTE
When you update to new APIs, make sure you make the appropriate changes (as
described in the Javadocs).

Working with native libraries
When the Java virtual machine (JVM™) executes a Java application that requires a
native library through the Java native interface (JNI™), the JVM must load the
native library exactly once. This library (exposed to the Java layer by JNI) remains
available as long as the JVM process is active. If a different Java application using
the same native library executes on the same JVM process, it tries to load the native
library again. Because the library is already loaded, an exception is generated.

The JNI developer must make sure this native library is loaded exactly once and
must handle the exception if the same library is asked to be loaded again.

NOTE
The Java API does not use the JNI layer to connect to the AR System 7.5 (or above)
server. However, the JNI layer is still used to connect to pre 7.5 versions of the
server.

Storing shared library files on the mid tier
For a plug-in (such as CI Viewer, which is packaged with BMC Atrium CMDB) to
work, the plug-in’s installer copies the required native libraries to the mid-tier
installation folder. When mid tier is upgraded or re-installed, these shared library
files are deleted, and you must re-copy the required native libraries to the mid-tier
installation folder.

To avoid re-copying the required native libraries, store each library file as an entry
in the Data Visualization System Files form in AR System. When the mid-tier
process starts, a service looks for this form on all of the servers registered as Data
Visualization servers, and workflow copies the library files to the mid tier.
172 Integration Guide

Storing shared library files on the mid tier
If the file is already available in the mid-tier installation directory and the modified
date matches the last-modified date of the entry in the Data Visualization System
Files form, the file is not re-copied.

NOTE
The Data Visualization forms are installed with the AR System server. For the Data
Visualization System Files form to function, the AR System and mid-tier servers
must be version 7.1.00 or later.

� To store native library files for plug-ins

1 Open the Data Visualization System Files form.

Figure 10-1: Data Visualization System Files form

2 In the Name field, enter the file’s name.

IMPORTANT
This name must exactly match the name of the file that is attached at the bottom of
the form. If the name does not match, the data visualization field will show an error
message when the application within the field is run.

3 Enter a description.

4 Enter the status.

The options are Active or Inactive. If the status is Inactive, the file is not copied
during an upgrade or re-installation.
Chapter 10 Data visualization fields 173

BMC Remedy Action Request System 7.6.04
5 Select the platform:

Windows

Solaris

Linux

AIX

HP UX

All—This option is used for .jar files, which are used on multiple platforms.

The mid tier copies only those files that match the platform you select, except for
the All option, which copies .jar files.

NOTE
Entries are indexed by the Name and Platform fields.

6 In the Version field, enter the version number of the binary file that you are saving.

Use the following format:

majorVersion.minorVersion.subminorVersion.patch

For example, for version 2.0.01, patch 002, enter:

2.0.01.002

You can omit the trailing numbers. For example, for version 2.1.00.000, you can
enter:

2.1

If the same file is available on a different server with a new version, AR System
matches the version string. Then, it uses the latest version.

7 Add the file to the attachment field.

8 Click Save.

Creating data visualization fields
Use the following process to create a data visualization field (DVF).

Step 1 Create a module on the mid tier. (See page 175.)

Step 2 Register the module. (See page 178.)

Step 3 Deploy a custom data visualization module (DVM). (See page 180.)

Step 4 Add a DVF to a form. (See page 181.)

NOTE
If you are adding a flashboard to a DVF, go directly to step 4.
174 Integration Guide

Creating data visualization fields
Creating data visualization modules on the mid tier
Use the following procedure to create DVMs.

For a more detailed explanation and examples, see “The Hook Framework for the
Data Visualization Field” Knowledge Base article at http://www.bmc.com/
support. Search with the keywords “data visualization.”

IMPORTANT
When writing the module, be sure to generate output that is compliant with
Section 508 if your users specify anything other than default in the Accessible
Mode field of the User Preference form.

� To create a data visualization module

1 Save your code to a .java file with a name that matches the Class file name.

Following the example in “Example: HelloWorld plug-in,” which follows this
procedure, your resulting file should be HelloWorldPlugin.java.

2 Compile the code using javac.

Make sure to reference the GraphPlugin.jar file from the mid tier’s
/WEB-INF/lib directory and a .jar file that contains the Oracle Java
HttpServletResponse class in your –classpath parameter for javac.
HttpServletResponse is in j2ee.jar if you use a OracleOne web server; it is in
servlet.jar if you use ServletExec. For example:

javac –classpath /yourDirStructure/j2ee.jar:/yourDirStructure/
GraphPlugin.jar HelloWorldPlugin.java

3 Add the compiled .class file to a .jar file. For example:

jar –cvf DataVisHelloWorld.jar HelloWorldPlugin.class

If you use a package structure, enter this:

jar –cvf DataVisHellowWorld.jar topLevelDir

If you use package structures, remember these guidelines:

If you chose to use a Java package reference, add this to the sample code, for
example, package com.mycompany.plugin.

When running javac and jar, your .java or .class file must exist in a
directory structure that matches the package declaration, and you should be in
the directory immediately above the top of the package structure when running
javac and jar.

When running javac, java, and jar commands, remember that these Java tools
look “down” a directory structure. To see files in directories above your current
directory, use the ../ reference; you cannot simply use an absolute file path
reference.

To create data visualization modules, you can use the following examples.
Chapter 10 Data visualization fields 175

http://www.bmc.com/support
http://www.bmc.com/support

BMC Remedy Action Request System 7.6.04
Example: HelloWorld plug-in
This example sends back HTML that displays Hello World on the client.

public class HelloWorldPlugin implements Plugin {
 public void init(PluginConfig config) {
 }
 public void processRequest(PluginContext pc) throws
IOException, NoPermissionException {
 HttpServletResponse response = pc.getResponse();
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter writer = response.getWriter();
 writer.println("<html><head><title>Hello World Plugin
Example</title></head>");
 writer.println("<body><h1>Hello World</h1></body></
html>");
 }
 public String handleEvent(PluginContext pc, String
eventType,String eventData) throws IOException,
NoPermissionException {
 return "alert(\"Got event data in Midtier as " +
eventData + "\");";
 }
 public DefinitionFactory getDefinitionFactory() {
 return null;
 }
 public void cleanup() {}
}

Example: event handling code
This example shows event handling code added to the generated HTML in the
head tag.

PageService ps = pc.getPageService();
HttpServletResponse response = pc.getResponse();
PrintWriter writer = response.getWriter();
writer.println("<html><head>");
writer.println(ps.getEventInfrastructureCode());
writer.println("<script>function sendMidTierEvent() {");
writer.println("var result = "+ps.getEventDispatcherName()+
".sendEventToMidTier(\"ClickEvent\",\"Title\");");
writer.println("eval(result);");
writer.println("};</script>");
writer.println("</head>");
writer.println("<html><head><title>Hello World Plugin Example</
title></head>");
writer.println("<body><h1 onclick=sendMidTierEvent()>Hello
World</h1></body></html>");
176 Integration Guide

Creating data visualization fields
Example: definition factory
This is an example of using the definition factory.

public void processRequest(PluginContext pc) throws IOException,
NoPermissionException {
 HttpServletRequest req = pc.getRequest();
 String defName = req.getParameter("name");
 // get our definition object from the definition service.
 MyDefObject def = (MyDefObject)
pc.getDefinitionService().getDefinition(name);
 ….. generate the html using def ….
}
private DefinitionFactory myDefFactory;
public void init(PluginConfig config) {
 // create the definition factory and stash it in a member
variable for future use.
 myDefFactory=new MyDefObjFactory();
}
public DefinitionFactory getDefinitionFactory() {
 // return the stashed definition when the definition service
asks for it.
 return myDefFactory;
}
private class MyDefObjectFactory implements DefinitionFactory {
 // This method is called by the AR Plugin container if the
definition is stored
 // in the SimpleDefinition field in the Data Visualization
Definition form
 public Definition createFromString(PluginContext pc, String
defName, String defAsString) throws IOException {
 return new MyDefObject(defName, defAsString);
 }
 // This method is called by the AR Plugin container if the
definition is stored
 // in the ComplexDefinition field in the Data Visualization
Definition form
 public Definition createFromStream(PluginContext pc, Strign
defName, InputStream defAsStream) throws IOException {
 return new MyDefObject(defName, defAsStream);
 }
}
// This class implements CacheableDefinition so that the
Definition Service provided by
// the AR Plugin container caches this object till it sees any
modifications in the entry for
// this definition in the Data Visualization Definition form.
private class MyDefObject implements CacheableDefinition {
 private MyDefObject(String defName, String defString) {
 … initialize the def object with the string …

 private MyDefObject(String defName, InputStream is) {
 … initialize the def object using the stream …
Chapter 10 Data visualization fields 177

BMC Remedy Action Request System 7.6.04
Example: using the locale service to format dates
This snippet is an example of using the locale service for formatting dates and also
formatting the AR System com.remedy.arsys.Value objects.

LocaleService ls = pluginContext.getLocaleService();
// format current date as per current locale and user
preferences
String dateValue = ls.formatDate(new Date());
ARLocaleService als = (ARLocaleService)ls;
Value val = getValueFromServer(server, form, fieldId);
String formattedStr = als.formatValue(val, server,
form,view,fieldId);

Example: using the locale service to get a localized string
This snippet is an example of using of the locale service to get a localized string.

LocaleService ls = pluginContext.getLocaleService();
String defName=pluginContext.getRequest().getParameter("name");
int TITLE_ID=100;
LocalizedStringID localizedTitle = new
LocalizedStringID(defName, TITLE_ID);
LocalizedStringID[] retrieveIDs={localizedTitle};
String[] localizedStrings = ls.getLocalizedStrings(retrieveIDs);
String localizedTitle = localizedStrings[0];

Registering data visualization modules
DVMs must registered on an AR System server to be used by AR System forms on
the server.

� To register a data visualization module

1 In BMC Remedy User, open the Data Visualization Module form in New mode.

This form tells the mid tier server that the plug-in exists.
178 Integration Guide

Creating data visualization fields
Figure 10-2: Data Visualization Module form

2 In the Module Name field, enter the name of the module definition (the plug-in’s
name).

3 In the Module Type field, select Visual.

The Data option is reserved for future use.

4 In the Description field, enter the description of the of the data visualization
definition.

5 In the Entry Class field, enter the entry class, for example,
com.remedy.arsys.mymodule.Mymodule.

The value must be the class file you created with javac. If you compiled using a
package structure, the value for this field must be the complete class name, for
example, com.mycompany.plugin.HelloWorldPlugin.

6 In the Version field, enter the version of the module.

You can enter any number according to your own version numbering scheme.

If multiple versions of a DVMs are registered, the version with the latest version
number is used.

7 In the Status field, select Active or Inactive to define the status of the module.

8 In the Module Code field, attach the JAR file.

9 Click Save.

A custom DVM must be deployed to a BMC Remedy Mid Tier system to be used
by AR System forms that are accessed from a browser.
Chapter 10 Data visualization fields 179

BMC Remedy Action Request System 7.6.04
� To deploy a custom data visualization module

1 Open the BMC Remedy Mid Tier Configuration Tool.

2 In the Module server(s) field on the General Settings tab, enter the names of the
AR System servers that contain the modules.

3 In BMC Remedy User, open the Data Visualization Definition form in New mode.

This form defines the instance of your plug-in.

Figure 10-3: Data Visualization Definition form

4 In the Definition Name and Description fields, enter the name of the description
for the data visualization to deploy.

The Definition Name is what appears in the data visualization form.

5 In the Module Name field, enter the name of the module name from the Data
Visualization Module Registration form. (These names must match.)

6 In the Complex Definition table at the bottom of the form, add the JAR file for the
data visualization module.
180 Integration Guide

Creating data visualization fields
7 Click Save.

After you deploy the module, add the field to the form, as described in “To add a
data visualization field to a form.”

8 To enable users to open forms with data visualization fields, add the Default Web
Path to your server’s configuration (go to the Advanced tab of the AR System
Administration: Server Information form).

� To add a data visualization field to a form

1 Make sure that the BMC Remedy Mid Tier is running so that you can view the web
content as you are creating the field.

2 In BMC Remedy Developer Studio, open the appropriate form.

3 Right-click the form, and choose Create a New Field > Data Visualization.

The new data visualization field appears on the form.

4 Select the field.

5 In the Properties tab, click these properties, and select the appropriate value from
the drop-down list:

Module Type—The module type for the data visualization, which is defined in
the Module Registration form:

Flashboard

Report

Visualizer

Server—The AR System server that contains the data visualization module.

Definition Name—The definition name for the data visualization module.

For more information about field properties, see the Form and Application Objects
Guide.

6 Select the Custom Properties property, and click its ellipsis button.

7 In the Custom Properties dialog box, enter a customizable parameter.

For example, if you are adding a flashboard to the data visualization field, enter a
parameter and value using the following format:

parameter=value

For more information, see the BMC Remedy Flashboards Guide.

8 Right-click the form, and choose Save.
Chapter 10 Data visualization fields 181

BMC Remedy Action Request System 7.6.04
Configuring right-to-left format in a data
visualization field (DVF)

A DVF can be a part of more than one view, and because text direction is associated
with a view, the text direction for a DVF is not known until the DVF is initialized.
This initialization takes place when the browser renders the view of the AR System
form. At that time, a request with text direction is sent to the DVF.

If you create a DVF and you want to create different contents based on text
direction, extract the text direction from the PluginContext. (Because the DVF
cannot determine your intent regarding text direction, you must add the text
direction to your HTML content for the DVF [for example, by using the
<html dir='rtl'> option].)

To extract the text direction, use the
com.remedy.arsys.plugincontainer.ARLocaleServiceProperties interface
through the public String getProperty(String key, String defvalue);
method.

Following is a simple example for extracting the text direction from the
PluginContext object given
com.remedy.arsys.plugincontainer.PluginContext pc;

ARLocaleServiceProperties p =
(ARLocaleServiceProperties)pc.getLocaleService();
boolean isRTL = false;
String val = p.getProperty("rtl", "false");
if (val.equalsIgnoreCase("true"))

isRTL = true;
182 Integration Guide

Chapter

11
 Vendor forms
Vendor forms are AR System objects that let you view and process external data
using AR System processes and workflow. This section discusses vendor forms
and how to configure your system to use them.

The following topics are provided:

About vendor forms (page 184)
Creating vendor forms (page 184)
Chapter 11 Vendor forms 183

BMC Remedy Action Request System 7.6.04
About vendor forms
Vendor forms allow AR System to present data from external sources as entries in
an AR System form. When you create a vendor form, you can request a list of
candidate forms or fields (preferred method) or you can enter the information
yourself.

Vendor forms require you to have an ARDBC plug-in installed and configured.
The ARDBC plug-in and the plug-in server handle data exchange between
AR System and the external data source. The AR System server maps the external
data to fields in the vendor form, and the form displays the data. See “ARDBC
plug-ins” on page 127.

You can use vendor forms to do the following tasks:

Implement workflow on creation and modification of external data.

Execute escalations on external data.

Access external data to populate search style character menus or table fields.

The vendor form can be manipulated as a regular form type with the following
exceptions:

You can add only Required and Optional fields that correspond to actual
columns in the data source. In addition, you can add a Display Only field only
when the column name does not correspond to a column in the data source.

Full Text Search (FTS) operations are not available on vendor forms.

Creating vendor forms
You can create a vendor form after you have built and installed your ARDBC
plug-in, and configured your server to recognize it. For information about
configuring your server to recognize a plug-in, see the Configuration Guide.

NOTE
Creating a vendor form for an ARDBC LDAP plug-in is a special case. See
“Creating a vendor form to represent a collection of LDAP objects” on page 140.

� To create a vendor form using an ARDBC plug-in

1 In BMC Remedy Developer Studio, choose File > New > Vendor Form.

The New Vendor Form Wizard appears.

2 Select the server on which you want to create the vendor form, and click Next.

3 Select the ARDBC plug-in to use in the list of Available Vendor Names, and click
Next.

4 Choose a table from the list of Available Vendor Tables and click Next.

Alternatively, type a table name in the Table field, click Validate, then click Next.
184 Integration Guide

Creating vendor forms
5 (optional) On the Field Selection page, choose a key column in the Key Field list
box.

The key column uniquely identifies the entries in your vendor form. Key values are
mapped to the Request ID field on the Vendor Form.

6 In the Available Columns list on the Field Selection page, select columns to access
in AR System. Use the arrow buttons to move them to the Selected Columns list.

Figure 11-1: New Vendor Form Wizard, Field Selection page

7 Click Finish to create the vendor form.

8 Use Developer Studio to edit the new form, then click File > Save.

NOTE
For information on creating a join form using a vendor form, see the
“Requirements for creating a join form using a vendor form” section in the Form
and Application Objects Guide.
Chapter 11 Vendor forms 185

BMC Remedy Action Request System 7.6.04
186 Integration Guide

Chapter

12
 View forms
View forms enable AR System to point to and access data in relational database
tables outside AR System. The table can be located on the same database instance
or in any other database accessible from the current AR System database.

The following topics are provided:

About view forms (page 188)
Creating and modifying view forms (page 192)
Setting up a remote database for view forms (page 194)
Chapter 12 View forms 187

BMC Remedy Action Request System 7.6.04
About view forms
Because view forms access data outside of AR System, the developer must
understand the database data types and must have access to the external database
table containing the data. This section describes the requirements for using view
forms and the data types supported for each database.

Database requirements for view forms
Before creating a view form, identify the database table to use and verify that the
following requirements are met:

The database table must reside on, or be accessible to, the database that
AR System is using.

The ARAdmin user must have read and write access privileges on the database
table.

The database table must have a column (field) that enforces non-null and unique
values. This column acts as the Request ID. If the administrator chooses a
column that is not unique or that allows nulls, data corruption might occur. The
Request ID field must be an integer or character field with 6–15 characters.
Otherwise, the Key Field list is empty, and you cannot create the view form. If
the administrator chooses a character column for the Request ID, then the field
length must be the same as the column length.

You can use a view form to access BLOBs on a remote database, but not CLOBs.

Long columns (that is, text or clob) must allow null values.

There are additional configuration requirements if the table to be used with the
view form is on a remote database. See “Setting up a remote database for view
forms” on page 194.

Special considerations for view forms with DB2
For DB2® databases, you can connect only to database tables in the same DB2
database as the AR System database.

To use view forms on a DB2 database, you must add the database’s user name to
the ar.conf (ar.cfg) file by using the Db-user option. For example, if the DB2
administrator's name is db2admin, add the following line to the ar.conf (ar.cfg)
file:

Db-user: db2admin

For more information about the ar.conf (ar.cfg) file, see the Configuration
Guide.
188 Integration Guide

About view forms
AR System requirements for view forms
A view form can be manipulated as a regular form type with these exceptions:

You can add only Required and Optional fields that correspond to actual
columns in the data source. You can add a Display Only field only when the
column name does not correspond to a column in the data source.

After you attach an AR System field to a column in the database table, you
cannot reattach the field to a different column, but you can change other field
properties.

Status history, diary, currency, and attachment fields are not supported on view
forms.

You cannot change the type of a text field or change the length of any field after
initial creation.

BCE dates are not supported in date fields in a view form.

Field properties for fields on view forms
Field properties on view forms are the same as the field properties of a regular
form, with the following exceptions:

The View Information category includes the following properties:

Table—Indicates the link to the external database table. This field cannot be
modified.

Column—Displays the column name on which the field was created. This
field can be modified, but it must be 254 characters or less.

If the column name does not represent a column in the data source, the field
must be display-only.

For example, assume you add a character field to a view form. The Column
property shows the column name as Character Field, which does not exist in
the data source. To save the form, you must change the Column property to
match a column in the data source, or set the Entry Mode property to Display.

If the column name represents a column in the data source, the field cannot be
display-only.

You cannot change the data type of a character field on a view form. You can
decrease the input length of a character field, but this action does not alter the
corresponding column in the database. The input length should never be
increased beyond its initial value.

Database data types for view forms
The following sections list the data types supported by each database for
AR System field types in view forms. BMC Remedy Developer Studio
automatically maps the field types to corresponding data types.
Chapter 12 View forms 189

BMC Remedy Action Request System 7.6.04
Beginning with release 7.6.02, view forms support additional data types. This
includes blobs (DB2, Oracle, and Informix) and images (Microsoft SQL Server and
Sybase), which map to an attachment field, and several date and time data types,
which map to the Date, Time, or Date/Time field types as shown in this section.
(For view forms created in previous releases of AR System, Date/Time fields that
were mapped to an integer column are still supported.)

In some cases, you can map a different field type to a column type if appropriate
for the data. See “Mapping an alternative AR System field type” on page 194.

NOTE
When the data types nchar, nvarchar, or ntext are supported, they are used on
Unicode servers, and the char, varchar, and text data types are used on non-
Unicode servers.

For information about the database column types used for AR System fields in
regular forms, see the Database Reference, “Database column types for AR System
fields,” page 20.

DB2 data type mappings
The following data types are supported for view forms based on a DB2 database
table:

Microsoft SQL Server data type mappings
The following data types are supported for view forms based on a Microsoft SQL
Server database table:

DB2 data types AR System field type

varchar, varchar2, char, nchar Character (limited length)

clob Character (unlimited length)

integer, smallint, decimal Integer

real, double Real

decimal Decimal

date Date

timestamp Date/Time

time Time

blob Attachment field in attachment pool

Microsoft SQL Server data types AR System field types

nchar,char, varchar Character (limited length)

ntext,text Character (unlimited length)

int, tinyint, smallint Integer

real, float Real

decimal Decimal
190 Integration Guide

About view forms
Oracle data type mappings
The following data types are supported for view forms based on an Oracle
database table:

Informix data type mappings
The following data types are supported for view forms based on an Informix
database table:

Sybase data type mappings
The following data types are supported for view forms based on a Sybase database
table:

datetime, smalldatetime Date/Time (default), Date, Time

image Attachment field in attachment pool

Oracle data types AR System field types

varchar, varchar2, char, nchar Character (limited length)

clob Character (unlimited length)

number Integer

float Real

number Decimal

date Date/Time (default), Date, Time

blob Attachment field in attachment pool

Informix data types AR System field types

nvarchar,nchar,char, varchar Character (limited length)

text Character (unlimited length)

int8, smallint, integer Integer

float, smallfloat Real

decimal Decimal

date Date

datetime Date/Time (default) or Time

blob Attachment field in attachment pool

Sybase data types AR System field types

varchar, char Character (limited length)

text Character (unlimited length)

int, tinyint, smallint Integer

float, smallfloat Real

decimal Decimal

Microsoft SQL Server data types AR System field types
Chapter 12 View forms 191

BMC Remedy Action Request System 7.6.04
Creating and modifying view forms
Use BMC Remedy Developer Studio to create and modify view forms.

The following procedure explains how to create a view form to connect to a
database table.

� To create a view form

1 If the database is remote, set it up as described in “Setting up a remote database for
view forms” on page 194.

2 In BMC Remedy Developer Studio, choose File > New > View Form.

3 In the New View Form wizard, select the server on which you want to create the
view form, and click Next.

4 Enter the name of an existing database table to be associated with the view form
(see Figure 12-1 on page 193).

The formats for table names are as follows. Where two formats are given, the first
is for a table in the local database and the second for a table in a remote database:

DB2—TABLENAME

Use all capital letters when entering the table name because DB2 defaults to all
capital letters for the data in its system tables.

Informix—tablename or databasename:table

Use all lowercase letters when entering the owner and table name, because
Informix defaults to all lowercase letters for data in its system tables.

Oracle—TABLENAME or OWNER.TABLENAME

Oracle defaults to all capital letters for data in its system tables. If the table name
uses lower case, make sure that the capitalization for the name is entered
correctly.

Microsoft SQL Server—TABLENAME or
LINKNAME.DATABASENAME.OWNER.TABLENAME

Sybase—TABLENAME or DATABASENAME.OWNER.TABLENAME

Specify the owner as dbo if the current user is the owner of the table.

date Date

datetime, smalldatetime Date/Time

time Time

image attachment field in attachment pool

Sybase data types AR System field types
192 Integration Guide

Creating and modifying view forms
5 Click Load.

The Available Columns list box is populated with the database column names and
default AR System field type mappings for the supported data types.

Figure 12-1: New View Form wizard, View Form Properties page

6 In the Key Field list box, choose a column to designate as the key field.

You must choose either a character column with a name that contains 6 through 15
characters, or an integer column.

WARNING
The selected column must be unique and non-null.

7 In the Available Columns list, select the columns to appear on the AR System form,
and use the arrow buttons to move them to the Selected Columns list.

This method maps the default AR System field type to the database data type. To
use a different AR System field type for a database column, do not select the
column from the list as described in this step. Instead, follow the steps in
“Mapping an alternative AR System field type” on page 194.

8 Click Finish.

9 Use Developer Studio to make any additional changes to the new form, and then
click File > Save.
Chapter 12 View forms 193

BMC Remedy Action Request System 7.6.04
Mapping an alternative AR System field type
If necessary, you can map an AR System field type that is different than the default
type to a column in the external database.

� To map an alternate field type to a database column in a view form

1 Create the view form as described in “To create a view form” on page 192, but in
step 7, do not select the column to which you want to map an alternate field type.

2 After saving the form, add a field of the appropriate type to the form.

3 In the field properties tab, expand the View Information properties.

4 Click the Column property and type the database column name.

WARNING
Do not create a form with multiple fields referring to a single column. Such a form
will produce adverse results and may generate SQL errors.

Modifying view forms

� To add a new field to a view form using the default field type

1 Choose Form > Add Fields From externalDBName from the menu.

2 Select the field to add from the Add Field dialog box, and click OK.

� To delete a field from a view form

1 Click the field and choose Edit > Delete.

Deleted fields return to the Available Columns list box. This action does not
remove the column from the database table.

Setting up a remote database for view forms
If the database table is in a remote database, you must perform the required
database configuration steps described in this section and use the correct table
name syntax to access the remote table. For databases that require you to create a
database link or proxy database, refer to your database documentation and work
with the database administrator to configure access to the remote database table.

DB2—Remote view forms are not supported for DB2.

Informix—When creating the view form, use the following format to access the
database table:

databasename@servername:tablename

Oracle—Set up a link between the AR System database and the Oracle database.
Create a view in the database user's schema which accesses this link (the user is
ARADMIN by default).
194 Integration Guide

Setting up a remote database for view forms
For example:

CREATE VIEW view_name AS (SELECT * FROM
ownername.tablename@link)

Create the View Form on the view created above.

To enable the support of multiple remote Oracle databases with different
character sets, you must add the Oracle-Dblink-Character-Set parameter to
your ar.cfg (ar.conf) file. For more information, see the Configuration Guide.

Microsoft SQL Server—Complete the following tasks:

Create a link to the remote database and either give the user ARAdmin an
account on the remote database or use the proper login credentials.

Turn on the Distributed Transaction Coordinator for both the local and the
remote databases.

Specify the following server configuration setting in the ar.conf (ar.cfg)
file:

SQL-Server-Set-ANSI-Defaults: T

This setting enables the DB-Library connection that AR System uses to use
ANSI-NULLs and ANSI warnings. There should be no impact on the
performance of the database. For more information about the ar.conf
(ar.cfg) file, see the Configuration Guide.

The format for the table name is:

LINKNAME.DATABASENAME.OWNER.TABLENAME

Sybase—Create a proxy database. This is a Sybase database type that copies all
the metadata about a remote database to the local database but still allows
queries to be redirected to the remote database. For information about how to
create a proxy database, see the Sybase documentation.

The format to access the database table is:

DATABASENAME.OWNER.TABLENAME
Chapter 12 View forms 195

BMC Remedy Action Request System 7.6.04
196 Integration Guide

Chapter

13
 SQL database access
Using SQL, third-party applications can read data from the AR System database.
Similarly, both AR System client and server processes can read and write to
external databases using SQL.

The following topics are provided:

Accessing AR System data externally (page 198)
Pushing data from AR System with SQL (page 198)
Pulling data into AR System with SQL (page 198)
Issues and considerations (page 199)
Chapter 13 SQL database access 197

BMC Remedy Action Request System 7.6.04
Accessing AR System data externally
Any process that has permission to query the database engine can read AR System
data. A third-party application writing to the AR System database is not supported
because there is no way to ensure data integrity. In addition, external applications
reading AR System data directly from the database are not subject to AR System
permissions, nor do they trigger any AR System workflow. If this is not acceptable,
data should be read through the AR System API.

For detailed information about the AR System database, see the Database Reference.

Pushing data from AR System with SQL
All three AR System workflow components–active links, filters, and escalations–
can send data to external tables and even external databases using the Direct SQL
action. The SQL command must be created by the administrator and entered into
the SQL Command field on the If Action or Else Action tab. The AR System server
performs no pre- or post-processing on the SQL command or the results. The
administrator must make sure that the command is correct. When the action is
triggered, the AR System server passes the SQL command directly to the SQL
database server on which it is running. For more information about the Direct SQL
action, see the Workflow Objects Guide.

Pulling data into AR System with SQL
To pull information from external tables, you can use the Set Fields action with the
Read Value for Field From field set to SQL. This allows you to send an SQL SELECT
command to the database and assign the return values to AR System fields.

Observe the following general rules for using SQL commands:

You need not use every value that is returned from the SQL command, but you
must use at least one.

You can use the same value in more than one field.

You can issue only one SQL command per action. You cannot enter two
commands separated by a semicolon and have both commands run. To run a set
of commands, create separate actions, or create a stored procedure and run that.
(Stored procedures do not return values.)

Turn on AR System server SQL logging to resolve problems with the SQL
syntax if it returns unexpected values or results. A good strategy is to start an
SQL interpreter (for example, isql for Sybase, SQL*Plus for Oracle, Command
Center for DB2, or Query Analyzer for Microsoft SQL Server) and to enter the
same SQL command directly into the database to verify its validity.
198 Integration Guide

Issues and considerations
Because there is no error checking on the SQL statement, run the SQL statement
directly against the database (as a test) before you enter it into the SQL
Command field. You can then copy and paste the tested SQL command directly
into the SQL Command field.

If the SQL operation fails, an AR System error message and the underlying
database error message appear.

For more information about Set Fields action with SQL, see the Workflow Objects
Guide.

Issues and considerations
Keep the following issues in mind when working directly with an SQL database:

The AR System server typically has full administrator access to the database for
reading and writing any data. AR System users have permissions to read and
write specific data using an AR System client, and these permissions are
managed by the AR System server. If users access the database directly through
a database client, they are bypassing the AR System security model.

AR System stores some data in the database in formats that can cause third-
party applications to become confused. For example, AR System date/time
fields store values as timeticks, which are the number of seconds from 1 January
1970 at midnight until the current time. These numbers are stored as integer
numbers, and typically need to be converted by the third-party application.

All SQL commands are sent to the database server that holds the AR System
database. To access databases that are external to this DB server, you must have
the appropriate conduit installed and issue the SQL commands needed to use
the conduit for your SELECT statement.
Chapter 13 SQL database access 199

BMC Remedy Action Request System 7.6.04
200 Integration Guide

Chapter

14
 ODBC database access
The Open Database Connectivity (ODBC) standard is a connectivity solution that
enables ODBC clients to communicate with AR System. The AR System ODBC
driver provides read-only access to data defined in AR System forms. This section
discusses the use of the AR System Open Database Connectivity (ODBC) driver to
provide additional functionality with other programs.

The following topics are provided:

Overview (page 202)
Creating multiple data sources (page 202)
Compatibility with ODBC clients (page 205)
Using Crystal Reports with AR System (page 205)
Using Microsoft Access with AR System (page 211)
Using Microsoft Excel with AR System (page 212)
Issues and considerations (page 212)
Chapter 14 ODBC database access 201

BMC Remedy Action Request System 7.6.04
Overview
Open database connectivity (ODBC) is an SQL-based communication standard
developed by Microsoft. The ODBC standard represents a connectivity solution
that enables ODBC clients to communicate with AR System. The AR System
ODBC driver provides read-only access to data defined in AR System forms.

The interface provided by the ODBC driver (arodbc70.dll)is similar to that
provided by the AR System API. Like the API, the driver does not provide access
to the underlying relational database. Instead, as shown in the following figure, the
driver communicates with the AR System server, which in turn communicates
with the database server. When using the ODBC driver, the AR System access
control model (user and group permissions) is maintained, and server-side
workflow is still triggered.

Figure 14-1: ODBC integration

Many ODBC clients are available. The AR System ODBC driver provides extended
functionality with BusinessObjects Crystal Reports. In addition, the driver
provides basic functionality with Microsoft Access, Microsoft Excel, and other
ODBC clients. See the compatibility matrix on the BMC Remedy support website
for additional information about supported ODBC clients.

Creating multiple data sources
By default, when you install BMC Remedy User, the mid tier, or the
ARWebReportViewer, the AR System ODBC driver (arodbc70.dll) is installed.
The AR System ODBC data source is configured with your AR System user name
and password, and it accesses AR System with your permissions. You can
designate multiple data sources for one third-party tool; conversely, you can use a
single data source for several third-party tools.

ODBC-
capable

client

ODBC-
capable

client

AR System
ODBC
driver

AR System
ODBC
driver

AR System serverAR System server Database serverDatabase server
202 Integration Guide

Creating multiple data sources
For example, to run Crystal Reports with any client (a browser or BMC Remedy
User), you must have the AR System ODBC driver on your machine. You could
create a data source called Report User to access AR System through Crystal
Reports. When you create this data source, you might specify Joe User as the
AR System user and supply Joe’s password. When you use the Report User data
source to access AR System through Crystal Reports, the AR System permissions
are granted to Joe User. This enables you to set up data sources with multiple levels
of permissions.

� To create additional ODBC data sources

1 Open the ODBC Data Source Administrator.

This utility is in different locations based on the version of Windows you use.

2 On the System DSN tab, select AR System ODBC Data Source, and click Add.

The Create New Data Source dialog box appears.

3 Select AR System ODBC Driver, and click Finish.

The AR System ODBC Setup dialog box appears.

Figure 14-2: AR System ODBC Setup dialog box

4 In the Data Source Name field, enter a unique name for the data source.

5 In the AR Server field, enter the name of the AR System server to access with this
data source.

6 Enter a user name whose permissions will be used to access the report data.

7 Enter the user’s password.

8 Select the Descending Diary Fields check box to designate reverse calendar order.

9 (Mid tier only) If the field or form names in your reports contain special characters,
such as a dot (.), hyphen (-), plus sign (+), and semicolon (;), select the Use
Underscores check box to replace the special characters with underscores.
Chapter 14 ODBC database access 203

BMC Remedy Action Request System 7.6.04
For reports displayed in BMC Remedy User, you do not need to select the Use
Underscores check box. BMC Remedy User supplies the correct value.

NOTE
If you use Microsoft Access, spaces and hyphens are not allowed in object names.

10 To use field labels based on the locale you specify in the Report Locale field, select
the Use Labels check box. See “Using field labels or database names in Crystal
Reports” on page 208.

NOTE
If the Verify On First Refresh option in Crystal Reports is selected, you must match
the state of the Use Labels option when you create the report and at run time. For
example, if you select the Use Labels option when you create the report, you must
select it when you run the report. If you clear the Use Labels option when you
create the report, you must clear it when you run the report.

To avoid problems caused by mismatched Use Labels options, it is recommended
that you clear the Verify On First Refresh report option in Crystal Reports.

11 (Mid tier only) In the Report Locale field, enter the locale for the language in which
to display the report.

NOTE
If you install two localized views (for example, German and French) and you use
the German localized view and the report locale setting is set to the French locale,
the data is returned in French, though the static report text is in German.

For reports displayed by BMC Remedy User, you do not need to specify a value in
the Report Locale field. BMC Remedy User supplies the correct value.

12 (Mid tier only) In the VUI Type field, enter 3 to specify that a web view should be
used to display reports for this data source.

For reports displayed by BMC Remedy User, you do not need to specify a value in
the VUI Type field. BMC Remedy User supplies the correct value.

13 Click OK.

NOTE
To modify an existing data source, select it in the ODBC Data Source
Administrator dialog box, and click Configure. The dialog box in Figure 14-2 is
displayed.
204 Integration Guide

Compatibility with ODBC clients
Compatibility with ODBC clients
Many ODBC clients are available. The AR System ODBC driver provides:

Multi thread-safe operation

Compatibility with ODBC version 3.5

Support for Unicode

Extended functionality with Crystal Reports 10.0 and XI, which enables you to
create custom reports with wide-ranging capabilities and provides additional
flexibility in report design.

Basic functionality with Microsoft Access.

Basic functionality with Microsoft Excel.

See the compatibility matrix on the Remedy website for additional information
about supported ODBC clients.

Using Crystal Reports with AR System
After you set up predefined reports using Crystal Reports, users can view them by
using BMC Remedy User and the Crystal Reports Display Engine. The Crystal
Reports Display Engine is automatically installed with the BMC Remedy User
installation. For more information, see the Installation Guide. For information
about viewing reports created with Crystal Reports, see BMC Remedy User help.

NOTE
Before you start creating reports based on AR System forms, make sure that you
follow the SQL standard for naming objects such as forms. For example, start the
form name with an alphabetic or underscore character. You should especially
avoid using a number (such as 2) for the name of a form. Otherwise you might see
an error message, such as ODBC error: Unexpected extra token: formName.

The following procedure describes how to get started designing reports; however,
see your Crystal Reports documentation for complete instructions about using the
design wizard to create reports.

� To create a report by logging in to AR System from Crystal Reports

1 Open Crystal Reports and create a report.

2 In the Crystal Reports Gallery, select a wizard such as Standard.

3 In the Available Data Sources, select ODBC (RDO).

4 When the ODBC (RDO) dialog box appears, select the Data Source to log in to.

For example, select AR System ODBC Data Source as the default data source.

The AR System ODBC Setup dialog box appears.
Chapter 14 ODBC database access 205

BMC Remedy Action Request System 7.6.04
Figure 14-3: AR System ODBC Setup dialog box

5 Enter the user’s password.

6 To designate reverse calendar order, select the Descending Diary Fields check box.

7 Select the Use Underscores check box.

8 Specify whether to use field labels or database names to represent AR System
fields.

Select the Use Labels check box to use field labels.

Clear the Use Labels check box to use database names.

See “Using field labels or database names in Crystal Reports” on page 208.

NOTE
Field labels are based on the locale specified in the Report Locale field.

9 Click OK to log in.

The AR System forms appear in the Standard Report Creation Wizard as data
sources.
206 Integration Guide

Using Crystal Reports with AR System
Figure 14-4: Selecting data sources in Standard Report Creation Wizard

10 Select the form to include in your report, and click Next.

11 Click Next.

The wizard lists all fields in the underlying form.

Figure 14-5: Selecting fields in wizard

NOTE
The content of the list of fields depends on whether you selected Use Labels in the
AR System ODBC Setup or AR System ODBC Login dialog box. See “Using field
labels or database names in Crystal Reports” on page 208.
Chapter 14 ODBC database access 207

BMC Remedy Action Request System 7.6.04
When you select report fields, some fields might not be listed that are in your form.
This occurs when the field’s database name is different from its display label. For
example, a field called Last Name in your form is not shown in the Database Fields
list box in Crystal Reports (the Database Fields list box appears in the following
figure). Instead, the field name Surname might appear. Each field in a form is
identified by a unique database name, not by the display label that appears in the
form.

To identify a field’s database name, open the form in BMC Remedy Developer
Studio, and open the Field Properties dialog box for the field. The Name field of
the Database tab in the Field Properties dialog box shows the field’s database
name.

12 Select the fields to display in the report, and click Next.

The wizard now lets you specify how to group the information to display on your
report. This step is optional.

13 Group the information, and click Next.

The wizard now lets you specify a subsection of the information to display on your
report. This step is optional.

14 Select a subsection of information, and click Next.

The wizard now lets you specify a report template. This is optional. To preview
your report, click an available template.

15 Select a template, and click Finish.

For more information about designing reports, see your Crystal Reports
documentation.

Using field labels or database names in Crystal Reports
When you create a report in Crystal Reports, you select the AR System fields on
which to report from a list displayed by Crystal Report Designer. The AR System
fields in the list are represented by field labels (generated at the AR System view
level) or database names (generated at the AR System database level). You specify
how to represent AR System fields in Crystal Report Designer and your reports
when you:

Set up the AR System ODBC as a data source for your report. See “To create
additional ODBC data sources” on page 203.

Create a report in Crystal Reports. See “To create a report by logging in to AR
System from Crystal Reports” on page 205.

If you specify using field labels, the list of fields in Crystal Report Designer
displays field labels, if any exist. If a field does not have a label, the list displays the
database name for that field.
208 Integration Guide

Using Crystal Reports with AR System
If you do not specify using field labels, the list of fields in Crystal Report Designer
displays database names for the fields.

IMPORTANT
It is recommended that you use the same setting for setting up your AR System
ODBC and for creating your Crystal Report.

WARNING
If you report on two AR System fields that have the same label or two fields where
one field’s database name matches another field’s label, your report might contain
incorrect data.

TIP
To identify a field’s database name, open the form in BMC Remedy Developer
Studio, and then open the Field Properties dialog box for the field. The Name field
of the Database tab in the FieldProperties dialog box shows the field’s database
name.

Crystal Report report options considerations
When you create a report in Crystal Reports, you can select the Verify on Refresh
option. When this option is selected, Crystal Reports verifies fields defined in a
report, which can be either AR System field labels or database names, against the
data source as it is configured at run time. If you use this type of verification,
Crystal Reports reports only on field names for which there are matches between
the report definition and the data source as it is configured at run time.

If you change your AR ODBC configuration (that is, toggle the Use Labels check
box) between the time you design the report and the time you run it and you verify
report fields against the AR ODBC data source, your report might not contain the
data you expect, and you might receive a columns-not-found error.

Selecting report fields in Crystal Reports
When using an ODBC client to view AR System data, some fields that are in your
form might not be listed. This occurs when the field’s database name is different
from its display label.

Suppose, for example, a field in your form called Last Name is not shown in the
Database Fields list box in Crystal Reports. Instead, the field name Surname might
appear. Each field in a form is identified by a unique database name, not by the
display label that appears in the form.

TIP
To identify a field’s database name, open the form in BMC Remedy Developer
Studio. Select the field, then expand the Database category on the Properties tab.
The Name property displays the database name.
Chapter 14 ODBC database access 209

BMC Remedy Action Request System 7.6.04
� To select the field

1 In the Create Report Expert dialog box, click the Fields tab.

2 From the Database Fields list, select the fields to include in your report, and click
Add.

Alternatively, you can click Add All to include all the fields. To remove a field or
all fields, click Remove or Remove All, respectively.

3 Click Preview Report to view your report.

For information about designing reports, see your Crystal Reports documentation.

Using Crystal Reports with join forms
Crystal Reports allows users to generate reports from multiple tables by joining the
tables together in an SQL statement external to AR System. AR System ODBC
Driver does not support this capability. You can, however, achieve the same goal
by creating an AR System join form. After creating the join form, generate a report
from it.

If you add two fields that have the same database name (such as Submitter) to a
join form, one field’s database name appears as a field ID in Crystal Reports.

Limitations when using Crystal Reports
Be aware of the following limitations when using Crystal Reports:

Converting Date/Time Strings to Date Strings—In Crystal Reports, you can
specify how Date/Time strings are handled in your report. If you select the
Convert to Date option in the Reporting tab of the File Options dialog box, Date/
Time strings from AR System are converted to Date strings in Crystal Reports.

However, if you set this option to convert Date/Time strings to Date strings, you
cannot use the select condition is equal (in the Select tab of the Create Report
Expert dialog box in Crystal Reports). The AR System Date/Time field works
only with the Convert to String or Keep Date-Time Type options.

List Sorting—Selection fields from AR System are treated as character types.
List sorting in Crystal Reports is based on display values (New, Assigned,
Closed), rather than numeric values (0, 1, 2) associated with an enumerated
field. This occurs because selection fields with AR_DATA_TYPE_ENUM data types
are mapped to SQL_CHAR data types when the AR System ODBC driver is used.
ODBC does not have an equivalent data type.

Browsing Data—The Browse Data button in the Fields tab of the Create Report
Expert dialog box in Crystal Reports does not display the Request ID (or other
data) for all the requests. (Do not select the Select Expert option because it
attempts to perform an unqualified search for all values in a field.)

Date—Crystal Reports follows the calendar type from your operating system,
typically the Gregorian calendar starting from October 15, 1582. If the date field
contains a BC date, Crystal Reports does not support it.
210 Integration Guide

Using Microsoft Access with AR System
Using Microsoft Access with AR System
This section includes tips for using Microsoft Access with AR System.

Avoid using special characters (such as brackets, decimal points, hyphens, and
spaces) when naming tables and columns.

When you set up an ODBC driver for use with Microsoft Access, select the
Use Underscores check box. This check box is shown in Figure 14-2 on page 203.

Table names that are nearly identical, such as My.Table and My Table (names
that include decimal points, hyphens, and spaces), are not differentiated by the
driver.

Searching for data in these tables might produce unexpected results. Rename
table and field names that are nearly identical.

Maximum size of an entry or data set in Microsoft Access is 2K.

If you encounter the errors Record too large when using the Import Table
option or This form or report is based on a query that exceeds the
limit for data in a single record when using the Link Table option, you
must exclude unnecessary fields from the search or report. See your Microsoft
Access documentation for additional information about excluding fields.

Your Microsoft Access authorized signature and your AR System user name
and password might conflict.

If you notice that the tables or fields disappear (although you have access
permissions) when you work on reports, it is caused by a login identification
conflict. To resolve this problem:

Select the same user name and password that you use to log in to AR System.

Turn off the following flag in the Registry and set the value to 0:
HKEY_LOCAL_MACHINE\Software\Microsoft\Jet\3.5\Engines\
ODBC\TryJetAuth

When using Microsoft Access to link tables from an AR System ODBC data
source, you enter information into several dialog boxes. Do not select any
options from the Select Unique Record Identifier dialog box. Simply click OK to
close that dialog box.
Chapter 14 ODBC database access 211

BMC Remedy Action Request System 7.6.04
Using Microsoft Excel with AR System
When you create an unqualified search for a diary field in Microsoft Excel, the data
appears with small control characters that appear as small boxes.

� To remove the control characters

1 Highlight the cells and choose Data > Text to Columns.

2 Select the Delimited option, and click Next.

3 Click the Treat Consecutive Delimiters as One button.

4 Select Finish.

The diary field text data (not the time stamp) is removed with the control
characters.

NOTE
Microsoft Excel has a date system that begins January 1, 1900. If your date field
contains a BC date, Microsoft Excel does not support it.

Issues and considerations
Consider these issues when working with AR System ODBC:

The AR System ODBC driver is read-only. ODBC clients that create, modify, or
delete entries or tables do not function correctly with the AR System driver.

The AR System ODBC presents AR System join forms as a single table, enabling
you to search AR System join forms easily. However, in third-party ODBC
clients, such as Crystal Reports, you cannot run an SQL search that performs a
join directly through the SQL statement.

If you cannot create an AR System join form for the data you need, it is possible
to create multiple AR System data sources, connect to one AR System table per
data source, and then perform the join in your ODBC client. (BMC Remedy User
does not support multiple AR System data sources. Therefore, if you create a
report using a third-party ODBC client and join two tables directly in an SQL
statement, the report will not run from AR System workflow or from the BMC
Remedy User Reporting window.)

Hidden form permissions are not enforced in the ODBC driver. Forms that are
hidden from the BMC Remedy User Object List are accessible for reporting to
other tools using the BMC Remedy ODBC driver.
212 Integration Guide

Issues and considerations
If you use the AR System ODBC Driver in MS Access to link tables, you might
encounter the following error: Cannot define field more than once. As a
workaround, select the Use Underscores during the DSN configuration. This
option makes form and field names adhere to SQL standards by removing
spaces and other nonstandard characters.

To determine which fields are in conflict, you can enable ODBC Tracing and
look through the logs, or you can navigate through the Fields list in BMC
Remedy Developer Studio to see if there are fields that meet the preceding
conditions.

When the ODBC driver accesses a currency field, it generates four or more
column names for the field by adding suffixes to the field name. The suffixes are:

_Date

_Type

_Value

_functional_currency_code

The driver creates one column for each functional currency code defined for the
field.

If the form contains a field with a name that is the same as one of the generated
names, the ODBC driver will report “Cannot define field more than once” and
fail to get the data.

To prevent this problem, do not use field names that conflict with the column
names generated by the ODBC driver for currency fields.
Chapter 14 ODBC database access 213

BMC Remedy Action Request System 7.6.04
214 Integration Guide

Chapter

15
 Extending BMC Remedy
Developer Studio
This section explains how to add custom functionality to BMC Remedy Developer
Studio.

The following topics are provided:

About extending BMC Remedy Developer Studio (page 216)
Prerequisites for creating plug-ins (page 219)
Extension points (page 219)
BMC Remedy Developer Studio API (page 220)
Installation directory (page 220)
Chapter 15 Extending BMC Remedy Developer Studio 215

BMC Remedy Action Request System 7.6.04
About extending BMC Remedy Developer
Studio

BMC Remedy Developer Studio is composed of Eclipse plug-ins, which are
modules of code that perform various functions. Some of these plug-ins have
public extension points, which are ports through which they expose their
functionality to other plug-ins and indicate which class or method to call to use
that functionality. To add functionality to BMC Remedy Developer Studio, you
can create custom plug-ins with extensions that hook into these extension points.
Through these connections, custom plug-ins can exchange API calls with BMC
Remedy Developer Studio and the AR System server.

IMPORTANT
To create plug-ins for BMC Remedy Developer Studio, you must be familiar with
Eclipse plug-in development (see http://www.eclipse.org) and Java™ (see
http://www.oracle.com/technetwork/java/index.html). Although BMC
Customer Support is available to answer questions about BMC plug-ins and APIs,
it cannot provide help with general Eclipse and Java issues that you encounter
while developing custom plug-ins.

This feature does not apply to BMC Remedy AR System release 7.5.00 or earlier.
216 Integration Guide

http://www.eclipse.org
http://java.sun.com

About extending BMC Remedy Developer Studio
Using the public BMC Remedy Developer Studio plug-in extension points, you
can create plug-ins that extend its user interface as follows:

Add custom server object types to the All Objects list in AR System Navigator
and to object lists in the Object List tab. For example, Figure 15-1 shows an All
Objects list that contains a custom Hamburgers server object.

Figure 15-1: Customized All Objects list in AR System Navigator

When users double-click the custom object type, an object list for that type opens
and displays a list of objects supplied by the custom plug-in (see Figure 15-2).

Figure 15-2: Customized object type in the Object List tab

To edit the custom objects, create a custom editor configured by the custom
plug-in. In Eclipse, register the editor for the custom object type.

Custom server
object type
Chapter 15 Extending BMC Remedy Developer Studio 217

BMC Remedy Action Request System 7.6.04
Add custom items to context menus for servers in the AR System Navigator.

Figure 15-3: Customized server context menu in AR System Navigator

Add custom items to context menus for object lists. The items can appear on
menus for a specific object type or for all object types. For example, Figure 15-4
shows a context menu for active links that contains the following custom
actions: Enable Workflow, Disable Workflow, and Set Execution Order.

Figure 15-4: Customized context menu for the Active Link object type

Add custom rules to Analyzer.

You can add rules for the BMC Remedy Developer Studio Analyzer command
by creating custom plug-ins that connect to the Analyzer plug-in through its
public extension point. (For general information about Analyzer, see the
Workflow Objects Guide.)

Custom item on server context
menu in AR System Navigator

Custom actions on object list context menu
218 Integration Guide

Prerequisites for creating plug-ins
Prerequisites for creating plug-ins
To create plug-ins for BMC Remedy Developer Studio, you need the software and
project dependencies listed in this section.

Software requirements
BMC Remedy Developer Studio release 7.6.02 or later

Java SE JDK™ 1.5 or later

Eclipse for RCP/Plug-in Developers (Ganymede 3.4 SR2 or later for Windows)

To download the Eclipse software, go to http://www.eclipse.org/
downloads/packages/release/ganymede/sr2.

Extract the downloaded ZIP file into C:\Eclipse3.4 (or later version).

Project dependencies
Add the following BMC Remedy Developer Studio plug-ins as dependencies to
your custom plug-in project:

com.bmc.arsys.studio.api (7.6.02 or higher)

com.bmc.arsys.studio.commonui (7.6.02 or higher)

com.bmc.arsys.studio.model (7.6.02 or higher)

com.bmc.arsys.studio.ui (7.6.02 or higher)

com.bmc.arsys.studio.analyzer.core (7.6.02 or higher)

To do this, extract the contents of the ARSystemServerInstallDir\
DeveloperStudio\files\Plugins.zip file into your top-level Eclipse directory.

For example, if your top-level Eclipse directory is C:\eclipse, extract the
contents into C:\eclipse.

Extension points
The BMC Remedy Developer Studio plug-ins provide these extension points:

Plug-in Description

com.bmc.arsys.studio.model.modeltype Registers new server object types with the
AR System Navigator. Examples of server
object types are active links, filters, and forms.

com.bmc.arsys.studio.model.modelprovider Registers providers for new object types. For
example, list providers supply a list of objects
and object providers supply actual objects for
editing. The providers can supply items to both
the AR System Navigator and the Object List
tab.
Chapter 15 Extending BMC Remedy Developer Studio 219

http://www.eclipse.org/downloads/packages/release/ganymede/sr2
http://www.eclipse.org/downloads/packages/release/ganymede/sr2

BMC Remedy Action Request System 7.6.04
BMC Remedy Developer Studio API
To incorporate additional functionality—such as information about AR System
objects and workflow—into custom plug-ins, use the public Java API calls in the
com.bmc.arsys.studio.model plug-in. These calls are described in the BMC
Remedy Developer Studio Java API online documentation, which is in the
DevStudioInstallDir\files\DevStudioAPIdoc.zip file.

To access the documentation, unzip the .jar file, and open the index.html file.

Installation directory
To integrate a custom plug-in with BMC Remedy Developer Studio, put the plug-
in’s .jar file in the ARSystemInstallDir\DeveloperStudio\plugins directory.

com.bmc.arsys.studio.commonui.typeaction Adds actions to context menus in the Object
List tab for a single object type. For example,
see Figure 15-4 on page 218.

com.bmc.arsys.studio.commonui.genericaction Adds actions to context menus in the Object
List tab. The actions can appear on menus for
one or more object types.

com.bmc.arsys.studio.commonui.typeinformation Registers new server object types with the user
interface to add the types to the AR System
Navigator (see Figure 15-1 on page 217) and
the Object List tab (see Figure 15-2 on
page 217). It also provides the name of the
object type to display in the AR System
Navigator.

com.bmc.arsys.studio.analyzer.core.analyzerRules Adds rules for the BMC Remedy Developer
Studio Analyzer command.

Plug-in Description
220 Integration Guide

Chapter

16
 BMC Atrium Integration
Engine
The BMC Atrium Integration Engine (AIE) provides the hooks to enable data to
pass between AR System and other systems, such as an Enterprise Resource
Planning (ERP) system. BMC Remedy provides the structure for developers to
build adapters to various databases and products. This chapter provides a brief
overview of the AIE integration with AR System.

The following topic is provided:

The AIE integration with AR System (page 222)
Chapter 16 BMC Atrium Integration Engine 221

BMC Remedy Action Request System 7.6.04
The AIE integration with AR System
AIE consists of the Data Exchange application and the AIE service as well as a
configuration tool and an event request interface. The Data Exchange application
is a group of AR System forms that define how to transfer data between a BMC
Remedy application and another application. The AIE service does the actual
transfer, using the rules from the Data Exchange application. During the transfer
process, the service connects to both the AR System server and to the adapters that
communicate with the other application. Figure 16-1 illustrates this process.

Figure 16-1: BMC Atrium Integration Engine

The adapters communicate with AIE using the Adapter Development Kit (ADK)
interface. The ADK contains the following items:

A class library defining the interface between the AIE service and the adapter

An adapter template, which is a development environment that you can use to
create an adapter.

A sample flat file adapter, which is an implementation of an adapter for a flat
file database.

An installation control file to help build an installer for an adapter.
222 Integration Guide

The AIE integration with AR System
The BMC Atrium Integration Engine User’s Guide contains information about
creating data exchanges and data mappings, and other important AIE concepts.

The BMC Atrium Integration Engine Adapter Development Kit Developer’s Guide
contains detailed instructions for creating adapters.
Chapter 16 BMC Atrium Integration Engine 223

BMC Remedy Action Request System 7.6.04
224 Integration Guide

Chapter

17
 BMC Atrium Orchestrator
BMC Atrium Orchestrator (Atrium Orchestrator) enables IT organizations to
automate tasks and processes, such as trouble ticketing, fault management,
performance monitoring, virtualization management, and so on.

This chapter describes how to configure AR System for integration with
Atrium Orchestrator. To use the information in this chapter, you should be
familiar with creating forms and workflow in AR System, and you should
understand how to use the Set Fields action in a filter or escalation. You must also
be familiar with Atrium Orchestrator processes and operations.

The following topics are provided:

Overview (page 226)
The AR System Orchestrator Configuration form (page 226)
AR System workflow for Atrium Orchestrator integration (page 229)

NOTE
To integrate AR System with Atrium Orchestrator, you must use BMC Atrium
Orchestrator 7.5 or later. For the latest, most complete compatibility information,
see the AR System compatibility matrix on the BMC Support web site at
http://www.bmc.com/support. For more information about
Atrium Orchestrator processes and operations, see your Atrium Orchestrator
documentation.
Chapter 17 BMC Atrium Orchestrator 225

BMC Remedy Action Request System 7.6.04
Overview
Application developers can integrate AR System applications with
Atrium Orchestrator. This integration requires the AR System Web Services plug-
in, which uses the Java plug-in server, to be installed with the AR System server.
AR System acts as a consumer of the Atrium Orchestrator web service.

To integrate an AR System application with an Atrium Orchestrator web service,
you must complete these two main tasks:

Create an entry in the AR System Orchestrator Configuration form. Each entry
in this form defines the configuration for a specific Atrium Orchestrator web
service.

Create workflow to integrate the application with Atrium Orchestrator,
including:

A form containing the fields that will hold input and output values for data
exchanged with Atrium Orchestrator.

A filter or escalation associated with this form. The filter or escalation must
include one or more Set Fields actions that use the BMC ATRIUM
OCHESTRATOR data source.

NOTE
The tools you use to create AR System workflow and applications and to create
and customize Atrium Orchestrator processes have very similar names. This guide
describes using BMC Remedy Developer Studio (Developer Studio) to create
AR System workflow that integrates with Atrium Orchestrator.
Atrium Orchestrator includes the workflow modeling tool Atrium Orchestrator
Development Studio (Development Studio).

For information about using Developer Studio with AR System, see the
Introduction to Application Development with BMC Remedy Developer Studio guide.
For information about using Development Studio with Atrium Orchestrator
processes, see the Atrium Orchestrator documentation.

The AR System Orchestrator Configuration
form

The AR System Orchestrator Configuration form allows you to define the list of
Atrium Orchestrator web services available. Each entry in the form represents the
configuration information for an Atrium Orchestrator service and contains all the
information required to connect to that service.

The configuration settings that you enter in this form are used when you design
the associated filter or escalation. All information required at run time is stored in
the filter or escalation.
226 Integration Guide

The AR System Orchestrator Configuration form
� To define the Atrium Orchestrator web service for AR System

1 Log in to AR System as a user with administrator privileges, using BMC Remedy
User or a browser.

2 On the home page, select AR System Administration Console > System >
General > Orchestrator Configuration.

3 In the AR System Orchestrator Configuration form, complete the following fields:

Configuration Name—A unique name that identifies this entry. This is a
required field. The name must be unique, and AR System assigns a GUID to the
field.

When you create the associated filter or escalation, BMC Remedy Developer
Studio uses this field to display a list of all the entries in this form.

Grid name—The grid name for the web service. This is a required field.

When you create the associated filter or escalation, Developer Studio uses the
value in this field along with the service URL to obtain the list of
Atrium Orchestrator processes. Developer Studio stores the grid name within
the workflow action for use when the service is consumed.

Description—A description of this web service. This is not a required field.

Service URL—The URL for the web service on the Atrium Orchestrator server,
in the format http://serverName:port/orchContextPath/orchEndPoint.
This is a required field. Obtain the Atrium Orchestrator context path and end
point from the Atrium Orchestrator administrator.

When you create the associated workflow, Developer Studio uses the value in
this field along with the grid name to obtain the list of processes for the service.
It also stores the Service URL in the workflow action for use when the service is
consumed.

Username—The user name to use when connecting to the web service. This is a
required field.

Password—The password to use when connecting to the web service. This is a
required field.

Developer Studio uses this user name and password at design time to connect
to the web service and obtain data about the service. It also stores this user name
and password in the workflow action for use when the service is consumed.

To override the design-time user name and password with the correct user
name and password at run time, you must use the Input Mapping table in the
filter or escalation to map these elements to fields in the associated form. See “To
define the filter or escalation” on page 230.

Figure 17-1 shows an example of a completed entry in the AR System Orchestrator
Configuration form.
Chapter 17 BMC Atrium Orchestrator 227

BMC Remedy Action Request System 7.6.04
Figure 17-1: Example AR System Orchestrator Configuration form entry

Modifying entries in the AR System Orchestrator Configuration form
Information stored in the AR System Orchestrator Configuration form is used at
design time when you create filters and escalations to perform
Atrium Orchestrator operations. When you save the filter or escalation,
information from the configuration form is stored in the workflow object.

If you change the information for a configuration entry after associating workflow
to the configuration, Developer Studio prompts you to confirm whether you want
to override the information stored in the filter with the new information from the
configuration form.

Figure 17-2: Overwrite dialog box
228 Integration Guide

AR System workflow for Atrium Orchestrator integration
As shown in Figure 17-2, in the “Overwrite from configuration form” dialog box
the active fields are those that have different values in the configuration form entry
from those stored in the workflow. To override these values in the workflow object
with the values from the configuration form, select the appropriate check boxes. (If
the check box is inactive, that value has not changed.) When you save the filter or
escalation, the new values are saved with it.

NOTE
If you export the Atrium Orchestrator workflow and import it to another
AR System server, you should also export and import the associated entry in the
AR System Orchestrator Configuration form. This entry is needed if the filter or
escalations that use it are to be edited on the other server. If you do not export the
configuration form entry, you can still run the workflow on the other server.

AR System workflow for Atrium Orchestrator
integration

To integrate an AR System application with Atrium Orchestrator, use Developer
Studio to create an AR System form or forms to hold the input and output data for
each process, and a filter or escalation to exchange information with
Atrium Orchestrator.

In the AR System filter or escalation, you select the Atrium Orchestrator processes
and the operation to perform. The workflow can be designed to carry out either
synchronous or asynchronous Atrium Orchestrator operations. With synchronous
execution, AR System waits for the operation to complete before returning a result
to the workflow action. With asynchronous execution, the operation returns a job
ID. In this case, you use the job ID in subsequent workflow actions to determine
the status of the operation, or to cancel it.

NOTE
You must use a separate Set Fields action for each Atrium Orchestrator process.

� To define the application form

1 Create a regular form, and add the appropriate fields to hold the input and output
data for the Set Fields action.

The input and output fields on the form depend on the operation and process type.
You can create one form that will hold the data for all process integrations, or
separate forms for each process.

2 Save the form and assign a form name.
Chapter 17 BMC Atrium Orchestrator 229

BMC Remedy Action Request System 7.6.04
� To define the filter or escalation

1 Create a new filter or escalation.

2 In the Associated Forms panel, associate the form to the filter or escalation by
selecting the form you created in step 1.

3 Select the appropriate Execution Options and enter a Run If qualification that is
appropriate for the application.

4 In the If Actions panel, add a Set Fields action with the following settings:

a As the Data Source, select BMC Atrium Orchestrator

b In the Configuration Name field, select a configuration from the list.

Developer Studio obtains the list of available configurations from the entries in
the AR System Orchestrator Configuration form. When you select a
configuration, Developer Studio retrieves the values for the Service URL and
Grid Name, and populates those fields.

NOTE
If you override the values in the Service URL, Grid Name, Username, or Password
field, Developer Studio stores the overriding values in the filter or escalation. In
this case, whenever the Set Fields action is opened in the future, Developer Studio
warns you that the values in the filter do not match the values in the configuration
form. At that time you can select which values to replace with those from the form,
if necessary.

c In the Operation field, select an operation from the list.

The available operation types are:

Synchronous Execution—AR System waits until the process is complete, and
then returns the process result. If the process fails to execute,
Atrium Orchestrator returns a SOAP fault and the AR System server reports
an error in the filter or escalation.

NOTE
Processes that take longer then 40 seconds to complete cannot be executed in
Synchronous Execution mode. If this occurs, AR System reports error 8939: “The
AR System Plug-In server is not responding.” For longer processes, use
Asynchronous Execution mode instead.

Asynchronous Execution—AR System returns without waiting for the
process to complete. An asynchronous execution operation always returns
the Job ID.
230 Integration Guide

AR System workflow for Atrium Orchestrator integration
Cancel Execution—Cancels the operation identified by the Job ID.

The time in which you can cancel an operation is limited, based on when the
operation started. This is configurable in Atrium Orchestrator. See the
Atrium Orchestrator documentation.

Valid input values for this operation are WITH_COMPENSATION and
WITHOUT_COMPENSATION. If you use WITHOUT_COMPENSATION,
Atrium Orchestrator returns the job status ABORTED. If you use
WITH_COMPENSATION, or if you use an invalid or empty input value,
Atrium Orchestrator returns the job status COMPENSATED.

Get Job Status—Returns the current status of the job identified by the Job ID.
See “Job status for asynchronous execution operations” on page 232.

d To add an Atrium Orchestrator process to the Process table, click Add.

e In the Add Process dialog box, select a Module from the drop-down list in the
Module field.

A list of Atrium Orchestrator processes appears in the Process list of the Add
Process dialog box.

f Scroll through the list of processes and select the appropriate one, then click OK.

Developer Studio enters the process in the Process table, and populates the
Input Mapping and Output Mapping tables with the appropriate
Atrium Orchestrator data elements.

g In the Input Mapping table, map each Atrium Orchestrator data element to a
field or a static value:

To map a field from the associated form, click in the Field/Value column, and
then click the ellipsis button. In the Field Selector dialog box, select the field
to map to the Atrium Orchestrator data item, and then click OK.

To enter a static value, type the value in the Field/Value column.

To override the Username and Password stored in the configuration form,
map these elements to fields in the associated form, as shown in Figure 17-3,
or enter a different static value.

When you enter a static password value, the plain text password appears in
the Field/Value cell until the cell loses focus. From then on, the password
value is displayed as a string of asterisks whether or not the cell has focus.

NOTE
The Username and Password from the configuration form are stored in these
elements as the default attribute, and will be used if the mapped fields are NULL
at run time. If you want to prevent this, delete them from the Field/Value column
before you map the fields.

Also, Developer Studio automatically sets the attributes arUsername: true and
arPassword: true in these elements. This causes the filter or escalation to use the
current user name and password at run time, if no other value is available. You
cannot change these attributes.
Chapter 17 BMC Atrium Orchestrator 231

BMC Remedy Action Request System 7.6.04
Figure 17-3: Mapping Username and Password to fields

h In the Output Mapping table, map each Atrium Orchestrator data element to a
field on the associated form.

NOTE
Output parameters returned to AR System consist of the value only. XML tags
generated by Atrium Orchestrator are stripped from the returned value.

Job status for asynchronous execution operations
When the workflow uses asynchronous execution, Atrium Orchestrator returns a
job ID. You can use the job ID in subsequent workflow actions to obtain the job
status with the Get Job Status operation, and then use the job status to trigger
further workflow actions. The possible values for the returned job status are:

READY

PENDING

ASSIGNED

IN_PROGRESS

PAUSED

COMPLETED

COMPENSATED

CANCELLED

PENDING_REASSIGNMENT

FAILED

ABORTED

NOTE
The COMPENSATED status indicates that an error occurred during execution of
an asynchronous process. For more information about Atrium Orchestrator job
status, see the Atrium Orchestrator documentation.
232 Integration Guide

Chapter

18
 Exporting and importing data
and definitions
You can export and import objects and data through command-line utilities in
place of the graphical user interface.

The following topics are provided:

Overview (page 234)
Exporting objects and data to XML format (page 234)
Using the import/export command-line utility (page 235)
Using the runmacro command-line utility (page 240)
Using the BMC Remedy Data Import utility (page 243)
Using the BMC Remedy User CLI (page 257)
Chapter 18 Exporting and importing data and definitions 233

BMC Remedy Action Request System 7.6.04
Overview
You can export and import definitions and data in various ways in AR System.
Definitions are descriptions of the structure in which objects, views, and
applications in AR System are organized, identified, and manipulated in the
AR System server. Object definitions contain no user data or entries. Data is
extracted from requests in AR System.

To export and import definitions, use any of the following options:

BMC Remedy Developer Studio menu options (See the Form and Application
Objects Guide.)

The DefinitionImport.bat and DefinitionExport.bat command-line
utilities (See “Using the import/export command-line utility” on page 235)

The C and Java APIs (See the C API Reference.)

To export data, use either of the following options:

BMC Remedy User (See BMC Remedy User help.)

The runmacro command-line utility (See “Using the runmacro command-line
utility” on page 240.)

To import data, use either of the following options:

BMC Remedy Data Import (See the Configuration Guide.)

The BMC Remedy Data Import command-line utility (See “Using the BMC
Remedy Data Import utility” on page 243.)

This chapter describes the three command line interfaces for importing and
exporting data and definitions.

Exporting objects and data to XML format
To prepare to import objects or data, you can export them to an XML file.

AR System objects in XML
Choosing the AR System XML format (ARXML) for exported objects produces an
XML document that is comparable to the AR System definition file format. It is
designed to follow the syntax of the XML specification 1.0.

Specifically, every AR System object type has an associated structure definition in
XML, which is specified by the XML Schema Definition (*.xsd) file. The *.xsd
files reside on the AR System server and are used to validate the AR System object
definitions as valid XML.

Exported objects in XML format comprise an XML document, which might also be
referred to as an instance of a particular XML schema definition for that object. If
the XML schema definitions are loaded into an XML editor, someone who is
knowledgeable about AR System objects and XML can edit the XML document.
234 Integration Guide

Using the import/export command-line utility
The XML schema definitions are designed to be similar to the definitions in the
*.def files. For more information about the XML Schema definitions of AR System
objects, see the data structure information in the C API Reference.

AR System XML definition files are used the same way as the classic .def
(definition) files. When exporting objects in BMC Remedy Developer Studio, you
can choose AR XML Definition Files (*.xml) in the Save as type field of the Export
File dialog box. The Import File dialog box works in the same way, allowing you
to bring in XML definitions to your AR System server.

AR System data in XML
To export in XML, create a report in BMC Remedy User or the web as you normally
do. When you run the report or save it to a file, select ARXML as the file type. The
data is now ready to be manipulated with your XML editor or imported into your
XML-compatible applications.

To import XML data, run BMC Remedy Data Import. Open your XML data file by
selecting AR XML Files (*.xml) in the Files of Type field. The other mapping and
import steps are the same as previous versions of AR System Import tool.

Using XML with the AR System API
AR System includes XML schema definitions and API calls that you can use to
transform XML and AR System objects. The AR System API calls involving XML
are divided into two categories:

ARGet calls, which transform XML objects into AR System structures.

ARSet calls, which transform AR System structures into XML objects.

These calls use the AR System API structures that are described in the ar.h file.
For more information about the XML API calls, see the C API Reference.

Using the import/export command-line utility
This section explains how to use the import/export command-line utility to import
and export definitions.

WARNING
If the AR System server has Record Object Relationships enabled, the relationships
are recorded as the objects are created during import. If you import a large
application or many object definitions, the server might become highly loaded and
unresponsive for a period of time.
Chapter 18 Exporting and importing data and definitions 235

BMC Remedy Action Request System 7.6.04
Guidelines for using the import/export utility
Use the following guidelines to run commands from the import/export command-
line utility. Commands and options are listed in “DefinitionImport and
DefinitionExport options” on page 236.

On a computer with BMC Remedy Developer Studio installed locally, set the
current directory to the directory that contains the BMC Remedy Developer
Studio executable (by default, C:\Program Files\BMC
Software\ARSystem\developerstudio\). The commands must be run in this
directory. File arguments without a directory path are created in the current
directory.

Command-line import and export are provided by the DefinitionImport and
DefinitionExport commands. These commands are implemented as
Windows batch (.bat) files.

Every command executed opens a separate AR System session, executes the
command, and logs out.

DefinitionImport and DefinitionExport parse options in the order they are
listed in “DefinitionImport and DefinitionExport options” on page 236. Options
are interpreted in a predictable order and might not be executed in the order you
enter them.

You cannot perform an action against two servers with one command. For
example, you must issue two commands to export object definitions from one
server and import them into another server.

Enclose arguments that contain blank spaces or symbols in quotation marks.

DefinitionImport and DefinitionExport options
The options in the following table are optional unless the description states they
are required. Options that can be repeated are marked in the Repeat column.

Option Parameter Description Repeat

--version Writes the version to standard output and
exits without executing other options.

-u userName Uses the account to connect to the server.
Required.

-p password Uses the password to connect to the
server. Required if the account has a
password.

-x server Connects to the server to import or
export. Required.

-w authentication Uses external authentication string or
Windows domain to connect to the
server.
236 Integration Guide

Using the import/export command-line utility
-portnum portNumber Uses the TCP port number to connect to
the server. Required if the server does not
use the default port and there is no port
mapper.

-e fileName Import from or export to the file.
Required.

-o logFileName Write log and error output to the file. If
not specified, the output is written to the
standard error output.

-inplace Import in place. Overwrite each existing
object without deleting the object first.
DefinitionImport only.

-lock lockType lockKey Export the objects locked. Valid lockType
values are

1—Read only.
2—Hidden.

The lockKey is a string used to enforce
locking.
DefinitionExport only.

-a activeLinkName Import or export the active link. +

-A Import or export all active links. Any -a
options are ignored.

-b DSOPoolname Import or export the DSO pool. +

-B Import or export all DSO pools. Any -b
options are ignored.

-d DSOMappingname Import or export the DSO mapping. +

-D Import or export all DSO mappings. Any
-d options are ignored.

-f formName Import or export the form. +

-F Import or export all forms. Any -f options
are ignored.

-g activeLinkGuideNa
me

Import or export the active link guide. +

-G Import or export all active link guides.
Any -g options are ignored.

-h filterGuideName Import or export the filter guide. +

-H Import or export all filter guides. Any -h
options are ignored.

-k packingListName Import or export the packing list. +

-K Import or export all packing lists. Any -k
options are ignored.

Option Parameter Description Repeat
Chapter 18 Exporting and importing data and definitions 237

BMC Remedy Action Request System 7.6.04
-l commandFileName Import or export the objects specified by
the XML command file.
To create an XML import/export
command file from a working list or a
packing list, use the Save as Import/
Export Commands pop-up menu
command for packing lists or working
lists in BMC Remedy Developer Studio.
See the Introduction to Application
Development with BMC Remedy
Developer Studio.
You can also use an XML file created from
a packing list in an earlier release using
the Generate XML command in
BMC Remedy Administrator. (This
product is no longer available.)
Any other object type options are
ignored.

-m menuName Import or export the menu. +

-M Import or export all menus. Any -m
options are ignored.

-n applicationName Import or export the application. +

-N Import or export all applications. Any -n
options are ignored.

-q escalationName Import or export the escalation. +

-Q Import or export all escalations. Any -Q
options are ignored.

-t filerName Import or export the filer. +

-T Import or export all filters. Any -t options
are ignored.

-z webServiceName Import or export the web service. +

-Z Import or export all web services. Any -z
options are ignored.

Option Parameter Description Repeat
238 Integration Guide

Using the import/export command-line utility
Import/export examples
The following are examples of common tasks you might perform with
DefinitionExport and DefinitionImport.

Exporting objects from an AR System server
When you export objects from the server, you export objects to a target file. You
can export all objects for all forms by using the following command format:

DefinitionExport -u userName [-p password] -x serverName
-e targetFileName -F

To export objects from a single form, use the following command format:

DefinitionExport -u userName [-p password] -x serverName
-e targetFileName -f formName

To parse an XML packing list, and export all objects defined in that packing list,
use the following command format:

DefinitionExport -u userName [-p password] -x serverName
-e targetFileName -l packingList.xml

NOTE
You cannot export server objects that include a percent sign (%) in their name.

Importing objects into an AR System server
When you import objects into the server, you import objects from a source file. You
can import all objects for all forms by using the following command format:

DefinitionImport -u userName [-p password] -x serverName
-e sourceFile -F

To import specific objects from a source file, use the following command format:

DefinitionImport -u userName [-p password] -x serverName
-e sourceFile -f formName -a activeLinkName

To parse an XML packing list, and import all objects defined in that packing list,
use the following command format:

DefinitionImport -u userName [-p password] -x serverName
-e sourceFile -l packingListName.xml

The -l option parses the XML packing list and imports all objects defined in the
packing list. This option overrides other options in the same command.
Chapter 18 Exporting and importing data and definitions 239

BMC Remedy Action Request System 7.6.04
Using the runmacro command-line utility
The AR System server includes the runmacro utility, which can run a macro or
export data as a background process without a GUI. The runmacro utility can be
run from filter or escalation workflow or as a standalone process (that is, a
Windows batch file or a UNIX script). Third-party applications can use the
runmacro utility to run AR System macros. Because runmacro functionality
provides no GUI support, it can execute processes that run in the background, but
it cannot perform tasks such as displaying a results list.

To run the runmacro utility, you must set the library path to the directory where
the runmacro executable resides. To do so, use these commands:

Solaris and Linux

LD_LIBRARY_PATH=runmacroDir

HP-UX

SHLIB=runmacroDir

AIX

LIBPATH=runmacroDir

The runmacro command has the following formats. Items between square brackets
are optional. Enclose arguments that contain blank spaces or symbols in double
quotation marks.

You can use the original version of runmacro without the output file option (-o):

runmacro [-h homeDir] [-d macroDir]
[{-x serverName} ...] { -e | -i } macroName
[-p parameter=value ...] [-U userName] [-P password]
[-Q internalQualificationFormat]
[-q clientToolQualificationFormat]
[-Z internalFormatQualificationFileName]
[-z clientToolFormatQualificationFileName]
[{-w | -W } externalAuthenticationString] [-a portNumber]
[-O]

You can use runmacro with the -o option to use the arcopy syntax, which
copies the output to a file:

runmacro -o outputFileName [{-x server} ...] -U user]
[-P password] [{ -f | -s} form] [-t {arx|csv|xml}]
[-Q internalQualificationFormat]
[-q clientToolQualificationFormat]
[-Z internalFormatQualificationFileName]
[-z clientToolFormatQualificationFileName]
[{-w | -W } externalAuthenticationString] [-a portNumber]

When you use the -o option to export data with attachments, the attachments
folder is created in the same directory as the export file. The attachments folder
name uses an integer time stamp (for example, 917732184), and the folder location
is specified in the output file name of the runmacro command.
240 Integration Guide

Using the runmacro command-line utility
When creating macros, you can record a login with the proper permissions if you
perform actions that require those permissions (for example, an administrator
deleting records). If your macro does not record a login, you must specify login
information using the -U option and the -P option (if necessary).

This table lists the runmacro options, which can appear in any order in the
command line:

Option Description

-o Output file name—Name of the file in which to store the data. The file is
initially truncated, and then all the data is written to the file (one data set
after another).

-h Home directory—Path to the ARSystemHomeDir directory. If you do not
specify the -d option, runmacro also looks in this directory for the arcmds
directory that contains the macro to run.
You can create separate home directories for each user whom you want to
run a macro. To run a user’s macros, copy the user’s home directory from the
machine where the user runs BMC Remedy User to the Windows server, and
specify it with the -h option, or use the -h option to point to the user’s home
directory on the machine where the user runs BMC Remedy User.

-d Macro directory—Directory that contains the macro if your macro is not in
the ARSystemHomeDir\arcmds directory or if you do not have an
ARSystemHomeDir directory.

-x Server name—Name of a server to connect to. This option might be included
more than once to connect to multiple servers. Use the following format:
-x serverName

-e (or -i) Macro name—Specifies the macro to run.

-p Parameter—Value for a parameter. There might be more than one -p option
in a command line. If the macro specified (using the -e or -i options) has a
parameter, a value can be supplied by naming that parameter and assigning
a value. If the parameter name or value includes a space or other special
character, the data must be enclosed in quotation marks to cause proper
interpretation of the special characters. Use the following format for each
parameter specified:
-p parameter=value

-U User name—Required login parameter that identifies the user account. The
-U option must be in uppercase.

-P Password—Optional login parameter that identifies the user account. Omit
the -P if the user account has no password. The -P option must be in
uppercase.

-Q Internal qualification format—Query in AR System internal format.

-q Client tool qualification format—A regular query such as you would use in
the BMC Remedy User advanced search bar.
Within the query string, double quotation marks must be preceded by a
backslash (\), which functions as an escape character. For example:
runmacro.exe -o <outputFileName>-x <serverName>

-U <userName> -P <password> -f <form> -t {arx|csv|xml}
-q "'Submitter'=\"tester\" AND ('Create Date' >
\"5/9/2007\" AND 'Create Date' < \"5/16/2007\")"
Chapter 18 Exporting and importing data and definitions 241

BMC Remedy Action Request System 7.6.04
runmacro example
Assume that you have a Human Resources (HR) application that runs on a
Windows machine. When a new employee record is created in the HR application,
you want to issue a Service Request to the help desk to set up an office for the
employee. Assuming the HR application has the ability to issue a command when
the new record is created, you would perform the following procedure.

� To set up an office for an employee

1 Copy the runmacro utility onto the HR application machine. Assume that it is in
the ARSystemServerInstallDir directory.

2 Record an AR System macro that takes a series of parameters and submits a new
Service Request record. Assume that this macro is called SubNewServReq.

For information about recording macros, see BMC Remedy User help.

3 Create a script file that the HR application calls when a new employee record is
created. The script contains a command such as this:

C:\arsystem\runmacro -x server3 -h \arsystem\macros
-e “SubNewServReq” -p "Submitter"="HR" -p "Employee
Name"="$EmpName$" -p "Employee ID"=EmpID -p "Employee
Type"=EmpType -p "Room Number"=RoomNum

-Z Internal format qualification file name—File name containing the query in
Remedy internal format.

-z Client tool format qualification file name—File name containing a regular
query, for example, like you would use in the advanced search bar in BMC
Remedy User.

-w (or -W) Authenticator—Name of the external authentication string or Windows NT
domain. This is related to the Login window’s Authentication field, which is
discussed in the Configuration Guide.

-a Port number—Port number to which to connect the server.

-f (or -s) Form name—Form that is exported. The -f (or -s) option can be repeated
multiple times if there are several forms to export.
If multiple servers are selected, each server is searched for the form, and the
first one found is all that is exported. To control this, specify only one server
environment for the operation.
If the -f (or -s) option is not specified, the system exports all available
regular data forms. It does not export join or external forms.

-t Type of file to write—File type for the output file: arx, csv, or xml. If not
specified, the default of arx is used.

-O Forces override—If the user has already logged in as this same user from a
different IP address, this option tells the server to use the new IP address of
the runmacro client and invalidates the old IP address.

Note: This option does not apply to users with administrator permissions.

Option Description
242 Integration Guide

Using the BMC Remedy Data Import utility
This command would perform these tasks:

a Take the EmpName, EmpID, EmpType, and RoomNum parameters from the
HR application, and use a fixed Submitter ID of HR.

b Substitute them into the parameters in the “SubNewServReq” macro stored in
the HR application directory.

c Connect to the AR System server called server3.

d Create a Service Request according to the macro definition.

Using the BMC Remedy Data Import utility
Use the BMC Remedy Data Import command-line utility (a Java utility) to
automate importing data in a multi- or single-threaded environment. (See
“Importing in a multithreaded environment” on page 253.)

You can import with or without a mapping file. See “Importing with a mapping
file” on page 255 and “Importing without a mapping file” on page 255.

� To use the BMC Remedy Data Import utility on Microsoft Windows

1 Open the DataImport.bat file in ARSystemInstallDir/dataimporttool.

2 Edit the batch file to set the following environment variables:

APIDROP—The location where arapiextvers.jar and arapivers.jar are
installed.

JAVA_HOME—The location of your JDK (for example, C:\Program
Files\Java\jdk1.5.0_07).

Path

For example:

set APIDROP=.\plugins\com.bmc.arsys.studio.api_7.6.04\lib
if not exist "%JAVA_HOME%" set JAVA_HOME=jdkPath
set PATH=%JAVA_HOME%\bin;%PATH%;%APIDROP%

3 Add the appropriate options to the command line in the batch file. Make sure the
.jar file names in the classpath reflect the appropriate release of AR System, for
example:

java -classpath
%APIDROP%\arapi7604.jar;%APIDROP%\arapiext7604.jar;
.com.bmc.arsys.apiext.data.DataImport [options]

For a list of available options, see “Options for BMC Remedy Data Import
command-line utility” on page 245.

4 At the command line, run the batch file.
Chapter 18 Exporting and importing data and definitions 243

BMC Remedy Action Request System 7.6.04
� To use the BMC Remedy Data Import utility on UNIX

1 Navigate to the ARSystemHome/api/lib directory and make sure that the
following .jar files, required to run the Data Import Utility, are present in the lib
folder:

arapivers.jar

arapiextvers.jar

log4j-1.2.14.jar

For example:

arapi7604.jar

arapiext7604.jar

log4j-1.2.14.jar

2 Create a DataImport.sh file in the ARSystemHome/api/lib directory.

3 Set the following environment variables in the DataImport.sh file:

APIDROP—The location where arapiextvers.jar and arapivers.jar are
installed.

JAVA_HOME—The location of your JDK (for example, /usr/Java/jdk1.5.0_14).

Path

For example:

set APIDROP=ARSystemHome/api/lib
if not exist "$JAVA_HOME" set JAVA_HOME=jdkPath
set PATH=$JAVA_HOME/bin:$PATH:$APIDROP

NOTE
Either execute the following command from the ARSystemHome/api/lib
directory or set the Library Path and the Path variable using the following
command:
export LD_LIBRARY_PATH=$ARINSTALL/api/lib:$ARINSTALL/
bin:$LD_LIBRARY_PATH
export PATH=$ARINSTALL/api/lib:$ARINSTALL/bin:$PATH

4 Enter the following command to use the Data Import utility on UNIX:

java -cp .$APIDROP/arapi7604.jar:.$APIDROP/
log4j-1.2.14.jar:.$APIDROP/arapiext7604.jar
com.bmc.arsys.apiext.data.DataImport [options]

NOTE
For a list of available options, see “Options for BMC Remedy Data Import
command-line utility” on page 245.
244 Integration Guide

Using the BMC Remedy Data Import utility
For example:

java -cp $APIDROP/arapi7604.jar:$APIDROP/
log4j-1.2.14.jar:$APIDROP/arapiext7604.jar
com.bmc.arsys.apiext.data.DataImport -u userName -p password -x
serverName [-a portNumber] -o dataFilePath [-M
fullyQualifiedMappingFileName] [-l logFilePath]

Options for BMC Remedy Data Import command-line utility
Use the following format in the command line. Items between square brackets are
optional.

com.bmc.arsys.apiext.data.DataImport -u userName -p password
-x serverName [-w externalAuthenticationString] [-r rpcNumber]
[-a portNumber] [-custom custom_optionsFilePath]
[-f destinationFormName] -o dataFilePath
[-filelist listOfFiles] [-z options.xmlFilePath]
[-threads numberOfThreads] [-l logFilePath]
[-e duplicateField] [-b bulk size] [-g activateBulkMode]
[-n suppressFilters] [-t multiMatchOption] [-v] [-i]
[-D duplicateIDOption] [-q option] [-c option] [-h option]
[-charset name] [-M fullyQualifiedMappingFileName]

NOTE
[-m mappingFileName] [-d directoryWithMappingFile]
Enclose arguments that contain blank spaces or symbols in double quotation
marks.

The following table describes available options.

Option Description

-u User name—Required login parameter that identifies the user account.

Note: Every cross-platform CLI command opens a separate BMC Remedy
Data Import session, executes the command, and logs out. Therefore, you
must log in with every command. If BMC Remedy Data Import does not
find the user name, BMC Remedy Data Import prints the usage messages
and exits.

-p Password—Password for the user account. If the user account has no
password, omit the -p option.

-x Server name—The server to log in to.
If you do not specify the-x option, the server name in the mapping file is
used.

-w Authentication string—Name of an external authentication string or
Windows NT domain. This is related to the Login window’s
Authentication field, which is discussed in the Configuration Guide, “Setting
up an authentication alias,” page 76.
Chapter 18 Exporting and importing data and definitions 245

BMC Remedy Action Request System 7.6.04
-r RPC program number—Private server, for example, if a dedicated import
server is available.
If you do not specify the -r option, the default administrator server’s RPC
program number (390600) is used.

-a TCP port number—Port number for the server. This value is especially
important in a multiple server environment. The option also identifies a
TCD specific port, if chosen.

-custom Path to custom_options.xml—Specifies the path to the
custom_options.xml file, which is used to specify date and time
formats, the separators to be used, and other information. You can use this
option if the source data file is in CSV or ASCII format. See “Using the
custom_options.xml file” on page 253.

Note: During installation, a sample empty custom_options.xml file is
installed in the installation folders for BMC Remedy Developer Studio
and BMC Remedy Data Import. You can change the name and store it
anywhere.

-f Importing with a mapping file

Destination form name—Name of the form to import data into.
If you do not specify the -f option, the form specified in the mapping file
is used.
Importing without a mapping file

Destination form name or pair.
A single name indicates that the form name in the source data file matches
the form name on the server.
To specify a pair of names, separate the form names with an equal sign,
without any spaces around the equal sign:
"destinationForm"="fileForm".
The destination form is the form on the server into which data is imported.
The file form is the form specified in the data file.
Specifying pairs maps data from one form (specified in the data file) to a
different form (identified on the server).
You can specify multiple pairs by using this option multiple times, for
example:
-f "Target_form_a"="File_form_b"
-f "Target_form_c"="File_form_d"
If the -f option is not specified, BMC Remedy Data Import tries to import
all data sets in the source data file. For each data set, if a matching
destination form is found on the server, the data is imported. If no
matching form is found, the data set is ignored.

Option Description
246 Integration Guide

Using the BMC Remedy Data Import utility
-o One of the following paths:
Path to a directory of data files—For multithreaded environments, the -
o option specifies the path to the directory that contains the data files to
import.
Path to data file—For single-threaded environments, the -o option
specifies the file that contains the data files to import.

If you do not specify the -o option, the data file specified in the mapping
file is used.

-z Path to the options.xml file.
Specifies the path to the options.xml file, which contains the data import
commands and the import parameters for individual files and directories
for multithreaded import. The BMC Remedy Data Import command-line
utility uses the -z option to identify the location of the options.xml file.
See “Using the options.xml file” on page 250.

Note: The -z option cannot be used in the options.xml file; if used, the
BMC Remedy Data Import command-line utility disregards this option.

-filelist (For multithreaded environments only) List of data files to import.
The data files can be of any type (for example, ARX, CSV, XML, and ASC). All
of the data is imported into the form designated with the -f or -M option.
If you do not specify the -filelist option, the command imports all the
data files in the directory specified with the -o option, regardless of file
type.

-threads (For multithreaded environments only) Number of threads in the pool.

Note: Make sure that your hardware configuration can handle the number
of threads that you enter.

If you do not specify the -threads option, the default of 50 threads is
used.
If the number of files in the data directory or number of files you specify in
the -filelist option is less than the -threads value or the default
value (50), the number of threads used is equal to the number of files in the
data directory or number of files specified in -filelist option.

-l Full path name of the log file—Use this option to log details of the import
execution.

Option Description
Chapter 18 Exporting and importing data and definitions 247

BMC Remedy Action Request System 7.6.04
-e Duplicate field—Field ID of the field to check for duplicate data. For
example, for the Short Description field, enter 8.
To specify multiple values for a single schema, separate them with commas
and double quotation marks (for example, "2,4,8"). The maximum
number of IDs you can specify is 6.
From this release of BMC Remedy AR System, you can now specify
multiple values for multiple schemas. For this, separate the schema names
(and their values) by a semi-colon and the values by commas (For example,
SchemaName=1,2,3; SchemaName=4,7,8). The maximum number of
IDs you can specify is 6.
Make sure that the source data file includes values for all the fields that are
being used for checking duplicate data.
When -e option is omitted, then Request ID field (field ID 1) is used.
Additionally, if the -e option is not used for importing records, the BMC
Remedy Data Import utility uses bulk mode to import records. (See the -b
option for more information about the bulk size.)

-b Bulk size—Specifies the number of records to process in bulk
simultaneously.
For AR System 7.1.00 and later versions, the default size is 100.

Note: If the -e option is used, records are imported individually. If the value
of the -b option is set to 0, bulk mode will not be used.

-g If the -e option is used, the bulk transaction mode is switched off by
default. In this case, you can still activate the bulk transaction mode using
the -g option.

Note: The bulk transaction mode is purposefully switched off with -e
option as it gives different results than sequential import when there are
duplicate records within the data file itself. To forcefully use bulk mode
when the -e option is used you can use the -g option, introduced in this
release of BMC Remedy AR System. You can decide whether you want
to use the -g option when there are duplicate records in your data files.
For example, you must use the "-g 1" value in the Java Import command
line to use the bulk mode. If any value other than "-g 1" is used, the force
bulk mode is not activated.

-n Suppress filters—Suppresses the merge filters during merging of entries on
forms

-t Multiple match option—Use when more than one entry matches. Enter a
value of 3 to affect the first match, and a value of 5 to affect all matches.

-v Forces override—If the user has logged in from a different IP address, this
option tells the server to use the new IP address of the BMC Remedy Data
Import client and invalidates the old IP address.

Option Description
248 Integration Guide

Using the BMC Remedy Data Import utility
To import data with a mapping file, use either -M or a combination of -m and -d to
specify the mapping file to use. (You cannot use both the combination of -m and -d
with -M; they are mutually exclusive.)

-i Suppresses the default value (0) if the data being mapped to the field is
empty.
If the field is a non-mapped field (not present in the data file), and the value
of -i is set to 1, then for every non-mapped field that has been defined with
the default value on the Server, the import tool sets the value to NULL.
However, if the field is a mapped field (even if its value is empty), the
import tool does not change the value. For this, make sure that the value of
-Q is set to 1.

Note: If the value of –D is set to 4 (update option), then the Data Import
utility does not suppress the default values while creating new records.

-D Duplicate ID—Defines how to process records that contain request IDs that
duplicate those already in the form. Include one of the following numbers
with this option:

0—Generate new ID for all records.
1—Reject duplicate records.
2—Generate new IDs for duplicate records.
3—Replace old records with new records.
4—Update old records with new records’ data (the default).

-q Suppresses the required field property for non-core fields. The options are
1 (on) and 0 (off).

-Q If the value of this option is set to 0, the default value is set if the data being
mapped to the field is empty. If you are setting the value of this option to
1, see the information given for the -i option above.

-c Truncates character values that are longer than the field length for
character fields. The options are 1 (on) and 0 (off).

-h Suppresses pattern matching for fields. If supplied, the $PATTERN$ field
limit is ignored. The options are 1 (on) and 0 (off).

-charset Specifies the character set used in the data file. The character set name must
be supplied as listed in the IANA Charset Registry.

-debug Sets the log level. The log levels are:
0: OFF
1: ERROR
2: WARN
3: INFO
4: DEBUG
5: TRACE
6: ALL

OFF does not log any information, and ALL is the maximum log level,
which logs detailed log information.
The default log level is 3.

Option Description
Chapter 18 Exporting and importing data and definitions 249

BMC Remedy Action Request System 7.6.04
NOTE
The combination of –m and –d options is supported for the legacy .arm mapping
file types only. If the mapping file is .armx, only –M is valid.

The following table describes the mapping file options. For more information, see
“Importing with a mapping file” on page 255.

Using the options.xml file
The options.xml file, introduced in this release of BMC Remedy AR System,
contains the data import commands and import parameters for single or
multithreaded import. For all the data import commands included in this file, the
BMC Remedy Data Import command-line utility starts as a new JVM only once.

The BMC Remedy Data Import command-line utility uses the options.xml file as
the input. The utility identifies the location of the options.xml file using the new
command line parameter, -z.

Consider the following important points before using the options.xml file:

The BMC Remedy Data Import command-line utility follows the sequence of the
data import commands defined in the options.xml file.

Each command tag listed in the options.xml file will be executed. If the same
command tag occurs multiple times, the BMC Remedy Data Import
command-line utility executes the command tags as many number of times as
listed.

IMPORTANT
The BMC Remedy Data Import command-line utility invocation command must
have -x, -u, -p, and -z parameters to start importing the data files using the
options.xml file.

The parameters that are included in the options.xml file override all the
parameters passed through command line.

If any error occurs during the command execution in the options.xml file, the
BMC Remedy Data Import command-line utility continues to execute the
further commands listed in file.

Option Description

-M Fully qualified path name of the mapping file to use.

-m Name of the mapping file to use. You can verify the required name by
opening the mapping file and using the string contained in the first line of
the file.

-d Directory that contains the mapping file being referenced with the -m option.
250 Integration Guide

Using the BMC Remedy Data Import utility
The BMC Remedy Data Import command-line utility allows sequential and
parallel importing of data in a single JVM invocation instance. This is done
through the options.xml file using the isSerial attribute. If the value of the
isSerial attribute is ’False’ (default) or the attribute is not specified, the BMC
Remedy Data Import command-line utility imports the data by using the
parallel mode. During parallel importing, the utility imports multiple data files
simultaneously.

The options.xml file has a global tag (optional) for global parameters. The
global parameters can be overridden by individual command tags (local
parameters specified in individual commands), except for the threads and the
debug parameters. These global parameters cannot be overridden by local
parameters.

NOTE
The threads and the debug parameters are not considered if they are specified as
local parameters in a command tag format.

If the -o and -z parameters are combined, the BMC Remedy Data Import
command-line utility treats the paths specified for the -z parameter as relative.
The tool thus combines the paths specified in the -o and -z parameters and then
continues importing the files listed in options.xml file. If only the-z parameter
value is specified, the path specified for the -z parameter is considered as the
absolute path.

For example, if the following values are specified:

-o "c:\temp" -z "opt\FileName.arx"

The final path (relative path) is "c:\temp\opt\FileName.arx"

And if the following values are specified:

-z " c:\opt\FileName.arx"

The final path (absolute path) is "c:\opt\FileName.arx"

NOTE
The preceding rule is true only for the data file’s path specified in the -o parameter;
all the remaining parameters that take the file path as an input are used as absolute
paths or as relative paths with respect to the current invocation directory.

The -z parameter cannot be used with the pattern and filelist parameters
through the command line. These parameters can only be used independently
or with the -o parameter (as a directory).

The data import invocation using the -z parameter generates a summary file
containing the results of all the data import commands defined in the
options.xml file. This summary file has the same name as the options.xml
file. For example, if the options.xml file has the name, option_fnd.xml, the
BMC Remedy Data Import command-line utility generates a summary file
named option_fnd_summary.log.
Chapter 18 Exporting and importing data and definitions 251

BMC Remedy Action Request System 7.6.04
If the -l parameter (full path name of the log file) is specified for every
command in the options.xml file, the BMC Remedy Data Import
command-line utility creates separate log files for every command tag. If the log
file is the same for multiple command tags in the options.xml file, all the
logging details for these command tags are written in that one log file. If the-l
parameter is not specified in the command and in the options.xml file, the
BMC Remedy Data Import command-line utility creates a log file in the current
directory with the same name as the data file name (datafilename.log).

If the debug parameter is specified as a global parameter, the value of this
parameter will be common for all the commands in the options.xml file.

In the options.xml file, the number of threads in a pool can be configured at the
global level by setting the -threads parameter in the global tag with the
optimum value. This switch is optional; if the command does not have this
switch, the value of the -threads parameter is set to its default value (50).

NOTE
If the -threads parameter is specified as a global parameter, it overrides the
threads option that was provided as a command line parameter while invoking
BMC Remedy Data Import command-line utility.

Sample options.xml file

The following XML tags and attributes can be used in the options.xml file:

import—Root element of the options.xml file.

global—Contains the global parameters with the attributes (name and value).

commands—Contains the attribute, isSerial (default value, False) for serial and
parallel importing.

command—Contains the parameter with attributes (name and value).

NOTE
You can rename the options.xml file to any custom name. Make sure that the file
contains only the above XML tags and attributes, and is a valid and well-formed
file.
If the options.xml file is not a valid file or it does not exist, the BMC Remedy Data
Import command-line utility displays an error and will not proceed further.

<import>
<global>
<parameter name ="x" value="ServerName"/>
<parameter name ="u" value="UserName"/>
<parameter name ="p" value="Password"/>
<parameter name ="debug" value="3"/>
<parameter name ="threads" value="32"/>

</global>
<commands isSerial = "true">
252 Integration Guide

Using the BMC Remedy Data Import utility
Using the custom_options.xml file
If the source data file is in CSV or ASCII format, you can use the
custom_options.xml file to specify date and time formats, the separators to be
used, and other information.

BMC Remedy Data Import searches for formats (date and time, separators, and so
on) as follows:

1 It searches the mapping file, if specified by the user.

2 In the absence of a mapping file, it searches for custom_options.xml, if the
-custom command-line parameter is used.

3 If neither the mapping file nor custom_options.xml is specified, it searches for
the formats defined by the Sun JDK for the default system locale.

NOTE
You can use the mapping file and the custom_options.xml file simultaneously.
In such cases, the a.m. and p.m. symbol settings and the separator settings of the
mapping file take precedence. However, the date and time formats in
custom_options.xml are considered with the formats in the mapping file for
parsing date and time values. In such cases, custom_options.xml provides
additional date and time formats (the mapping file can have only one), which is
helpful for parsing data files that contain date and time strings of different locales.

Importing in a multithreaded environment
To import data on multiple threads, configure the following options to specify
multithreaded functionality:

-o

-z

-filelist

-threads

<command>
<parameter name ="D" value="1"/>
<parameter name ="o" value="DataFileDirPath"/>

</command>
<command>
<parameter name ="D" value="3"/>
<parameter name ="o" value="DataFileDirPath1"/>
<parameter name ="e" value= "10000,10050"/>

</command>
</commands>

<import>
Chapter 18 Exporting and importing data and definitions 253

BMC Remedy Action Request System 7.6.04
For information about these options, see “Options for BMC Remedy Data Import
command-line utility” on page 245.

When running the BMC Remedy Data Import utility in a multithreaded
environment, remember these tips:

You must include a form name in the BMC Remedy Data Import utility
command. (If a mapping file is provided and includes a form name, the form
name is optional.)

If any data files in the specified data directory contain data from a different
form, the BMC Remedy Data Import utility cannot resolve the difference. The
utility imports the data in specified form only.

If a mapping file is specified and if the specified form uses the same mapping
file for all data files, the BMC Remedy Data Import utility imports all file types
(.arx, .csv, .xml, and .ascii).

For .arx and .xml files, if you run the BMC Remedy Data Import utility without
including a form name and a mapping file, data from the individual file is
imported to their respective forms, so make sure that data files are not
interdependent. For example, when importing Group form and User form data,
users belong to groups. The User form data is dependant on Group form data,
and the BMC Remedy Data Import utility cannot resolve this dependency.

For CSV and ASCII files, you must include a form name in the command
because these files do not include form information.

The BMC Remedy Data Import utility does not validate workflow on forms
where data is imported.

For AR System 7.1.00 and later versions, the BMC Remedy Data Import utility
uses bulk APIs (unless the -e option is used). When a bulk API fails in its first
attempt, it rolls back the entire operation and retries up to the last completed
entries again with bulk API. The remaining records are imported it by using
individual APIs.

Options that you specify to handle duplicate records (-D), bad records, and
multiple matches (-t) are common to all of the threads.

There is no explicit command-line option for bad-records handling. By default,
the BMC Remedy Data Import utility skips the bad records.

In an .armx mapping file, you can specify bad-records handling as follows:

<datahandling badrecords="SKIP" duplicaterecords="GEN_NEW_ID"
stripleading="false" striptrailing="false" transactionSize="0"
truncate="false"/>

In an .arm mapping file, you can specify:

“Bad-Record-Handling: 1”
254 Integration Guide

Using the BMC Remedy Data Import utility
Importing with a mapping file
You can import data through the BMC Remedy Data Import utility by using a
mapping file created in BMC Remedy Data Import. You can use the mapping file
on any platform. For more information about BMC Remedy Data Import mapping,
see the Configuration Guide, “Creating mapping files,” page 289.

Specifying the -M or -m option in the command line determines whether you use a
mapping file.

NOTE
If you are copying the mapping file between different operating systems (such as
Windows to UNIX), make sure that the file is converted properly so that the
operating system can read the file.

You can override specific settings saved in the mapping file by using additional
options. In this way, you can use the data mappings you created for one data file
and destination form for imports with a different data file and form combination.

Importing without a mapping file
Importing without a mapping refers to running the BMC Remedy Data Import
command-line utility with no mapping definition to instruct the system how to
map fields.

BMC recommends that you use AR Export (.arx) and AR XML (.xml) file formats
when importing without a mapping file. In these file formats, field values are
mapped by matching field IDs, which are both included in the file. For CSV files,
field values are mapped by matching the field labels (if present in the file) to the
field names (database names of the fields) retrieved from the server. When a
browser or BMC Remedy User exports data into a CSV file, the field labels and the
field names are not necessarily the same. Only fields with names and labels that
match are auto-mapped. Consequently, if CSV files do not include field labels, the
field values cannot be mapped.

Without a mapping file, include the server name, form name, and data file name
in the command line. Mappings are built by querying the server and the data file.

Localization tips
On Chinese UNIX systems, CSV and ASCII files cannot be imported if they contain
Date/Time fields.

When using the BMC Remedy Data Import utility on Japanese UNIX systems,
convert the data and .arm mapping files to EUC format before the files are moved
to the UNIX server. (The .arx and .xml data files are already in EUC format when
they are generated in the client tool, but the .csv file is not. Therefore, the .arm and
.csv files must be converted.) Make sure that all of the data file names and a
mapping file names are in English.
Chapter 18 Exporting and importing data and definitions 255

BMC Remedy Action Request System 7.6.04
BMC Remedy Data Import utility examples

In multithreaded environments
The following examples show you how you can use the BMC Remedy Data Import
utility in a multithreaded environment:

In the following example, the -o option specifies the path to the directory that
contains the data files to import. All of the data in the files is imported to the
specified form.

com.bmc.arsys.apiext.data.DataImport -x serverName -u userName
-p password -f formName -o dataFilePath -l logFilePath

For example:

com.bmc.arsys.apiext.data.DataImport -x machine1 -u joeuser
-p 1a2b3c -f HelpDesk -o "C:\files" -l "C:\files\test.log"

The data in the files in C:\files is imported to the HelpDesk form. A log is
created in test.log.

In the following example, the -filelist option is used with -o, and only the
data files listed are used. All of the data in the files is imported to the specified
form.

com.bmc.arsys.apiext.data.DataImport -x serverName -u userName
-p password -f formName -o dataFilePath -filelist listOfFiles
-l logFilePath

For example:

com.bmc.arsys.apiext.data.DataImport -x machine1 -u joeuser
-p 1a2b3c -f HelpDesk -o "c:\files" -filelist "user.arx,
user.csv,abc.xml,xyz.ascii" -l "c:\files\test.log"

The data in the user.arx, user.csv, abc.xml, and xyz.ascii files in
C:\files is imported to the HelpDesk form. A log is created in test.log.

With a mapping file
The following examples show you how you can use BMC Remedy Data Import
utility with a mapping file:

In the following example, the server name, form name, and data file name are
optional because the mapping file contains the information:

com.bmc.arsys.apiext.data.DataImport -u userName -p password
-m mappingFileName -d mappingFileDir -l logFile

In the following example, the server name, form name, and data file name
override the names in the mapping file. When you use the BMC Remedy Data
Import utility with a mapping file, you can override one or more of those names.

com.bmc.arsys.apiext.data.DataImport -x serverName -u userName
-p password -m mappingFileName -d mappingFileDir -l logFile
-o dataFilePath -f formName
256 Integration Guide

Using the BMC Remedy User CLI
Without a mapping file
Without a mapping file, you must specify the server name and data file name
because there is no mapping file to provide such information.

The -d and -a options are not shown in the following examples, but if you work
with multiple servers on the same computer, you can use -d for duplicate record
handling and -a to specify a port number.

The following examples show how you can use the BMC Remedy Data Import
utility without a mapping file:

In the following example, minimal options are used. The dataFilePath
specifies the data file with path to import. If there are multiple data sets in the
same data file, an import is attempted for all forms.

com.bmc.arsys.apiext.data.DataImport -x serverName -u userName
-p password -o dataFilePath -l logFile

In the following example, the formName determines which set of data from the
data file is imported to the server. The form name on the server and in the data
file must match.

com.bmc.arsys.apiext.data.DataImport -x serverName -u userName
-p password -f formName -o dataFilePath -l logFileName

In the following example, an import is being attempted into the form called
formA on the server, but the data comes from formB in the data file.

com.bmc.arsys.apiext.data.DataImport -x serverName -u userName
-p password -f "formA=formB" -o dataFilePath -l logFileName

Using the BMC Remedy User CLI
Some legacy integrations might require starting BMC Remedy User from the
command line. To start BMC Remedy User from the command line, use the aruser
command.

This command takes the following parameters:

app—The AR System application to launch BMC Remedy User in application

mode

auth—The external authentication string

user—The BMC Remedy User user name

password—The password for the user

For example, to start BMC Remedy User and automatically log in with the user
name “Demo” and password “remedy,” use this syntax:

Aruser /user="Demo" /password="remedy"

Or

Aruser -user="Demo" -password="remedy"
Chapter 18 Exporting and importing data and definitions 257

BMC Remedy Action Request System 7.6.04
To use an external authentication string, include the auth parameter:

Aruser /user="Demo" /password="remedy" /
auth="authenticationString"

Or

Aruser -user="Demo" -password="remedy" -
auth="authenticationString"

NOTE
To determine what servers to log into, BMC Remedy User checks the current AR
file. For information about how to modify this file, see the Configuration Guide ,
“ar,” page 348.
258 Integration Guide

Chapter

19
 Running external processes
(Run Process)
Run Process actions can be used for integration on both the AR System clients and
servers.

The following topics are provided:

Overview (page 260)
Client and server processes (page 260)
Using Run Process to start applications (page 260)
Using Run Process/$PROCESS$ to retrieve data from applications (page 264)
Run a process on the web (page 266)
Issues and considerations (page 267)
Chapter 19 Running external processes (Run Process) 259

BMC Remedy Action Request System 7.6.04
Overview
One of the simplest ways to integrate two applications is to execute one application
from within another. AR System enables you to include execution of external
applications as part of workflow to enhance or supplement the features of
AR System.

The reverse case, where another application executes an AR System client, is also
valid. See Chapter 18, “Exporting and importing data and definitions.”

Beyond simply starting the external application, AR System provides process-
control functionality for these types of integration:

Data passing and retrieving—When AR System executes external applications
(either manually or automatically), information from any form in the AR System
database can be extracted and passed as run-time arguments. You can also
retrieve data by using a Run Process command and place it in a field.

Client and server execution—External applications can be executed locally on
the AR System client, or remotely on the AR System server.

Synchronously and Asychronously—Run Process on a filter and escalation is
asynchronous. All other Run Process commands (including $PROCESS$ in a Set
Fields action) run synchronously.

Executing an external process is done using the Run Process workflow action,
available for filters, active links, and escalations, or in a Set Fields action with the
$PROCESS$ keyword.

Additional information is available in the Workflow Objects Guide.

Client and server processes
The Run Process action can be triggered on both AR System clients and servers.
This provides more implementation options than the DDE or OLE Automation
interfaces, which are available on the clients only.

All three workflow components can run processes to provide centralized
integration on the server. In addition, active link processes can provide local
integration on the clients.

Using Run Process to start applications
The Run Process action starts an external application. Depending on the function
and behavior of the application, it can be started through any of these means:

By a user (from an active link)

Automatically under certain states (from a filter)

Automatically under certain time conditions (from an escalation)
260 Integration Guide

Using Run Process to start applications
For example, a paging program can be called whenever a record marked Urgent is
entered into the database (a filter action), or when such a record has not been
accessed for two days (an escalation action). When the application is started, data
from the current form can be passed as run-time arguments to the application.

The Run Process action simply executes an independent process; it does not return
a value to the calling program.

Figure 19-1: Executing another application

Unlike active links, which run with the access control permissions of the user,
filters and escalations run with the permissions of the administrator and thus have
access to all form fields. Consider this when you define filter or escalation actions
because they can have security implications.

On a Windows server, a filter or escalation can run only processes that run in a
console (like a .bat script) or that create their own windows.

The processes that an active link launches can run on the local client machine or
the server. They are often triggered by actions taken by the user. For example, an
external email program could be started whenever the user clicks a button on an
AR System form, or a problem resolution tool can be invoked when a problem
description is entered into a field.

AR System serverAR System server

Data passed
as parameters
Data passed

as parameters

Data passed
as parameters
Data passed

as parameters

Request to
run process
Request to
run process

AR System clientAR System client

AR System serverAR System server

Active LinksActive Links

Filters and EscalationsFilters and Escalations

External
process
External
process

Data passed
as parameters
Data passed

as parameters
External
process
External
process

External
process
External
process
Chapter 19 Running external processes (Run Process) 261

BMC Remedy Action Request System 7.6.04
An example of a Run Process action definition for an active link is shown in
Figure 19-2. When the active link is triggered, the system executes the command
specified in the Command Line field, which launches a related process. To make
sure that the executable is correctly executed on the client machine, specify its full
path name. When the application is started, data from the current form can be
passed as run-time arguments to the application.

Figure 19-2: Defining a Run Process action for an active link

When designing an active link that uses a Run Process action on the client, always
consider the variety of client platforms that users will use. Keywords can be used
in the Run If expression for the active link to verify that the client is on an
appropriate platform. For example, the $CLIENT-TYPE$ keyword identifies
whether the client is BMC Remedy User. For more detail about the possible values
for $CLIENT-TYPE$, see the AR_CLIENT_TYPE constants defined in
ARSystemServerInstallDir\api\include\ar.h. If the active link is to be
supported on multiple platforms, each platform might require its own active link
with an appropriate qualification.

Example: open a reference document from an active link button
From your help desk application, you want to open reference documents that are
in Word format.

1 Create a form named Ref Docs that has two fields:

Document Name—Contains the name of a reference document.

Doc Location—Contains the path to where the document is stored.

2 Enter data for all of your documents into this form.

Specify the
program to

execute. Field
contents can
be passed as
parameters.
262 Integration Guide

Using Run Process to start applications
3 On the appropriate form of your help desk application, add two fields:

Reference Documents—A visible field that has a Search Menu attached that
queries the Ref Docs form to build a menu of all of the Document Name titles.

Path—A hidden field that is filled in using a Set Fields active link with the
corresponding Doc Location path whenever a Document Name is selected from
the menu on the Reference Documents field.

4 On the same help desk application form, create an active link triggered by a button
labeled Open Document.

The qualification on the active link is that the Reference Documents field is not
empty. The active link action is to do a Run Process with a Command Line
specification of something like:

C:\program~1\micros~1\office\winword.exe $Path$

When a reference document is selected from the menu and the active link button
clicked, Word starts, and the selected document appears.

Example: call a pager application from a filter
When a service request is submitted or modified with a severity of Critical, you
want to send a pager message to the person identified in the Responsible Person
field on the request. You use a pager application called TelAlert.

You need a filter that has the following characteristics:

Executes on Submit or Modify

Runs if

'TR.Severity' = "Critical" AND 'DB.Severity' != "Critical" AND
'Responsible Person' != $NULL$

In other words, it runs whenever a trouble report is set to Critical for the first
time and the Responsible Person field is not blank.

Sends a pager message to $Responsible Person$.

You would use the following command for the Run Process filter:

/usr/telalert/telalertc -c PageMart -PIN $Pager Access Number$
-m "Trouble Report $Call ID$ has just been set to Severity =
Critical."

This command performs the following actions:

It calls the TelAlert application. It uses the telalertc executable, which is the
standard TelAlert client, instead of the telalert executable, which is the client
plus the administration function.

The -c parameter tells TelAlert to use the PageMart configuration information
in the telalert.ini file.

The -PIN parameter takes the value of the field Pager Access Number and
passes it to PageMart to identify the specific pager that should receive the
message.

The -m parameter specifies the message that is to be sent to the pager. The value
of the Call ID field is substituted into the message text.
Chapter 19 Running external processes (Run Process) 263

BMC Remedy Action Request System 7.6.04
Using Run Process/$PROCESS$ to retrieve data
from applications

Another type of action, Set Fields, enables you to include workflow that
automatically sets the contents of fields from a variety of data sources.

These data sources include fixed values, values read from other forms (possibly in
other databases), values from arithmetic operations or functions, and values
returned by external applications. Using the $PROCESS$ keyword of the Set Fields
action, AR System can execute an application and set the output of the application
in various data fields. You can run only a process that behaves as follows:

Runs in a console (such as a .bat script or runmacro.exe), but not in a GUI
application.

Returns 0 if successful. (In this case, stdout is pushed to the field.) If the process
returns anything other than 0, stdout displays an error message.

Whether you use an active link, filter, or escalation depends on the purpose of the
external application. Active links can execute locally on the client machines or on
the server. Filters and escalations execute only on the server.

Figure 19-3: Retrieving data from another application

AR System serverAR System server

Data passed
as parameters
Data passed

as parameters

Output stored
in forms

Output stored
in forms

Output stored
in forms

Output stored
in forms

Data passed
as parameters
Data passed

as parameters

Request to
run process
Request to
run process

Output
stored

in
forms

Output
stored

in
forms

AR System clientAR System client

AR System serverAR System server

Active LinksActive Links

Filters and EscalationsFilters and Escalations

External
process
External
process

Data passed
as parameters
Data passed

as parameters

Output
from process

Output
from process

External
process
External
process

External
process
External
process
264 Integration Guide

Using Run Process/$PROCESS$ to retrieve data from applications
When an external application is run on the server, AR System waits for the process
to terminate so that it can capture and interpret the output of the process. To avoid
situations where AR System waits indefinitely for a process that fails to terminate,
a process time-out is built into AR System. This time-out can be configured for
between 1 and 60 seconds, using the AR System Administration: Server
Information form.

In a Set Fields definition, the keyword $PROCESS$ indicates that all following text
is a command. Use the full path name to the executable. AR System data field
values can be passed as parameters. When using active links, remember that they
run with the access control of the user, so access to form fields might be limited.

When workflow that performs a Set Fields action is fired, the process starts, and
BMC Remedy User waits for it to complete. (In UNIX, the process runs in a Bourne
shell.) All returned data is read by BMC Remedy User and processed according to
the return status of the process:

If the return status is zero, the data is used as the new value for the field.

If the process returns with a status other than zero, BMC Remedy User assumes
the process failed and does not update the field contents. Instead, the output
from the process is used as an error message and displayed to the user.

When designing an active link that uses a $PROCESS$ Set Fields action on the client,
always consider the variety of client platforms that users will use. The keywords
$HARDWARE$ and OS can be used in the Run If expression for the active link to
verify that the client is on an appropriate platform. If the active link is supported
on multiple platforms, each platform requires its own active link with an
appropriate qualification.

NOTE
You can run a process on a server by inserting @serverName: before the process
name in an active link. For example,

$PROCESS$ @ServerA: C:/temp/process.exe

If it is the current server, you can use @@ instead of @serverName.

An example of a Set Fields action for a filter is shown in Figure 19-4. In this
example, the action sets the values of two fields by executing a separate utility
program for each one, passing values of existing fields as parameters. If the
programs execute correctly (that is, return with an exit code of zero), their outputs
are assigned to the respective fields.
Chapter 19 Running external processes (Run Process) 265

BMC Remedy Action Request System 7.6.04
Figure 19-4: Defining a Set Fields action using $PROCESS$

Run a process on the web
JavaScript is an HTML scripting language that allows you to create programs that
reside directly on an HTML page. An active link can use the Run Process action to
run JavaScript on the browser. The JavaScript code must have the word
javascript in front if it. For example, the following code shows an alert box with
“Hello world” in it:

javascript alert("Hello world");

You can use keywords and field references in the JavaScript, for example:

javascript alert("You are in $SCHEMA$ and Submitter is 2");

The value of the
L1_Code field is

set by an external
program called
autoPri, which

accepts an
employee ID as an

argument.
266 Integration Guide

Issues and considerations
In several BMC Remedy applications, the user is shown a table of related tickets
along with the primary ticket. These related tickets can be from different forms. A
special form is maintained, which records relationships between tickets. The
related tickets table field shows this special form. When the user double-clicks on
any of the related tickets, instead of showing the special form to the user, an open
window action opens the form that has the ticket data.

Limitations in using JavaScript
All the Run Process JavaScript actions are grouped together and executed at the
end of the active link. For example, if you have a Run Process action followed by
a Set Fields action, the Set Fields action is executed before the Run Process
action.

Some JavaScript code is asynchronous. For example, openModifyForm starts
the process of opening the form, but does not wait for the action to complete. So
it is not possible to have another Run Process action that clicks a button on the
newly opened form.

Any special characters in JavaScript must be properly escaped. For example, if
the action has JavaScript alert("Short Description is 8") and the Short
Description value contains a double quote or a backslash or a new line, a
JavaScript error occurs.

If the word javascript is not at the beginning of a run process action, it says
“The following specific error(s) occurred when executing ‘xx’,”
but it does not say what the error is.

Issues and considerations
Active links that run a process on the client should have qualifications that limit
usage to an appropriate client platform. The keyword $HARDWARE$ can be used
to check for the client platform. On UNIX machines, $HARDWARE$ returns the
value of the command uname -m. On the Windows clients, it returns the value
PC.

On UNIX machines, processes run under the Bourne shell.

When passing data fields as parameters to external programs, enclose the
arguments with double quotation marks if the value might contain spaces or
special characters.

The $PROCESS$ feature of the Set Fields action is effective for dynamically
pulling or loading small amounts of data on the AR System client or server. For
large amounts of data, use the API.

The Run Process string can have a maximum length of 4096 bytes. To execute
large scripts, use field references to build the script’s data.

For information about special Run Process commands, see the Workflow Objects
Guide.
Chapter 19 Running external processes (Run Process) 267

BMC Remedy Action Request System 7.6.04
268 Integration Guide

Chapter

20
 OLE automation
You can use the OLE automation active link action to integrate BMC Remedy User
with an external automation server. The OLE automation action is just like any
other active link action—when it executes, it carries out the specified automation
sequence on the specified automation server.

The following topics are provided:

OLE overview (page 270)
AR System and OLE automation (page 271)
Active links and OLE automation (page 272)
Maintaining server context across multiple active link actions (page 278)
Working with ActiveX controls (page 278)
AR System as an OLE automation server (page 278)
DCOM support (page 279)
The OLE automation active link action (page 279)
Issues and considerations (page 284)

For more information about automation in AR System, see the C API Reference.
Chapter 20 OLE automation 269

BMC Remedy Action Request System 7.6.04
OLE overview
OLE (Object Linking and Embedding) is Microsoft technology that allows one
application to send commands or data to another application.

The terminology in this area is often confusing, but OLE Automation is the only
aspect of OLE that AR System addresses. First, however, you should understand
the Component Object Model (COM), the framework for developing and
supporting component objects. Using COM, many different types of software can
interact in a predictable fashion.

A COM object is software that provides its services to other software through one
or more interfaces, each of which includes several methods. A method is typically a
function or procedure that performs a specific action and can be called by the
software that uses the COM object (the client of that object).

Figure 20-1: Generic COM architecture

OLE Automation, sometimes referred to simply as Automation, is a means for a
COM client to control a COM object (or component). An automation server is a
COM object that implements the IDispatch interface, which is a predefined COM
interface. An automation controller is a COM client that communicates with the
automation server through that interface.

Figure 20-2: OLE Automation architecture

COM serverCOM server

COM
object
COM

object

InterfaceInterface

MethodsMethodsCOM
client
COM
client

Automation
Server

Automation
Server

COM
object
COM

object
IDispatchIDispatch

InterfaceInterface

MethodsMethodsAutomation
Controller

Automation
Controller
270 Integration Guide

AR System and OLE automation
When Microsoft added Web-aware features to OLE, it changed the name to
ActiveX. An ActiveX control is an example of an Automation server that can be
controlled by BMC Remedy User. ActiveX controls are objects that can be reused
by many applications; many of them can be downloaded as small programs or
animations for Web pages.

AR System and OLE automation
BMC Remedy User can be an Automation server or an Automation controller. As
an Automation controller, it uses active link actions to send commands to other
applications. For example, you can enable your forms to use electronic phone pads,
spreadsheets, charts, graphs, spell checkers, or employee pictures. You can also
write OLE Automation servers that are specific to your needs.

As an Automation server, BMC Remedy User can be accessed by another
application. The other application can perform such functions as opening forms,
creating entries, opening guides, or running macros. The following figure shows
how a complete cycle of Automation could be designed. In the figure, IDispatch
is not shown, but it implicitly mediates between Automation controllers and
servers. In essence, the brackets symbolize IDispatch.

Figure 20-3: OLE Automation in AR System

Automation
Server

Automation
Server

Active Links
(functioning collectively)

Active Links
(functioning collectively)

(functioning as an
Automation Server)
(functioning as an

Automation Server)

Automation
Controller

Automation
Controller

Remedy User tool
OLE features (methods)
Remedy User tool
OLE features (methods)

User
Tool
User
Tool

The Automation Controller and Automation
Server could be the same application.
The Automation Controller and Automation
Server could be the same application.
Chapter 20 OLE automation 271

BMC Remedy Action Request System 7.6.04
Active links and OLE automation
In AR System, active links allow access to Automation servers through the
methods and properties that are accessible in its type library. This section discusses
the servers, the type libraries, and the specific active link interface.

Automation in AR System supports two types of servers:

Local servers—Executable OLE servers that run in their own process space.

In-process servers and controls—Dynamic link libraries (DLLs) that run in the
same process space of the invoking process.

Automation servers, controls, and type libraries are defined in the system registry.
BMC Remedy Developer Studio reads this information and displays this
information when the user defines any Automation active link. AR System uses
the following rules when it reads the system registry.

The Automation server must have the following properties listed under its
registry entry:

TypeLib listing the typelib IID (interface identifer) or Programmable.

InProcServer or LocalServer entry.

When the servers have any one of the following properties, they are not
displayed in BMC Remedy Developer Studio:

If the in-process server (InProc) is a system component, not an application
OLE server, it is skipped.

If the Automation server is an OLE 1.0 control, it is skipped. (All 1.0 OLE
controls have an Ole1Class entry.)

If the server entry has the autoconvert attribute, that server entry is ignored.

An Automation system component has the following registry entries for InProc
servers under the InProcServer32 entry:

ole32.dll

oleprx32.dll

ole2pr32.dll

olecnv32.dll

oleaut32.dll

An Automation system component has the following registry entries for InProc
server under the InProcServer entry:

ole2prox.dll

ole2.dll

ole2disp.dll
272 Integration Guide

Active links and OLE automation
Using the GUID
Active links defined using an Automation server or control must use the globally
unique identifier (GUID) of that server or control. A GUID is a unique 128-bit
number produced by Windows (and some Windows applications) to identify a
particular component, application, file, database entry, or user. Therefore, each
user machine where an active link executes must contain the same server or control
where the active link was defined. If you build your own Automation server or
control, you must register it on the user machine using the Regsvr32 utility. For
more information about registering servers and controls, see the Microsoft OLE,
COM, and ActiveX documentation.

The OLE automation active link interface
You must understand how objects, methods, parameters, and return values are
identified in the If Action or Else Action panels for creating OLE Automation
active links.

Figure 20-4: OLE Automation active link action
Chapter 20 OLE automation 273

BMC Remedy Action Request System 7.6.04
NOTE
The OLE Automation active link user interface is not a full development
environment. For example, debugging tools are not available. The best way to
develop the sequence of method calls is to use a product such as Visual Basic. With
an operational Visual Basic program, you can enter method calls by using the
procedures described in this section.

You can also obtain documentation for working Visual Basic programs and choose
not to develop them yourself. However, Customer Support cannot help you
develop Visual Basic programs.

When a particular AR System server is selected, BMC Remedy Developer Studio
queries the type library information from the registry and displays the information
in a tree format in the Type Library Information box. The Type Library tree
displays the following data types:

Aliases, enumerators, structures, and unions—Special data types defined by
the Automation authors and can be used as parameters or return types in the
method calls defined in the objects. These data types are used for display
purposes only.

Objects—The focal point of the Automation system. Objects contain methods
and properties. The object node displays all of the objects defined by the
Automation server author. Under each method node, all methods are displayed
in a C style syntax:

returnType methodName (parameters)

Figure 20-5: OLE Automation active link action—type library

AR System does not show object methods (which have safearrays and c-arrays as
return-types or as parameters) because these types are not supported.
274 Integration Guide

Active links and OLE automation
If a Get/Set accessor type is defined, BMC Remedy Developer Studio displays the
object properties as methods. For example, a BSTR MyString property is displayed
as two methods:

BSTR MyString()

Void MyString(BSTR rhs)

These two methods can be used to Set and Get the MyString property values.

Reading the method tree
After you chose a server, an object, and a method to invoke, the method is added
to the call sequence. A method tree and associated parameters are displayed in
tabular format on the OLE Automation panel. The method node along with return
types are also displayed. If the return type of a method is void, no return type node
is displayed. The return type can be assigned to a field type, nested to operate on
the next method, or be substituted for a method parameter type.

The following example shows how to open Excel by using three actions in an active
link:

1 Make automation server controllable by the user interface:

_Workbook:Application._Application:User Control(1)

NOTE
If user control is not specified, Excel terminates when the automation sequence
ends. If you plan a series of sequential Automation actions, User Control must be
invoked.

2 Make Excel visible:

_Workbook:Application._Application:Visible(1)

3 Open the workbook:

_Workbook:Application._Application:Workbooks.Workbooks:Open()

Automation allows nesting only one level deep when building method sequences.
A typical sequence might be as follows:

object1().object2()

object1().object2(object3())

This sequence requires three trips through IDispatch.
Chapter 20 OLE automation 275

BMC Remedy Action Request System 7.6.04
Working with method parameters
Parameter values can be supplied as follows:

Parameters can be filled in with the return value of another method.

When you nest, the return type of the method to add and the parameter type
should match. BMC Remedy Developer Studio validates the type compatibility
when you nest the methods.

You can fill in parameters. The user-defined parameters are validated as
follows:

From the method tree, all parameters are extracted as strings including
integer, double, and so forth.

A variant change to the native OLE type is then performed to validate the
type of the parameter the user has entered. If the variant change failed, BMC
Remedy Developer Studio reverts to the previous state, ignores the latest
change, and displays an error message indicating a data type mismatch has
occurred.

For example, assume that in a method called SetInt(), the user has entered
1234 as the parameter value. As soon as the focus moves off of the parameter
value node, denoting completion of the action, BMC Remedy Developer Studio
extracts 1234 as the string 1234 and tries to convert it to an integer. If the change
is possible, the user’s changes are accepted; otherwise, an error message is
displayed. If the user entered Test as the parameter value, the variant change
operation would fail with the appropriate error message displayed.

If a parameter is a pointer type variable and the user types in a value, BMC
Remedy Developer Studio displays an error message. In this case, the user is
allowed to add only methods that have the same pointer type as the return
value.

A parameter that is an object pointer does not accept a typed-in value but
accepts a method supported in the ActiveX control that returns that object.

Methods of other interfaces can be selected, but make sure the return type of the
method to add and the parameter type are the same.

A right mouse click on the parameter value node displays a menu to select
AR System Form field values or keywords. No validation is done when field
values are assigned to parameters.

No type validation is done on the VARIANT parameter type. BMC Remedy
Developer Studio cannot determine the underlying type of the variant at design
time. However, BMC Remedy User performs validation at run time and
displays any error messages if a type mismatch occurs.
276 Integration Guide

Active links and OLE automation
Working with method return types
Values cannot be entered directly at the return node. However, AR System fields
can accept the return value of the method. Users can click the right mouse button
to display a menu list, and users can select field names from the form. Keywords
also appear in the menu list but are grayed out because return values for a method
call cannot be assigned to keywords, only to variables. If the menu list shows
grayed-out keywords and fields, a return value cannot be assigned because of a
type incompatibility. This is usually the case with pointer types.

Other methods can be nested to act upon the return type. For example, to make
Word visible, the following method call is used:

1 Select the Word Document local server.

2 Select the _Document Object and the Application*Application() method.
This method returns an application object.

3 Select the _Application Object and the Void Visible method. Any method can
be nested from the application object.

When a method is added to the return type, BMC Remedy Developer Studio uses
the following rules to validate the method:

BMC Remedy Developer Studio checks to determine if the return type of the last
method in the call sequence is of type Object. An error message is displayed if
the return type is not an object.

If the return type is an object and another method is added to the return type,
the Interface Identifier (IID) of the returned object and the IID of the method
being added are compared. The method is validated if the user is adding a
method from an object, which is compatible to the return type of the last method
in the call sequence.

If the return type of the last method in the call sequence is of type IDispatch,
IID validation is not performed because BMC Remedy Developer Studio cannot
predict which object the IDispatch interface represents at design time. (BMC
Remedy Developer Studio validates only that a value cannot be directly entered
like an ordinary parameter.)

If the return type is VARIANT, no validation is performed because BMC Remedy
Developer Studio does not know the underlying type at design time. For
example, if the object Ifoo supports two methods, VARIANT GetBSTR() and
SetDispatch(VARIANT), BMC Remedy Developer Studio allows the nesting of
methods as SetDispatch(GetBSTR()) because BMC Remedy Developer
Studio is not aware that the VARIANT from GetBSTR contains a BSTR value and
not an IDispatch value. BMC Remedy User performs a validation at run time,
and an error message appears if a type mismatch occurs.
Chapter 20 OLE automation 277

BMC Remedy Action Request System 7.6.04
Maintaining server context across multiple
active link actions

AR System automatically maintains the OLE server context across multiple active
link actions. The server’s context is maintained across each active link action so
that subsequent actions act on the same server. When the active link finishes firing,
the server’s context is released. However, depending on the local server’s
implementation, the executable might close if all active connections to the server
are terminated.

Working with ActiveX controls
The OLE Automation active link is open to Visual Basic and other languages. OLE
Automation active links can be constructed to invoke Visual Basic ActiveX controls
from AR System. After your callable ActiveX control is built, make sure that the
class module and functions are public and that a recognizable name is given to the
interface being exposed.

Follow these rules when creating an ActiveX .dll in Visual Basic:

Provide a recognizable name to the interface being exposed. Each defined class
module becomes an interface object. In Visual Basic, select the Class property
and change the ClassName.

Provide a recognizable name to the Project Name. In Visual Basic, choose
Project Menu > Properties > ProjectName.

Make sure the DLL is created and registered in the system by using the
Regsvr32 utility, for example, regsvr32 dllName.

When you use an ActiveX control as an OLE server, you select an ActiveX control
from the list of OLE Automation Controls, rather than the list of local OLE servers.

AR System as an OLE automation server
BMC Remedy User exposes its basic functionality to OLE Automation clients
located on the same machine. This functionality includes the ability to open a form,
perform create, search, and modify operations, get and set field values and
properties, open a guide, and run a macro. For more information, see the C API
Reference.

You can manipulate BMC Remedy User directly or create a Visual Basic control
and manipulate the Visual Basic DLL through the Automation active link as
described in the preceding sections.
278 Integration Guide

DCOM support
Your client application can launch a new instance of BMC Remedy User or connect
to an instance that is already running. It can also connect to a running AR System
application server object (an instance of BMC Remedy User that manages a
prescribed set of forms), but it cannot launch a server object.

Unless otherwise specified for an interface, your client application can both get
and set the interface object’s properties. As with the AR System API, the
AR System permissions you have when making an OLE Automation call are those
of the user logged in to the session you use.

The following example illustrates the use of BMC Remedy User through the
exposed inbound interface to invoke the an AR System form through an
Automation active link:

1 Select BMC Remedy User Application Class (the BMC Remedy User inbound
server name) from the LocalServer node.

2 Select the IcomApp object and then select OpenForm().

3 Provide the parameter values. The OpenForm call returns an IschemaWnd object.
For example, call GetServerName as a nested call to obtain the server name. Return
values can also be assigned to an AR System form. The call structure is $field$ =
OpenForm().GetServerName().

DCOM support
Distributed COM (DCOM) is only partially supported by AR System. All
Automation servers invoked by AR System are treated as local servers and not
remote DCOM servers. To use the DCOM protocol, you can create a local server
that calls an outside DCOM process. The same Automation servers must be
present on both the AR System administrator’s machine and the AR System users’
machines; otherwise, an error message is displayed indicating that the servers are
not available.

The OLE automation active link action
Use the OLE Automation action to share functionality between applications that
support OLE. When using this action, AR System acts as an OLE automation
controller client to an OLE server.

The following procedure describes how to implement OLE automation in
AR System. As in SQL, you should debug OLE automation calls in a full OLE and
COM development environment and then use that knowledge to build the same
calls in BMC Remedy Developer Studio.

A sample exercise is outlined in “OLE automation example—Sample:SpellCheck”
on page 283.
Chapter 20 OLE automation 279

BMC Remedy Action Request System 7.6.04
NOTE
If you design an active link for a form that is also used by clients on platforms other
than Windows, verify that the current platform is a PC as a condition of activating
the OLE action. To do this, include a qualification that uses the $HARDWARE$
keyword to verify the current platform. For more information about building
qualifications, see the Workflow Objects Guide.

� To define the OLE automation active link action

1 In BMC Remedy Developer Studio, choose File > New > Active Link.

The New Active Link dialog box appears.

2 Select the server on which you want to create the active link, and click Finish.

The active link opens in an editor.

3 Set up conditions in the Associated Forms panel, the Execution Options panel, and
the Run If Qualification panel.

4 Right-click the If Actions panel or the Else Actions panel.

5 Choose Add Action > OLE Automation.

An OLE Automation panel appears under the If Actions or Else Actions panel.

6 In the Method tree, click the node labeled “Click here to add a new method”
(Figure 20-7).

The Add New COM Method dialog box appears, as shown in Figure 20-6.

Figure 20-6: OLE Automation active link action—adding a method

Automation servers.
Object.

Method.
280 Integration Guide

The OLE automation active link action
7 From the OLE Automation Servers list, select the appropriate OLE server or
control:

OLE Local Servers—Lists the OLE servers on your machine.

OLE Automation Control—Lists the controls on your machine.

Because remote automation is not supported, users can access only the OLE active
link automation action if the same OLE components selected in BMC Remedy
Developer Studio also exist on their computers.

8 Double-click the appropriate server or control.

A list of relevant objects is displayed in the Type Library Information list.

9 In the Type Library Information list, expand the Objects in Library > Objects
category.

A list of objects defined for the selected server or control appears. You can also
expand Aliases, Enumeration, Structures, or Unions to view display-only
reference information for the server or control.

10 In the Objects category, expand the appropriate object.

A list of methods for the selected object appears.

11 Select a method, and click OK to add it.

The selected method is displayed in tabular format on the OLE Automation panel.
You can click the appropriate cells in the table to define method parameters and
return values (see Figure 20-7).

In the Method column, each item that you can define has a placeholder such as
Type in your value here or Select a field here. The placeholder is a
temporary representation of the item value. If a placeholder does not appear where
you would expect to find a return value or a method parameter, the item does not
exist for the selected method.

If an OLE method returns an object, you can nest the methods of the object that is
returned. That is, if object B is returned when you call a method on object A, you
can nest these methods by using this syntax:

Return Value = A.B(parameter1, parameter2, ...).

12 Define method parameters, if applicable. Expand the Parameters category in the
Method list, then find the parameter name and expand it.

The words Type in your value here appear below the selected parameter, as a
temporary representation of the parameter value. The parameter value must be of
the data type specified in the parameter name.
Chapter 20 OLE automation 281

BMC Remedy Action Request System 7.6.04
You can define a parameter in one of the following ways:

Click Type in your value here and type the parameter value.

Click the adjacent ellipsis button to open the Field/Keyword Selector. In the
Selector, click OLE Automation Component, Fields, or Keywords. Choose the
item to use for the parameter value, and click OK.

Optional parameters are displayed in brackets ([]). If you leave these
parameters blank, BMC Remedy User substitutes default values for them when
it runs.

13 Repeat step 12 until every parameter is defined.

If the value of a parameter is another method, as described in step 11, you must
define parameters for the nested method as well.

14 Define the method return value, if applicable. Expand the Method Returns >
Return Value category in the Method list.

The words Select a field here appear as a temporary representation of the
return value.

15 Click the ellipsis button adjacent to Select a field here, and use the Field
Selector to choose a field.

The return value must be of the data type specified in the Return Value category.
If the return value is a pointer, the only way to use the returned object is to cascade
or nest a method of the object being returned.

16 To delete a method, right-click the method name and choose Delete Method.

17 Add more OLE automation actions, if desired.

Figure 20-7 shows an example of an active link that is already created, and explains
the elements of the OLE Automation panel.
282 Integration Guide

The OLE automation active link action
Figure 20-7: OLE Automation active link

The Type Library Information list includes aliases, enumerations, objects,
structures, and unions. OLE automation servers define these special data types,
which can be used as parameters or return types for method calls defined in the
objects.

Some data types are used for display only and are not useful to OLE automation
authors. However, methods are defined within objects, and these methods are
used to create OLE automation active link actions.

OLE automation example—Sample:SpellCheck
The Sample:SpellCheck active link in the Sample application uses OLE to access
the spell checker of Microsoft Word. Before analyzing this active link, you must
understand how objects, methods, parameters, and return values are identified in
the If Action or Else Action tabs for creating OLE automation active links.

Eight OLE automation actions are used to check spelling, as follows:

FileNewDefault() creates and opens a temporary Word file.

AppHide() hides the Word application from the user.

Insert($Description$) inserts the contents of the Description field into the
temporary file.

ToolsSpelling() runs the spelling checker on the file.

EditSelectAll() selects the text in the document.

Active link actions.

As you select
methods, they are
displayed in a tree
view. If they have
parameters or return
values, you can enter
them in this list.

To rearrange a
list of actions,
right-click one
and use the
Move Action
controls.
Chapter 20 OLE automation 283

BMC Remedy Action Request System 7.6.04
$Description$ = Selection() returns the checked text back to the
Description field.

FileClose(Val(2)) closes the file.

AppClose() closes the Word application.

Finally, a Set Fields action trims the trailing carriage-return character from the end
of the text. If the user is not running BMC Remedy User on a computer with
Microsoft Word, an Else action displays an error message.

Issues and considerations
Keep the following issues in mind when working with OLE:

OLE does not work on the web.

Neither persistence nor event processing is supported by AR System. You can
write your own ActiveX controls to compensate.

Extensive troubleshooting tips for OLE Automation are available at the
Customer Support website, http://www.bmc.com/support. When you access
the knowledge base, enter the keyword OLE.

The OLE capabilities of BMC Remedy User are designed to provide a client-side,
single user integration point. For greater speed, more robust capabilities, or
server-side integration, use the AR System C or Java API.

BMC Remedy User OLE methods that return lists of forms, servers, and other
objects do not work in Visual Basic Script (VBS, VBScript). This is because BMC
Remedy User transfers these as string arrays, while VBScript works only with
Variant arrays. This is described in Microsoft article: http://
support.microsoft.com/support/kb/articles/Q165/9/67.ASP.

The BMC Remedy User OLE interface is a single document interface with
multiple objects.
284 Integration Guide

http://www.bmc.com/support
http://support.microsoft.com/support/kb/articles/Q165/9/67.ASP
http://support.microsoft.com/support/kb/articles/Q165/9/67.ASP

Chapter

21
 Dynamic data exchange
Dynamic data exchange (DDE) can be used for AR System client integration and,
indirectly, for server integration.

The following topics are provided:

Overview (page 286)
Configuring your system to use DDE with AR System (page 287)
Using active links with DDE (page 290)
Using BMC Remedy User reporting with DDE (page 293)
Using a DDE execute from an external application to trigger AR System
(page 295)
Using AR System with DDE, third-party applications, and macros (page 296)
Examples (page 300)
Issues and considerations (page 306)
Chapter 21 Dynamic data exchange 285

BMC Remedy Action Request System 7.6.04
Overview
Dynamic data exchange (DDE) is a Microsoft-defined method for exchanging data
between Windows applications, such as Excel, Word, and Visual Basic. In DDE,
data is passed between DDE clients (destinations) and DDE servers (sources) on
the same machine.

The DDE client initiates the exchange by establishing a conversation with the DDE
server so that it can request data or services from the server. The server responds
by providing the data or services to the client. A server can have many clients at
the same time, and a client can request data from multiple servers. Additionally,
an application can be both a client and a server. In AR System, BMC Remedy User
is usually the client application, and the DDE service is the server application.
BMC Remedy User can also be a DDE server.

DDE parameters used by AR System
AR System uses the following DDE parameters to identify data exchanged during
a DDE conversation:

For more information about DDE, see the Microsoft Windows documentation.

DDE parameter Description

Service Name Identifies the DDE application with which BMC Remedy User
establishes a conversation.
Application DDE name.

Topic Identifies the logical data context. For example, a file name or a
category of command (like the system command in Excel).

Item Specifies the location in the DDE application where you set a value. For
example, the cell location in a spreadsheet.
Used by the DDE Poke command.

Path Specifies the location of DDE application executables specified in the
Service Name field.

Command Specifies data to send to the DDE application. The data can be a literal
value or a data field value.
286 Integration Guide

Configuring your system to use DDE with AR System
Methods of integration
You can use DDE to integrate AR System with third-party applications in the
following ways:

Use the DDE active link action to send data to or execute a command in another
Windows application. See “Using the DDE active link action” on page 291.

Use the DDE active link keyword to request data from another Windows
application. See “Using the DDE active link keyword” on page 293.

In BMC Remedy Developer Studio, you specify a DDE command and a trigger
action for an active link. Users activate the active link from a toolbar button or
through actions in BMC Remedy User.

Use DDE and BMC Remedy User to send a report to another Windows
application and cause the application containing the AR System report to open.
See “Using BMC Remedy User reporting with DDE” on page 293.

Use a third-party application and DDE to launch BMC Remedy User and
execute a macro. See “Using AR System with DDE, third-party applications, and
macros” on page 296

For more information about DDE, see the Microsoft Windows documentation.

For more information about integrating AR System with another application, see
that application’s documentation.

Configuring your system to use DDE with
AR System

This section outlines how to configure the DDE settings on your local machine to
enable AR System to work with DDE.

Working with your dde.ini file
When a DDE client sends report data to a DDE server, the client needs a way to
specify the details of the transfer, including how and where to send the data, and
what to do with it when it gets there. When an AR System client is the DDE client,
you use a dde.ini file to specify the details.

The dde.ini file must be in the ARHOME directory for the AR System client. The
default location for the ARHOME directory on a Windows platform is C:\home.
Chapter 21 Dynamic data exchange 287

BMC Remedy Action Request System 7.6.04
Use a text editor to modify your dde.ini file. The dde.ini file uses the following
syntax:

[SectionTag]
Path = pathToApplication
Application = DDEApplicationName
Topic = topicName
Format = formatName
XFRDATA = transferMechanism
Command1 = [DDEApplicationCommand1]
.
.
.
Commandn = [DDEApplicationCommandn]

The parameters in the dde.ini file are as follows:

Parameter Definition

SectionTag Identifies a portion of the dde.ini file that contains parameters
pertaining to one instance of exporting a report to an application. You
can have multiple sections in a file. This value must be unique in the
dde.ini file. Use descriptive names to help you remember what each
section is for. Names are not case-sensitive and cannot contain spaces.
This value is used when the Report To Application button on the
reporting facility window is selected to identify which section in the
dde.ini file should be used to control the data transfer.

Path Defines the full execution path name to the DDE server application. If
the application is not already running, it is started by using any
command-line arguments you specify as part of the Path parameter.

Application Identifies the DDE server name of the DDE server application. This
name is defined during the development of the application and is not
configurable. For example, excel is the DDE server name for Excel
and winword is the DDE server name for Word.

Topic Controls how data is exchanged for some DDE server applications. For
example, when you execute commands, functions, or macros for Excel,
the Topic should be system.

Format Defines which column separator AR System uses when multiple fields
in a data record are output. This overrides any format specification in
the report definition. The options are:
TAB—Values separated by a tab character.
CSV—Values separated by commas.
Record—Values output in record format. All the page setup
information is reset. You can also specify an optional parameter
CharsPerLine. If CharsPerLine is not specified, the default is 80.
Current—Uses the format and page setup defined in the
application.
288 Integration Guide

Configuring your system to use DDE with AR System
Sample dde.ini files
The following sample dde.ini file sends a report with values separated by tabs to
Microsoft Excel. It copies report data from the clipboard and pastes it into a new
document:

[excelclipboard]
Path=C:\excel\excel.exe
Application=excel
Topic=system
Format=Tab
XFRDATA=Clipboard
Command1=[NEW(1)] [PASTE()] [SAVE.AS(,0)]

BMC Remedy User creates a random file in the user’s TEMP folder and substitutes
this file name were %f appears. This report is then opened in Excel:

[excelfile]
Path=C:\excel\excel.exe
Application=excel
Topic=system
Format=Tab
XFRDATA=FILE
Command1=[OPEN("%f")]

The following sample dde.ini file sends a report in record format to Microsoft
Word. It copies report data to the clipboard, opens a new file in Word and pastes
the data into the new file:

[wordrecord]
Path=C:\msoffice\winword\winword.exe
Application=winword
Topic=system
Format=Record
CharsPerLine=100
XFRDATA=Clipboard
Command1=[FileNew .Template = "Normal", .NewTemplate = 0]
Command2=[Editpaste]

XFRDATA Defines the actual data transfer mechanism. The options are:
Clipboard—Copy data to the Windows Clipboard and then paste
it into the external application from there
File—Copy the data to a temporary file and then open the
temporary file with the external application.

Commandn Defines the commands to send to the DDE server application to tell it
what to do with the data transferred to it. Each DDE server application
has a set of commands that it supports. For Excel, these are the Excel
macro functions and Visual Basic commands. Excel commands are
documented in the Excel Help system. In the dde.ini file, each
specified command is enclosed in square brackets.

Parameter Definition
Chapter 21 Dynamic data exchange 289

BMC Remedy Action Request System 7.6.04
The following sample dde.ini file sends a report in the current report format to
Microsoft Word. It creates a file containing report data and opens the new file
using Word:

[WordCurrFormatFile]
Path=C:\msoffice\winword\winword.exe
Application=winword
Topic=system
Format=CurrentFormat
XFRDATA=File
Command1=[FileOpen .Name="%f"]

DDE time-out settings
AR System DDE operations have a time-out setting associated with them in the
ar.ini file. The time-out setting indicates the amount of time that BMC Remedy
User waits for a response from the third-party application. If there is no response
after this set time, the DDE operation is not completed and a time-out message is
displayed.

The [DDE] section and settings do not exist in your ar.ini file unless you add
them. If you do not add a [DDE] section, the default values take effect. To specify
a value, add the following lines to your ar.ini file:

[DDE]
AppResponseTimeout=N
TransactionTimeout=N

where N is the new DDE time-out setting in seconds. The parameters are as follows:

Using active links with DDE
You can use DDE in active links as follows:

Use the DDE active link action to send data to an external application or send a
request to execute a command to an external application.

Use the DDE active link keyword to request data from an external application.

Parameter Description

AppResponseTimeout The maximum time in seconds to load the application into
memory after starting it before AR System times out. The
default setting is 30 seconds.

TransactionTimeout The maximum time in seconds for the DDE server to respond
to the requested DDE action before AR System times out. The
default setting is 20 seconds.
290 Integration Guide

Using active links with DDE
Using the DDE active link action
You can use an active link with the DDE action to integrate AR System with an
external application.

NOTE
If you design an active link for a form that is used by clients on Windows and other
platforms, verify that the current platform is Windows as a condition of activating
the DDE action. To do this, include a qualification that uses the $HARDWARE$
keyword to verify the current platform. For more information about building
qualifications, see the Workflow Objects Guide.

� To define the DDE active link action

1 In AR System Navigator of BMC Remedy Developer Studio, expand serverName
> All Objects.

2 Right-click Active Links, and choose New Active Link.

3 On the Associated Forms panel, select the form or forms associated with the active
link, filter, or escalation.

4 If there is more than one associated form, Identify the primary form.

5 On the Execution Options panel and the Run If Qualification panel, set the
conditions for the active link.

For more information, see the Workflow Objects Guide.

6 Right-click on the If Actions panel or the Else Actions panel, and select Add Action
> DDE.

The fields required to define the DDE action appear. The following figure shows
these fields and an example of how a DDE (Execute) active link action might look
after you complete the remaining steps in this procedure.

Figure 21-1: If Actions panel with DDE action
Chapter 21 Dynamic data exchange 291

BMC Remedy Action Request System 7.6.04
7 Complete the following fields.

AR System Active Link Support for DDE Execute and Poke

The DDE action supports the following functions:

DDE Execute—Causes the DDE server application to execute a process or
command. For example, a DDE Execute function might direct Excel to start up
and run a particular Excel macro.

DDE Poke—Sends a piece of data from the DDE client to the DDE server. For
example, a DDE Poke function might take a value from a field on an AR System
form and poke (that is, write or copy) it into a cell in an Excel spreadsheet or a
bookmark in a Word document.

Field Description

Action The DDE action type. The options are:
Execute—Sends a request to the DDE application to execute the
commands in the Command field. The Execute action uses these
parameters:

Service name
Topic
Path
Command

Poke—Use the DDE Poke action to send a request to the DDE
application to set the value specified in the Command field to the
location (for example, a field or cell) specified in the Item field. The
Poke action uses these parameters:

Service name
Topic
Item
Path
Command

See “DDE parameters used by AR System” on page 286.

Service Unique ID of the DDE application, for example, excel or winword.
See “Service Name” on page 286.

Topic DDE topic. See “Topic” on page 286.

Item DDE item (if applicable).
The Item field is enabled if the Action type is Poke.

Path Location of the service. See “Path” on page 286.

Command Command to execute. See “Command” on page 286.
You must enter a value in this field.
If the action is Execute, a command is sent to a DDE application. If the
action is Poke, data is set in the DDE application.
See the Workflow Objects Guide for information about loading the
result of a DDE request operation into a field by using an active link
that performs a Set Fields action.
292 Integration Guide

Using BMC Remedy User reporting with DDE
Using the DDE active link keyword
Use the Set Fields active link action to set the value of a field. Use the DDE
keyword with a Set Fields action to cause a DDE Request to be made to another
application to obtain the data to fill in the field. For example, a workflow definition
could look up the current price of an item in a price list maintained as an Excel
spreadsheet and copy the value into a field on a form.

When the active link is performed on a Windows client, the specified DDE request
is executed and BMC Remedy User waits for the operation to complete. The data
that the DDE request returns is then entered into the field.

If the active link is triggered by an action in a form on a non-Windows client, an
empty or null string is returned.

The DDE keyword indicates that all following text is a DDE command line. The
command line can include substitution parameters from the current screen to
enable values from the current screen to be placed into the command line before it
is executed. You can select substitution parameters (and the DDE string) from the
Fields Value list.

The syntax of the DDE keyword is as follows:

DDE serviceName;topic;path[;item]

For example, the following operation returns the contents of cell R1C1 of a file
named sheet1 in Microsoft Excel to the current field:

DDE excel;sheet1;C:\excel\excel.exe;R1C1

For more information about the parameters you can use for the DDE keyword,
see “DDE parameters used by AR System” on page 286.

Using BMC Remedy User reporting with DDE
For exporting large blocks of data out of AR System and into another Windows
application using DDE, BMC Remedy User reports are the most effective
mechanism.

Before you send an AR System report to another Windows application, perform
the following tasks:

Step 1 If necessary, create or modify a dde.ini file. See “Working with your dde.ini file”
on page 287.

Step 2 Configure BMC Remedy User to allow report data to be passed to an external
application.

Step 3 Create a report that gathers the desired data from the AR System database.
Chapter 21 Dynamic data exchange 293

BMC Remedy Action Request System 7.6.04
Configuring BMC Remedy User to pass report data
By default, BMC Remedy User is not configured to pass data to an external
application using DDE. To enable this function, you must modify a BMC Remedy
User option.

� To configure the BMC Remedy User to pass report data

1 Under the Tools menu, select Options.

2 Click the Reports tab.

3 Select the Enable Report to Application check box, and click OK.

Figure 21-2: BMC Remedy User Options window for reporting

Creating a report for DDE export
Create an AR System report to export large amounts of data using DDE.

� To create a report for DDE export

1 Open the form that contains the data to export.

2 Choose Tools > Reporting.

The Report window appears.
294 Integration Guide

Using a DDE execute from an external application to trigger AR System
Figure 21-3: BMC Remedy User Report window

3 Create a report, or select an existing report from the list.

Make sure the report you create contains the data to export to DDE.

4 Choose Report > Export to > Application.

The Report to Application dialog box appears

5 Select an entry from the Application name menu.

The entries in the Application name menu correspond to the sections in your
dde.ini file. For more information about the dde.ini file, see “Working with your
dde.ini file” on page 287.

The report data is passed to the DDE application according to the control
parameters in a dde.ini file.

The data from the report is processed in the DDE application.

Using a DDE execute from an external
application to trigger AR System

Another Windows application can trigger BMC Remedy User as a DDE server.
BMC Remedy User supports only one DDE command, RunMacro, which causes
BMC Remedy User to execute a named macro and accept any passed parameters
as input to the macro.

Application (Service) Name—ARUSER-SERVER

Topic Name—DoExecMacro

Item Name—(none)

Command Name—RunMacro
Chapter 21 Dynamic data exchange 295

BMC Remedy Action Request System 7.6.04
The following code sample shows the exact syntax of the runmacro command that
the DDE client issues to AR System.

[RunMacro(macroPath,macroName,parameterName1=parameterValue1,
parameterName2=parameterValue2,...)]

Note the following guidelines when using a RunMacro command:

None of the parameters should contain a comma.

There are no spaces in the command statement.

The square brackets around the statement are required.

Using AR System with DDE, third-party
applications, and macros

Third-party applications can use a DDE program to send a request to execute a
macro in BMC Remedy User. This program must include the following
components:

DDE server name of BMC Remedy User

Path for BMC Remedy User

DDE topic BMC Remedy User supports

DDE function BMC Remedy User supports

DDE server name and BMC Remedy User path
The DDE server name and the path of BMC Remedy User are added to your
win.ini file when you install BMC Remedy User. This information is added to the
[AR System] section, as follows:

AppName=ARUSER-SERVER
ProgramPath=pathToaruser\aruser.exe DDEcall pathToaruser

The meanings of the fields are as follows:

AppName—The DDE server name for BMC Remedy User.

ProgramPath—The path for BMC Remedy User.

Parameter Description

macroPath The fully qualified path to the directory on the PC where
AR System macros are stored (for example, C:\home\arcmds).

macroName The complete name of the macro as defined in AR System (not the
name of the file in the macroPath directory).

parameterName The name of a parameter that was recorded into the macro.

parameterValue The value to substitute.
296 Integration Guide

Using AR System with DDE, third-party applications, and macros
The path is needed so that a third-party application can find and start BMC
Remedy User. Use this field exactly as shown.

Also, you must complete one of the following tasks in your DDE program before
executing BMC Remedy User:

Set your PATH environment variable to the BMC Remedy User directory.

Change to the BMC Remedy User directory.

Supported DDE topic and function
BMC Remedy User supports the DoExecMacro DDE topic, which enables you to
use DDE to run macros in AR System through third-party applications.

BMC Remedy User also supports the RunMacro function, which creates a buffer
that contains the path and name of the macro along with any needed parameters.
This buffer contains the information that BMC Remedy User needs to find and run
the macro.

Example program and buffer
The following example C program sends a DDE message to BMC Remedy User,
instructing it to run a macro called SendMessage found in the C:\app\macro
directory. This macro requires two parameters:

The name of the user that receives the message

The message text

The RunMacro function in this example creates the following buffer:

[RunMacro(C:\app\macro,SendMessage,
Name=John Smith,Contents=Don’t forget our meeting on Friday)]

/* DoDDEInit -- This routine initializes dde conversation. It must
be called before any dde conversation can happen.
*/
BOOL WINAPI DoDDEInit(void)
{
BOOL bResult = FALSE;
// Read the path to the aruser.exe
if (GetProfileString("ARSYSTEM",
"ProgramPath","",szARuserPath,
sizeof(szARuserPath) - 1) == 0) {
// display an error message if aruser is not installed.
return FALSE;
}
// Initialize the dde client
if (lpDdeProc = MakeProcInstance((FARPROC)DdeCallBack, hInst)) {
idInst = 0;
if (DdeInitialize((LPDWORD)&idInst, (PFNCALLBACK)
lpDdeProc, DDE_INIT_FLAGS, NULL) == DMLERR_NO_ERROR){
Hszize();
bResult = TRUE;
Chapter 21 Dynamic data exchange 297

BMC Remedy Action Request System 7.6.04
}
else
FreeProcInstance((FARPROC)lpDdeProc);
}
return (bResult);
} // DoDDEInit()
/* DoDDEUnInit -- Uninitializes applications and frees call back
*/
VOID WINAPI DoDDEUnInit(void)
{
if (hConv) {
DdeDisconnect(hConv);
hConv = NULL;
}
if (lpDdeProc) {
DdeUninitialize(idInst);
FreeProcInstance((FARPROC)lpDdeProc);
}

UnHszize();

} // DoDDEUnInit()

/* Hszize -- This creates often used global hszs from standard
global strings.
It also fills the hsz fields of the topic and item tables.
*/
static void Hszize(void)
{
char szServerName[MAX_TOPIC + 1];

// Get the name of server in string handle format
GetProfileString("ARSYSTEM","AppName","",
szServerName,MAX_TOPIC);
hszServerName = DdeCreateStringHandle(idInst,
szServerName,0);

// For the get details topic, get its string handle format
hszExecMacroTopic = DdeCreateStringHandle(idInst,
"DoExecMacro", NULL);

} // Hszize()

/* UnHszize -- This destroys often used global hszs from standard
global strings.
*/
static void UnHszize(void)
{
DdeFreeStringHandle(idInst, hszServerName);

DdeFreeStringHandle(idInst, hszExecMacroTopic);

} // UnHszize()
298 Integration Guide

Using AR System with DDE, third-party applications, and macros
/* DoDDERunMacro -- This routine starts a dde conversation with
aruser and sends its run macro command.
*/
VOID WINAPI DoDDERunMacro()
{
hConv = 0;

// Start the connection for run macro with the aruser server.
// NOTE: when we use NULL for the pCC parameter DDEMEL sends
// the default CONVECONTEXT.
while (TRUE) {
hConv = DdeConnect(idInst,hszServerName,
hszExecMacroTopic,NULL);
if (hConv)
break; // a connection was established
if (DdeGetLastError(idInst) != DMLERR_NO_CONV_ESTABLISHED)
break;
// Try again, maybe by now aruser is up and running.
} //while (TRUE)

if (hConv) {
// Build the a buffer that contains RunMacro function and
// send it to the aruser server
char szExecute[255];
HDDEDATA hddeExecute;

// construct the data to be passed to the data
wsprintf(szExecute,"[RunMacro(%s,%s,%s=%s,%s=%s)]",
(LPSTR)"C:\\app\\macro", // the path where the macro is
(LPSTR)"SendMessage", // This is the name of the macro
// to run
(LPSTR)"Name", // This is the parameter name
(LPSTR)"John Smith", // This is the parameter value
(LPSTR)"Content", // Parameter name
(LPSTR)"Don't forget about our meeting on Friday");

if (!(hddeExecute = DdeCreateDataHandle(idInst,
(LPVOID)szExecute,
lstrlen(szExecute)+1,0,NULL,CF_TEXT,NULL)))
; // give a memory allocation error message
else {
DdeClientTransaction((LPBYTE)hddeExecute, -1, hConv,
NULL,CF_TEXT, XTYP_EXECUTE, TIMEOUT_ASYNC, &XactID);
DdeFreeDataHandle(hddeExecute);
}
}//if (hConv)
else {
// failed to connect
}
} // end DoDDERunMacro()
Chapter 21 Dynamic data exchange 299

BMC Remedy Action Request System 7.6.04
The following examples show macro programs in Excel, Word, and Visual Basic
that run the SendMessage macro in BMC Remedy User. The macros send a
message to John Smith, reminding him of a meeting on Friday. These sample
programs assume that BMC Remedy User is running.

Excel macro
Sub RunMacro()
Dim RunMacroString As String
RunMacroString = "[RunMacro(C:\app\macro,Send Message,Name=John
Smith,Contents=Don’t forget our meeting on Friday)]"
channelNumber = DDEInitiate("ARUSER-SERVER", "DoExecMacro")
DDEExecute channelNumber, RunMacroString
DDETerminate channelNumber
End Sub

Word macro
Sub MAIN
RunMacroString$ = "[RunMacro(C:\app\macro,Send Message,Name=John
Smith,Contents=Don’t forget our meeting on Friday)]"
channelNumber = DDEInitiate("ARUSER-SERVER", "DoExecMacro")
DDEExecute channelNumber, RunMacroString$
DDETerminate channelNumber
End Sub

Visual Basic macro
Private Sub cmdExecute_Click()
Dim RunMacroString As String
' Application|Topic
txtMacroPath.LinkTopic = "ARUSER-SERVER|DoExecMacro"
txtMacroPath.LinkMode = 2
RunMacroString = "[RunMacro("C:\app\macro,SendMessage,Name=John
Smith,Contents=Don’t forget our meeting on Friday)]"
txtMacroPath.LinkExecute RunMacroString 'send DDE message
End Sub

Examples
This section contains examples of integrating AR System with DDE applications.

Integrating with Microsoft Excel
The following example includes two active links that use DDE to integrate
Microsoft Excel with AR System. Using these active links, a user can open and
populate a spreadsheet in Microsoft Excel through an AR System form.
300 Integration Guide

Examples
The following figure shows a form with active links that work with Microsoft
Excel. The three buttons on the left of the form activate the active links that open
and populate a spreadsheet. The active links reference the fields to determine
where Microsoft Excel is installed, which spreadsheet to open, and what data to
send to the spreadsheet.

Figure 21-4: Sample DDE form

When the user clicks Excel DDE Execute, the first active link is executed and the
specified spreadsheet is opened in Microsoft Excel.

When creating this active link, define a DDE Execute If Action as shown in
Figure 21-5.

Figure 21-5: Sample active link—excel DDE execute

The Action field instructs the active link to execute a command.

The Path field references the Excel Program Location field in the sample form to
determine where Microsoft Excel is installed.

The Command field references the Command field in the sample form to
determine the specific action to perform.
Chapter 21 Dynamic data exchange 301

BMC Remedy Action Request System 7.6.04
The Command field in the sample form must have a value for this active link to
activate. The qualification is as follows:

'Command' != $NULL$

In the sample form, a user enters the location of the Microsoft Excel program in the
Excel Program Location field, a specific spreadsheet in the Spreadsheet field, and
an OPEN command in the Command field. You might want to enable your users to
populate these fields through active links or menu lists to make sure that the
syntax is correct.

As shown in Figure 21-6, a user’s Microsoft Excel executable is located at
C:\Program Files\Microsoft Office\Office\excel.exe. The particular
spreadsheet to open is located at C:\Temp\exceldde.xls. The OPEN command in
the Command field opens the spreadsheet.

Figure 21-6: Sample DDE form with sample data

When the user clicks Excel DDE Execute, Microsoft Excel opens and displays the
exceldde.xls spreadsheet.

When the user clicks Excel DDE Poke, the second active link is executed and a
specified spreadsheet is populated.

When creating this active link, define a DDE Poke action, as shown in Figure 21-7.

Figure 21-7: Sample active link—excel DDE poke
302 Integration Guide

Examples
The Action field instructs the active link to send data to a specific location.

The Item field indicates the item to which data is poked.

The Path field references the Excel Program Location field in the sample form to
determine where Microsoft Excel is installed.

The Command field references the Poke Data1 field in the sample form to
determine the data to send to cell R1C1 in the spreadsheet.

The Excel Program Location, Spreadsheet, and Poke Data 1 fields in the sample
form must all have values for this active link to activate. The qualification is as
follows:

(('Excel Program Location' != $NULL$) AND
('Spreadsheet' != $NULL$)) AND ('Poke Data1' != $NULL$)

There are three actions for this sample active link—one each to poke data from the
three poke fields to three cells in a spreadsheet.

When a user supplies data to the three Poke Data fields in the sample form and
clicks Excel DDE Poke, the data in the Poke Data fields are sent to cells in the
spreadsheet specified in the Spreadsheet field.

Integrating with Microsoft Word
The following example includes two active links that use DDE to integrate
Microsoft Word with AR System. Using these active links, a user can open and
write to a document in Microsoft Word through an AR System form.

The following figure shows a sample form having active links that work with
Microsoft Word. The two buttons on the right of the form execute the active links
that open Microsoft Word and write to a document. The active links reference the
fields to determine where Microsoft Word is installed, which document to open,
and what data to send to that document.

Figure 21-8: Sample DDE form

When the user clicks Word DDE Execute, the first active link is executed, and a
specified document is opened in Microsoft Word.
Chapter 21 Dynamic data exchange 303

BMC Remedy Action Request System 7.6.04
When creating active link, define a DDE Execute action, as shown in Figure 21-9.

Figure 21-9: Sample active link—Word DDE execute

The Action field instructs the active link to execute a command.

The Path field references the Word Program Location field in the sample form
to determine where Microsoft Word is installed.

The Command field references the Command field in the sample form to
determine the specific action to perform.

The Command field in the sample form must have a value for this active link to
activate. The qualification is as follows:

'Command' != $NULL$

In the sample form, a user enters the location of the Microsoft Word program in the
Word Program Location field, a specific document in the Document field, and an
OPEN command in the Command field. You might want to enable your users to
populate these fields through active links or menu lists to make sure that the
syntax is correct.

As shown in the following figure, a user’s Microsoft Word executable is located at
C:\Program Files\Microsoft Office\Office\winword.exe. The particular
document to open is located at C:\Temp\arsdde.doc. This document is opened by
the OPEN command in the Command field.

Figure 21-10: Sample DDE form with sample data
304 Integration Guide

Examples
When the user clicks Word DDE Execute, Microsoft Word opens and displays the
arsdde.doc document.

When the user clicks Word DDE Poke, the second active link is executed and
writes to a specified document.

When creating this active link, define a DDE Poke action, as shown in the following
figure.

Figure 21-11: Sample active link—Word DDE poke

The Action field instructs the active link to send data to a specific location.

The Item field indicates the item to which data is poked.

The Path field references the Word Program Location field in the sample form
to determine where Microsoft Word is installed.

The Command field references the DDE Poke field in the sample form to
determine the data to send to bookmark1 in the document.

The Word Program Location, Document, and DDE Poke fields in the sample form
must all have values for this active link to activate. The qualification is as follows:

(('Word Program Location' != $NULL$) AND
('Document' != $NULL$)) AND ('DDE Poke' != $NULL$)

When a user supplies data to the DDE Poke field in the sample form and clicks
Word DDE Poke, the data in the DDE Poke field is sent to the document specified
in the Document field.

Using DDE to pass data to Excel for graphing
Assume that you have an Excel spreadsheet with a recorded macro called
ChartARSystemData2Col that generates a multiline bar chart. To use DDE to pass
data to Excel:

Step 1 Create a dde.ini file that controls the transfer of data from AR System to Excel as
shown in the following code sample.

Step 2 Define an AR System report that extracts the data to graph with Excel.
Chapter 21 Dynamic data exchange 305

BMC Remedy Action Request System 7.6.04
Example dde.ini
[ArDataToExcel]
;This section uses a temp file for temporary storage
Path = C:\program~1\micros~1\office\excel.exe
Application = excel
Topic = system
Format = TAB
XFRDATA = File
Command1 = [OPEN("%f")]
Command2 = [RUN("PERSONAL.XLS!ChartARSystemData2Col")]

In BMC Remedy User, choosing Report > Export to > Application displays the
Report To Application dialog box. The application name is the section tag from the
dde.ini file.

Figure 21-12: Report To Application dialog box

The data is sent to Excel, an Excel macro is run
(PERSONAL.XLS!ChartARSystemData2Col), and a graph is generated, as shown in
Figure 21-13.

Figure 21-13: Call distribution by support technician

Issues and considerations
DDE is supported on Windows platforms only. It is not supported on the web.

DDE is being replaced by OLE. DDE is no longer supported by Microsoft and is
provided for compatibility only.
306 Integration Guide

Chapter

22
 Simple network management
protocol
You can use the Simple Network Management Protocol (SNMP) to monitor
AR System using BMC Remedy SNMP Agent. This section describes how to
configure BMC Remedy SNMP Agent if you did not configure it during
installation.

The following topics are provided:

Overview (page 308)
BMC Remedy SNMP Agent functions (page 309)
Sending traps (page 310)
SNMP configuration (page 311)
The arsnmpd configuration file (page 312)
The snmpd configuration file (page 317)
The armonitor configuration file (page 318)
Starting BMC Remedy SNMP Agent (page 318)
Stopping BMC Remedy SNMP Agent (page 319)
Troubleshooting (page 319)
Chapter 22 Simple network management protocol 307

BMC Remedy Action Request System 7.6.04
Overview
Simple Network Management Protocol (SNMP) is a protocol that network
administrators use to manage complex networks through SNMP-compliant
management consoles to monitor network devices.

During the AR System installation, you are prompted to configure BMC Remedy
SNMP Agent. You must configure BMC Remedy SNMP Agent before you can run
it. If you did not configure SNMP during installation or want to change your
existing configuration, use the instructions in this guide or visit http://www.net-
snmp.org. Check with your network administrator regarding what specific
configuration settings to use.

Network administrators and AR System administrators can use BMC Remedy
SNMP Agent to monitor AR System and change its state.

The BMC Remedy SNMP Agent supports the following versions of SNMP:

Version 1 (community-based)

Version 2c (community-based)

Version 3 (user-based)

It supports the following levels of user-based authentication:

No authentication, no privacy (noAuthNoPriv)

Authentication only, no privacy (authNoPriv)

Authentication with privacy (authPriv)

BMC Remedy SNMP Agent was developed using the net-snmp software toolkit,
version 5.0.7. (For more information about the net-snmp toolkit, see http://
www.net-snmp.org/.) The agent runs as a separate process on the same system as
the AR System server, and supports the following basic SNMP operations:

get

set

get-next

get-bulk (supported in SNMP v2c and v3)

trap

notification (SNMP v2c, SNMP v3)

BMC Remedy SNMP Agent is compatible with all platforms that Remedy supports
in this release. For more information about product compatibility, see the product
compatibility matrix: http://www.bmc.com/support.
308 Integration Guide

http://www.net-snmp.org
http://www.net-snmp.org
http://www.net-snmp.org/
http://www.net-snmp.org/
http://www.bmc.com/support

BMC Remedy SNMP Agent functions
BMC Remedy SNMP Agent functions
You can use BMC Remedy SNMP Agent to monitor AR System, to check the state
of AR System, and to send traps (notifications) when the status of any AR System
process changes.

Monitoring AR System
BMC Remedy SNMP Agent can be configured to monitor AR System server
statistics, AR System state, and select MIB-II data.

AR System server statistics
The statistical operations that the agent monitors are the same statistics that are
available in the Server Statistics form. For more information about these statistics,
see the Optimizing and Troubleshooting Guide.

AR System state
BMC Remedy SNMP Agent monitors the state of AR System (up or down),
through the use of the managed object arsState (1.3.6.1.4.1.10163.1.2.1.3.0). The
current value of the managed object arsState is used to indicate the current state
of AR System. When queried, a value of 1 indicates that AR System is running; a
value of 2 indicates that AR System is down.

The managed object arsState is also writable, so the value of arsState can be
changed by an SNMP set operation (provided the proper user name or community
string is supplied). Changing the value of arsState from 1 to 2 instructs BMC
Remedy SNMP Agent to stop AR System. Changing the value of arsState from 2
to 1 instructs the agent to start AR System.

BMC Remedy SNMP Agent can monitor the following AR System processes:

AR System server

AR System plug-in

BMC Remedy Email Engine

BMC Remedy Distributed Server Option (DSO)

AR Monitor

If any of these process changes its state (for example, if a process becomes inactive),
the agent sends a trap (or a notification) to a trap receiver.
Chapter 22 Simple network management protocol 309

BMC Remedy Action Request System 7.6.04
MIB-II
AR System supports the following objects in MIB-II:

System data (for example, system description and system location)

SNMP data and statistics

To query other objects, such as IP traffic or TCP traffic, use the SNMP agent
included with your operating system. Managed objects in these sections of MIB-II
are not supported by BMC Remedy SNMP Agent.

Remedy MIB
The Remedy MIB file (Remedy-ARS-MIB.txt) defines all the objects managed by
BMC Remedy SNMP Agent and is necessary for querying Remedy specific objects
by name from your SNMP client.

The Remedy-ARS-MIB.txt file currently defines only AR System controls,
statistics, and traps. However, as it is designed for extensibility, other branches in
the Remedy-ARS-MIB.txt file are reserved for future use.

Sending traps
A trap is an asynchronous message that BMC Remedy SNMP Agent sends to
clients when specific events occur. The agent can be configured to send traps to a
trap receiver (such as a network management station) when the state of
AR System, specifically the armonitor process (or any AR System process, such
as AR System server, AR System plug-in server, DSO, or email engine) changes.
You can add a list of trap receivers (clients that receive traps) to the arsnmpd.cfg
file.

BMC Remedy SNMP Agents supports the following trap types:

coldstart—Sent when the agent starts.

authentication failure—Sent when a bad community string is supplied
with an SNMP request. This type of trap is supported only by SNMP versions 1
and 2c and must be enabled in the arsnmpd.cfg file.

arsStateChange—A Remedy enterprise-specific trap type. Sent when a change
of state occurs for any of these AR System processes: AR monitor, AR System
server, AR System plug-in server, BMC Remedy Email Engine, and DSO.
310 Integration Guide

SNMP configuration
Each trap contains the following information:

The name of the process that changes state (for example, AR System plug-in
server)

The name of the AR System server associated with the process

The state of the process (active =1, inactive =2)

When a monitored AR System process changes state from running to down, the
trap contains a value of 2 for arsState. When the process resumes, the trap
contains a value of 1 for arsState.

NOTE
BMC Remedy SNMP Agent continues to run even if the processes it monitors are
not running.

For more information about configuring traps in the arsnmpd configuration file,
see “Trap configuration” on page 316.

SNMP configuration
NOTE

For information about configuring BMC Remedy SNMP Agent during installation,
see the Installation Guide.

BMC Remedy SNMP Agent was built using the Net-SNMP toolkit (version 5.0.7).
This section describes a subset of the more user-friendly and commonly used
configuration options provided by the Net-SNMP toolkit (version 5.0.7). For
information about additional configuration directives and options, see the Net-
SNMP website at http://www.net-snmp.org.

BMC Remedy SNMP Agent uses the following configuration files:

Configuration file Location Purpose

Windows:
arsnmpd.cfg

UNIX:
arsnmpd.conf

Windows:
ARSystemServerInstallDir\conf

UNIX:
/usr/ar/ARSystemName/conf

Stores system information, access
control information, and trap settings.

Windows:
snmpd.conf

UNIX:
snmpd.conf

Windows:
ARSystemServerInstallDir\conf

UNIX:
/usr/ar/ARSystemName/conf

Stores engine ID, number of BMC
Remedy SNMP Agent reboots, and
SNMP v3 user account information.

Windows:
armonitor.cfg

UNIX:
armonitor.conf

Windows:
ARSystemServerInstallDir\conf

UNIX:
/etc/arsystem/serverName

Enables BMC Remedy SNMP Agent to
monitor AR System and to be started
by armonitor.
Chapter 22 Simple network management protocol 311

http://www.net-snmp.org

BMC Remedy Action Request System 7.6.04
BMC Remedy SNMP Agent uses the information in the arsnmpd and snmpd
configuration files to initialize when the agent starts; therefore, you must restart
BMC Remedy SNMP Agent after you make changes to the configuration files. In
addition, you must restart AR System if you make changes to the armonitor
configuration file.

NOTE
If you perform an SNMP set operation to change the value of
versionUpdateConfig.0 (.1.3.6.1.4.1.2021.100.11.0) to 1, BMC Remedy
SNMP Agent rereads the arsnmpd.cfg (arsnmpd.conf) file, so in this case you do
not need to restart BMC Remedy SNMP Agent.

The arsnmpd configuration file
Use the arsnmpd.conf (arsnmpd.cfg) file to configure any of the following
information:

System information (page 313)

Access control information, which includes community strings and users
(page 313)

Trap configuration, which identifies the systems to which trap messages are sent
(page 316)

Location of the armonitor configuration file (page 316)

To configure any of these items, apply a configuration directive and related
arguments. You can also add comments to any configuration file by beginning any
comment line with a hash [#] character. The standard syntax is as follows:

directive argument [optionalArgument]
This is a comment

The following conditions apply to directives:

Each directive must occupy its own line in the configuration file.

Directives can be included in any order.

Only one instance of a directive is permitted in a configuration file unless
otherwise indicated.

Directives are considered optional unless otherwise specified.

If you configured SNMP during the installation process, many of the configuration
options are represented in this arsnmpd configuration file. If you did not configure
SNMP during installation, a sample arsnmpd.conf file with comment lines and
sample directives is installed. In this case, you need to remove the hash (#)
characters, and provide valid arguments to the various directives. You can also
add configuration directives where appropriate.
312 Integration Guide

The arsnmpd configuration file
System information
The following system information can be defined in the arsnmpd configuration file:

To define the system location, add the following directive:

syslocation systemLocation

To define the system contact, add the following directive:

syscontact systemContactInformation

The argument to syslocation or syscontact can include spaces. However, all
the information must be on the same line and no longer than 255 characters.

For example:

syslocation Lab in room 101
syscontact Call Joe at 555-5555 or joe@mail.com

You can access information defined by these directives from BMC Remedy SNMP
Agent by querying the related MIB-II system group OIDs:

Access control information
For BMC Remedy SNMP Agent to respond to user requests, at least one directive
specifying access control must be in the arsnmpd configuration file. BMC Remedy
SNMP Agent supports access control for community-based and user-based access.

Community-based access (described in the following section, “Community-based
directives”) must be configured for SNMP clients that communicate with BMC
Remedy SNMP Agent using either the SNMP v1 or v2c protocol.

User-based access (described in “User-based directives”) must be configured for
SNMP clients that communicate with BMC Remedy SNMP Agent using the SNMP
v3 protocol.

During the installation process, you can configure community-based or user-based
authentication, but not both.

In general, because user-based authentication is much more secure than
community-based authentication, establishing support for both forms is not
recommended. However, if you do enable support for both types of
authentication, you must include directives to configure both methods.

Directive Description

syslocation A string representing the location of the system running BMC Remedy
SNMP Agent.

syscontact A string representing contact information for AR System, BMC
Remedy SNMP Agent, or both.

Directive Description

syslocation Used to populate sysLocation OID of MIB-II (1.3.6.1.2.1.1.6.0)

syscontact Used to populate sysContact OID of MIB-II (1.3.6.1.2.1.1.4.0)
Chapter 22 Simple network management protocol 313

BMC Remedy Action Request System 7.6.04
Community-based directives
SNMP supports the following categories of communities:

Read-only communities—Have permission to query an SNMP agent for any
data that is defined as having read permission. Communities with read-only
permission cannot perform SNMP set operations that result in a change to the
value of a managed object.

Read-write communities —Can view data from an SNMP agent and can change
the value of that data (if the OID is defined as having read-write permission)
through an SNMP set action.

When a client needs to gather information from an SNMP agent that supports
community-based authentication, it must supply a plain-text password known as
a community string.

To establish a read-only community password, add the following directive:

rocommunity communityString

To establish a read-write community password, add the following directive:

rwcommunity communityString>

NOTE
The community string must not include spaces and must not exceed 30 characters
in length.

For example:

rwcommunity privatecommunity
rocommunity publiccommunity

In the previous example, if a client needed to set the value of arsState (an action
permitted only by those with write permission), it would need to provide the value
for the rwcommunity directive as part of the SNMP request (privatecommunity in
this case).

User-based directives
User-based access control is defined in the arsnmpd and snmpd configuration files.
User-based access control defines each user by its level of access, as in community
accounts: read-only access or read-write access.

Users can be defined as using one of the following levels of authentication:

No authentication and no privacy (noAuthNoPriv)—Uses no authentication
and no privacy functions in the same way as the community-based
authentication model. The user name must be supplied to BMC Remedy SNMP
Agent, and it functions as a plain-text password (much like a community string).
BMC Remedy SNMP Agent does not require a password with a user account
configured in this way.
314 Integration Guide

The arsnmpd configuration file
Authentication and no privacy (authNoPriv)—Uses authentication, and no
privacy is required to supply a password in addition to a valid user name. BMC
Remedy SNMP Agent verifies that the user name and password are correct
before acknowledging the client request.

Authentication and privacy (authPriv)—Uses authentication, and privacy is
required to supply a password. In addition, the SNMP packet containing the
request must be encrypted. BMC Remedy SNMP Agent must have access to the
password used by the client to encrypt the packet. It uses this password to
decrypt the packet and then verifies that the user name and password are
correct.

You define users in the arsnmpd file with rouser and rwuser directives, as
follows:

To create a read-only user account, you must include the following directive:

rouser userName [noauth|auth|priv]

The optional argument specifies the expected level of encryption to be used by
this user. The authentication noauth corresponds to noAuthNoPriv, auth to
authNoPriv, and priv to authPriv.

In the following example, rouser directive defines a user account with
read-only permission. This account does not require any form of authentication
(that is, the user is authenticated in the same way as a user providing a
community-string password).

rouser user1 noauth

To create a read-write user account, you must include the following directive:

rwuser userName [noauth|auth|priv]

The following example rwuser directive defines a user account with read-write
permissions. This user must supply a password, but their SNMP requests are
not encrypted:

rwuser user2 auth

You can repeat the rouser and rwuser directives to create multiple user accounts
with varying levels of authentication.

The user name supplied to the rouser or the rwuser directive must not include
spaces and must not exceed 30 characters in length.

If the optional argument is not supplied, BMC Remedy SNMP Agent defaults to
auth level of authentication.

IMPORTANT
The previous directives are not sufficient to properly define a user account. See
“The snmpd configuration file” on page 317 for additional configuration
requirements.
Chapter 22 Simple network management protocol 315

BMC Remedy Action Request System 7.6.04
Trap configuration
Traps are unsolicited messages that BMC Remedy SNMP Agent sends to network
management software when unexpected events or errors occur. Messages inform
administrators if the AR System process has changed state. Traps can also inform
administrators when a client has attempted to access BMC Remedy SNMP Agent
using an incorrect community string.

BMC Remedy SNMP Agent can send several standard SNMP traps. Trap messages
are formatted using version 1 or version 2 of the SNMP protocol. Using the trap
configuration directives, you instruct BMC Remedy SNMP Agent to send a trap to
a system that is listening for them on a specific port number.

To send a trap formatted to the SNMP v1 standard, add the following directive to
the arsnmpd configuration file:

trapsink systemNameOrIPAddress communityString [portNumber]

To send a trap formatted to the SNMP v2c standard, add the following directive:

trap2sink systemNameOrIPAddress communityString [portNumber]

You can repeat the trap directives to configure additional systems to receive trap
messages.

For example:

trapsink traplistener.remedy.com public 8162

The preceding directive instructs BMC Remedy SNMP Agent to send trap
messages formatted using SNMP v1 to the system traplistener, which is
listening for trap messages on port number 8162, using community string public.

BMC Remedy SNMP Agent can also be configured to send trap messages known
as authentication failure traps. These trap messages are sent to all locations
specified by the trapsink/trap2sink directives whenever a client attempts to
make an SNMP request using an incorrect community string.

To enable authentication failure trap messages, include the following directive:

authtrapenable 1|2

Setting authtrapenable to 1 instructs BMC Remedy SNMP Agent to send
authentication failure traps. Setting the argument to 2 disables this feature.

Location of the armonitor configuration file
To enable BMC Remedy SNMP Agent to interact with AR System, uncomment the
following line in the arsnmpd.cfg (arsnmpd.conf) file:

#arsmonitorfile absolutePathToarmonitorFile

This is a mandatory configuration directive.

NOTE
Make sure that the argument represents the correct path to your armonitor file for
your environment.
316 Integration Guide

The snmpd configuration file
The snmpd configuration file
The snmpd configuration file can contain the following information:

engineBoots

engineID

If an snmpd configuration file does not exist, you must create one in the CONF
directory of your AR System installation. In this case, engineBoots and engineID
is added to the snmpd file when BMC Remedy SNMP Agent starts.

In the snmpd file, you enter the configuration directives required to fully define a
user account. When adding information to this file, do not alter the lines
corresponding to engineBoots and engineID (if they are present).

For each user account defined in the arsnmpd file (see rwuser and rouser directive
information in “User-based directives” on page 314), you must include a
corresponding createUser directive to this file as follows:

createUser userName MD5 authenticationPassword DES privatePassword

NOTE
Passwords must be at least eight characters long.

Using this directive, you can define the authentication password and privacy
password used by the user account (userName).

NOTE
In SNMP v3, the authentication password that the user supplies to BMC Remedy
SNMP Agent must be encrypted.

The following examples show how directives can be used:

If you defined a user in the arsnmpd file as having read-write permissions and
using authentication and no privacy:

rwuser user1 auth

The following line is required in the snmpd file:

createUser user1 MD5 mypassword

If you defined a user in the arsnmpd file as using privacy:

rwuser user1 priv

The following line is required in the snmpd file:

createUser user1 MD5 mypassword DES privatepassword

If you defined a user in the arsnmpd file as using no authentication and no
privacy:

rwuser user1 noauth

The following line is required in the snmpd file:

createUser user1
Chapter 22 Simple network management protocol 317

BMC Remedy Action Request System 7.6.04
The armonitor configuration file
The armonitor configuration file permits the armonitor utility to start BMC
Remedy SNMP Agent and to establish a link to it.

If you configured BMC Remedy SNMP Agent during installation, no modification
to this file is necessary. If you did not configure BMC Remedy SNMP Agent during
installation, you must edit the armonitor.cfg (armonitor.conf) file to enable
armonitor to start and interact with BMC Remedy SNMP Agent.

Enable SNMP by setting the configuration parameter SNMP-agent-enabled to true
as follows:

SNMP-agent-enabled: T

In addition, remove the comment marker (#) from the command line
corresponding to the arsnmpd process. (This enables armonitor to start BMC
Remedy SNMP Agent.)

You might need to change the default port number from 161 because an SNMP
agent might already be running on the default port 161. To do this, change the
value of upd:161 on the line corresponding to the arsnmpd process to a new port
number that is not currently in use by another process, for example upd:8161.

Starting BMC Remedy SNMP Agent
You can start BMC Remedy SNMP Agent in any of the following ways:

Using armonitor

If you configured SNMP during installation, armonitor with start the SNMP
agent automatically after installation is complete.

If the SNMP agent process is terminated, armonitor restarts the SNMP agent.

Using a command line with the following syntax:

arsnmpd -c pathToarsnmpdConfigurationFile udp:portNumber

Make sure that:

The argument to the -c option is the path to the arsnmpd configuration file,
not the snmpd file.

The argument to udp is a port number not currently in use by another SNMP
agent or any other process.

For example (UNIX):

arsnmpd -c /user/ar/arsystem/conf/arsnmpd.conf udp:8161

Invoking the agent during AR System startup, using the Services panel (on
Windows) or the arsystem shell script (on UNIX).
318 Integration Guide

Stopping BMC Remedy SNMP Agent
Stopping BMC Remedy SNMP Agent
On Windows, AR System is installed as a service. If you stop the AR System
service, BMC Remedy SNMP Agent also stops.

On UNIX, use the arsystem shell script to stop AR System, which stops all
AR System processes, including BMC Remedy SNMP Agent.

If you use BMC Remedy SNMP Agent to stop AR System, BMC Remedy SNMP
Agent exists as an independent process that is not under the control of the
armonitor, the AR System service (Windows), or the arsystem shell script
(UNIX). You must manually stop and restart BMC Remedy SNMP Agent by using
specific operating system methods (for example, by using Task Manager on
Windows or by using a kill command on UNIX).

To stop BMC Remedy SNMP Agent without affecting other AR System processes,
use standard operating system approaches to stopping individual processes.
(Often this can be accomplished on either a Windows or UNIX system by issuing
a kill command from a command prompt.) If BMC Remedy SNMP Agent is still
a child process of armonitor, however, armonitor attempts to restart the agent.

For more information about stopping individual processes, see your system
administrator.

Troubleshooting
This section describes some issues you might encounter with SNMP, and possible
resolutions.

Problem or question Resolution

You configured BMC Remedy SNMP
Agent, but it does not start.

BMC Remedy SNMP Agent might be using a port number already in
use. SNMP agents are often present and running on many operating
systems (especially UNIX) using the default port 161. Open the
armonitor.cfg (armonitor.conf) file and change the port
number used by BMC Remedy SNMP Agent. Restart AR System.

You instructed BMC Remedy SNMP
Agent to change the value of
arsState, but it does not respond to
requests. All requests time out.

When the value of arsState is changed (to 1 or 2) by an SNMP set
request, BMC Remedy SNMP Agent interprets this as a command to
alter the state of the arsSystem to match the new value. It does not
respond to additional SNMP requests until either of the following
events occur:

The call to stop AR System returns.
Eight minutes elapse (if attempting to set arsState to 1).

Make sure that you supplied a community string or a user name that
has write permissions.

When you query for the current value
of arsState, the result is 2 (down)
even though the server is running.

Check the value of SNMP-agent-enabled in the armonitor.cfg
(armonitor.conf) file.
The value might be set to F. If so, set it to T and restart AR System.
Chapter 22 Simple network management protocol 319

BMC Remedy Action Request System 7.6.04
You set the value of arsState, but
there is no change in the state of
AR System.

Check the value of SNMP-agent-enabled in the armonitor.cfg
(armonitor.conf) file.
If this is set to F, you cannot stop or restart AR System. Set this value
to T and restart AR System.
If the value is already set to T, verify the following information:

The arsnmpd process is running on the system with which you are
trying to communicate.
You supplied the community string (or user name) that permits
read-write operations.

When you make a change to your
configuration file, do you need to
restart the arsnmpd process?

You do not need to restart the arsnmpd process. If you perform an
SNMP set operation to change the value of
versionUpdateConfig.0 (.1.3.6.1.4.1.2021.100.11.0) to 1, BMC
Remedy SNMP Agent rereads the arsnmpd.cfg (arsnmpd.conf)
file.

You want to monitor IP traffic from the
MIB-II group, but BMC Remedy SNMP
Agent does not respond. Do all SNMP
agents support MIB-II?

BMC Remedy SNMP Agent supports only the system and SNMP
portions of MIB-II at this time. To gather additional MIB-II data,
query the SNMP agent that is monitoring your operating system.

Problem or question Resolution
320 Integration Guide

Troubleshooting
You configured BMC Remedy SNMP
Agent to send trap messages to your
Network Management Station (NMS),
but there are no messages.

Verify the following information:
Check the arsnmpd.log file for trap-related error messages. If
BMC Remedy SNMP Agent cannot connect to a trap receiver, you
see the following entry:
Error: Cannot create trapsink:
nameOfTrapReceiver.
The agent is using the correct port number for sending traps to
your Network Management Station (NMS). Most NMSs listen to
the default port of 162 for receiving SNMP trap messages.
You supplied the correct community string for your NMS in the
trapsink/trapsink directive in the arsnmpd.cfg
(arsnmpd.conf) file.
The NMS supports the type of trap message you are sending.
Traps are formatted according to either v1 or v2 of the SNMP
protocol. If you configured BMC Remedy SNMP Agent to send
trap messages formatted according to v2 to an NMS that supports
only v1, you must update your BMC Remedy SNMP Agent
configuration to send v1 traps instead.
Any daemon processes required for receiving trap messages are
running on your NMS.

BMC Remedy SNMP Agent is running,
but you do not receive any information.
All requests time out.

Verify the following information:
You are using proper authentication. If you provided an incorrect
user name or password, your request times out because BMC
Remedy SNMP Agent does not respond.
You configured all access control components. (BMC Remedy
SNMP Agent can run without an arsnmpd configuration file.)
Check the arsnmpd.log file in the db directory of your
AR System installation. If you did not configure access control in
the arsnmpd configuration file, you see the following entry:
Warning: no access control information
configured. Remedy SNMP agent cannot function in
this state.

Problem or question Resolution
Chapter 22 Simple network management protocol 321

BMC Remedy Action Request System 7.6.04
322 Integration Guide

Chapter

23
 Making applications
licensable for integration
system vendors
When creating AR System applications, integration system vendors (ISVs)
authorized by BMC can make the applications licensable. This section describes
how to make your applications licensable.

The following topics are provided:

Application licensing options (page 324)
Application licensing overview (page 325)
Making applications licensable (page 326)
Adding the application license to your server (page 327)
Assigning application licenses to users (page 328)

NOTE
The procedures in this section are intended for use only by authorized ISVs who
plan to license their applications for sale. If you are not an ISV and you create BMC
Remedy applications that you want to license for sale, see the BMC Customer
Support website (http://www.bmc.com/support) for details.
Chapter 23 Making applications licensable for integration system vendors 323

http://www.bmc.com/support

BMC Remedy Action Request System 7.6.04
Application licensing options
When licensing AR System applications, you have two options:

Application licensable—Users must obtain an “application license” so that they
can access the form data in the application. Without a valid application license
installed on the server, users receive a licensing error when they try to perform
any data-related operations on forms in the unlicensed application. In other
words, they cannot get, modify, search, create, delete, or merge entries on any
form.

Application and user licensable—In addition to the requirements for the
application licensable option, users must obtain user-fixed or user-floating
licenses based on individual forms. The application developer can choose which
forms in the application to make “user licensable,” and users must have an
application user license to access form data on these forms. These are the
application user license types:

Fixed

Floating

Read

Fixed and floating licenses have no restrictions and enable users to get, modify,
search, create, delete, and merge entries. Read licenses enable users only to
search, get, and create entries.

By default, an application comes with zero fixed licenses, zero floating licenses,
and an unlimited number of read licenses. If users are not assigned a fixed or
floating license, they automatically use a read license by default. Guest users
automatically use a read license.

NOTE
This feature is intended to license your access to form data in the application; it is
not intended to license administrative operations such as modifying forms or
workflow in an application. Even if no application license is installed for a
licensable application, administrators can still change or delete a form or workflow
object.

Operation on entries License requirements

Create Does not need application or application user license.

Get Needs application license only.

Modify Needs application and application user license.

Delete Needs application and application user license.

Merge If a merge operation results in a create, does not need
application or application user license.
If a merge operation results in a modify, needs application
and application user license.
324 Integration Guide

Application licensing overview
Application licensing overview
In this example, XYZ Corporation, an ISV, created an application, MusicManager,
that they want to license for sale. The following steps describe the process to
license their application. Typically, ISVs perform step 1 through step 3. Customers
who purchase the application perform steps 4 and 5.

Step 1 Create the MusicManager application with its accompanying forms.

Step 2 Register your application name with BMC.

BMC applications must have unique names. To avoid potential licensing conflicts,
use this naming convention:

vendorName:applicationName

In this example, the name is XYZ:MusicManager.

Usually, you do not need to worry about conflicts with naming conventions for
your application. Even if XYZ has a competitor with its own MusicManager
application, the vendor name prefix guarantees uniqueness in most cases.

If you have questions, go to the Customer Support website (http://
www.bmc.com/support) and verify that the application name is unique or has not
been used by another application developer in your company.

Step 3 Designate the application as licensable.

You can make your application application licensable or user licensable, as
described in “Application licensing options” on page 324:

Customers need application licenses to access the form data in the application.

Customers need user fixed or user floating licenses based on individual forms
to access form data.

In this example, XYZ Corporation makes the MusicManager application licensable
and user licensable. The MusicManager application includes these forms:
MusicManager Configuration, MusicManager Songs, and MusicManager Singers.
When customers try to access data in any of these forms, they receive an error if
they do not have a valid MusicManager application license.

Further, XYZ Corporation makes only the MusicManager Songs form user
licensable (shown in Figure 23-1). If users try to submit or modify data in this form,
they receive an error if they do not have a MusicManager user license (fixed or
floating). Because the ISV does not make the MusicManager Singers form user
licensable, any user can create or modify MusicManager Singers without a
MusicManager user license.

For detailed steps, see “Making applications licensable” on page 326.
Chapter 23 Making applications licensable for integration system vendors 325

http://www.bmc.com/support
http://www.bmc.com/support

BMC Remedy Action Request System 7.6.04
Step 4 (Customers only) In the AR System Administration Console, click System >
General > Add or Remove Licenses to add the license to your AR System server.

For information, see “Adding the application license to your server” on page 327.

Step 5 (Customers only) If your application is user licensable, assign application user
licenses to your users so that they can access the user licensable portions of the
application (the user licensable forms).

To do this, open the User form in the AR System Administration Console and
assign licenses to specific users. After users are given the appropriate application
user licenses, they can access the application and its forms in the usual manner. For
information, see “Assigning application licenses to users” on page 328.

Making applications licensable
ISVs use the following procedure to make their applications licensable. In this
example, the MusicManager application contains three forms, but you want to
make only one of them (MusicManager Songs) user licensable.

WARNING
Licensing mode is a one-way operation. After an application is made licensable,
the process cannot be reversed, even by the ISV. In addition, after an application is
user licensed and the forms are checked, the forms cannot be unchecked and you
cannot revert to licensing or nonlicensing of the application. Export copies of these
forms before you license the application so that you can recover the forms if you
need to change licensing levels later on.

� To configure your applications to make them licensable

1 Choose Application > License Application.

Figure 23-1: Application Licensing dialog box
326 Integration Guide

Adding the application license to your server
2 From the Licensing Mode menu, select one of the following options:

3 In the Product Name field, enter the application license string, for example,
XYZ:MusicManager.

4 If you enable user licensing for the application and its forms, perform one of these
actions:

Click inside the User Licensable list adjacent to the form you want to license,
then choose Yes or No. Repeat for other forms.

To license all forms in your application, click Select All.

To clear all forms from the User Licensable list, click Clear All.

This step is optional for applications and is needed only to make forms in your
application user licensable.

5 Click OK.

Adding the application license to your server
Customers license ISV applications just like any other AR System application. The
only difference is the unique naming convention of the application itself,
indicating that the application comes from an ISV.

For information about adding application licenses to servers, see the Configuration
Guide.

Option Description

Do not license this
application

Application is not licensed.
Typically, you use this default option if you do not intend to sell
this application or if the application is for internal use only.

License this
application

Entire application is licensed.
An application license must be added to the Add or Remove
Licenses form for users to access the form data in the application.

Enable user licensing
of this application and
forms

Specific forms in the applications can be made user-licensable.
You decide which forms to make licensable. Users must obtain a
user license to create, modify, merge, or delete form data. These
licenses can be fixed, floating, or read.

Note: Users have read license permission if they are not assigned
fixed or floating licenses.

By choosing which forms in your application to make user-
licensable, you can customize the user licensability of your
application.
Chapter 23 Making applications licensable for integration system vendors 327

BMC Remedy Action Request System 7.6.04
Assigning application licenses to users
After adding your application licenses to the server, follow this procedure to
assign licenses for your application to users.

� To assign licenses to users

1 In the AR System Administration Console, click Application > Users/Groups/
Roles > Users.

2 In the User form, create a user (New mode) or find an existing user (Search mode).

3 Enter information in the appropriate fields to create or modify users.

4 In the Application License field, enter the name of the application and the
appropriate license type, as shown in Figure 23-2.

Figure 23-2: Entering application license information on the User form

NOTE
Use the Application License field to provide fixed or floating application licenses
to users. The License Type field is applicable only for BMC Remedy AR System
user licenses and not for application licenses. To provide a user with write access
to the system, set the License Type field to Fixed or Floating.

Use the following syntax when providing users with application licenses:

vendorName:applicationName user typeOfLicense
XYZ:MusicManager User Fixed

Separate multiple licenses with semicolons:

XYZ:MusicManager User Fixed; XYZ:NoiseManager User Fixed

5 Save your changes.

In this example, one fixed user license was issued so that the user could search or
modify the form data of the XYZ:MusicManager application.

These application licenses function like other user licenses for BMC Remedy
products. For example, you can view current user information in the Manage User
Licenses window in the AR System Administration Console, as shown in
Figure 23-3.
328 Integration Guide

Assigning application licenses to users
Figure 23-3: License information

For more information about managing licenses, see the Configuration Guide.

� To assign licenses to license pools

1 In the Group form, create a new group (New mode) or find an existing group
(Search mode).

2 Enter the required information in the appropriate fields to create or modify
groups.

3 Enter the application name and the number of application floating licenses to be
held in the application license pool for a particular group in the Application
Floating License field.

NOTE
Users who need to be granted these application floating licences must be a part of
this group.

For information about the syntax of the Application Floating License field, see the
Form and Application Objects Guide, “Creating and managing groups,” page 49.

4 Save the changes.

The application license pool is created.
Chapter 23 Making applications licensable for integration system vendors 329

BMC Remedy Action Request System 7.6.04
330 Integration Guide

Appendix

A
 Web service operation types
This section describes the types of web service operations that can be used with
AR System.

The following topics are provided:

Create operation type (page 332)
Set operation type (page 332)
Get operation type (page 333)
Service operation type (page 334)
XPATH function (page 335)
Setting the start record and the maximum limit (page 337)

For additional information about web services, see Chapter 6, “Web services.”
Appendix A Web service operation types 331

BMC Remedy Action Request System 7.6.04
Create operation type
External applications can use a Create operation to submit new entries into
AR System.

When AR System receives an incoming Create request, it performs these actions:

Parses the incoming XML code based on the input mapping, and generates field
values.

Creates an entry in the base form with these field values.

The new entry creation triggers the OnSubmit filters.

After the Create action is completely successful, obtains field values from the
newly created entry.

Uses the output mapping to generate XML code from these field values, and
sends the XML document back as a response.

The output mapping might be different from the input mapping. The input
mapping has the incoming data, but the output mapping has computed data, for
example the EntryId, the CreateDate, or any fields that are set by filters.

The Create operation is similar to the action of filling in a form, submitting it, and
then searching for the same entry. All the rules for Submit also apply—required
values must be entered, system fields cannot be submitted, and so on.

A Create operation can create only one entry in the base form. You can add it to a
web service multiple times, each time specifying a unique name for the operation
and a set of input and output mappings. Multiple Create operations are useful to
make different operations available on the same base form to accommodate
different connecting applications.

Set operation type
External applications can use a Set operation to modify an existing entry in
AR System.

Unlike the Create operation, Set needs a qualification to identify the entry to
modify. This qualification must be specified in BMC Remedy Developer Studio at
design time. You cannot use an attachment field as a field reference in a
qualification. The qualification might be completely static, for example
‘RequestID’ = “000000000000001”, which means that incoming requests
always operate on the first entry.

A more useful qualification is either semidynamic or completely dynamic.

A semidynamic qualification looks like a static qualification except that its
values can be XPATH expressions, for example, ‘RequestID’ = XPATH(“/ROOT/
RequestID”).

A completely dynamic qualification is a single XPATH expression, for example,
XPATH(“/ROOT/QueryString”).
332 Integration Guide

Get operation type
For information about XPATH expressions, see “XPATH function” on page 335.

When AR System receives an incoming Set request, it performs these actions:

Determines whether the qualification is dynamic; if so, it expands the XPATH
expressions with data from the incoming XML to make the qualification static.

Searches the base form for an entry matching the qualification.

Parses the incoming XML code based on the input mapping, generates field
values, and modifies the matched entry.

The entry modification triggers the OnModify filters.

After the modify action is successfully completed, obtains field values from the
recently modified entry.

The action of obtaining the field values triggers the OnGetEntry filters.

Uses the output mapping to generate XML code from these field values, and
sends the XML document back as a response.

As in the Create operation, AR System returns the same entry as the one
submitted because the output mapping might be different from the input
mapping. The input mapping has the incoming data, but the output mapping has
computed data, for example fields that are set by filters.

The Set operation is similar to modifying an entry in BMC Remedy User and then
clicking refresh to get back the same entry. All the rules for modify also apply—
required values cannot be nulled out, and system fields cannot be changed.

The Set operation can modify only one entry in the base form. You can add it to a
web service multiple times, each time specifying a unique name for the operation
and a set of input and output mappings.

See “The Set operation type for complex documents” on page 344.

Get operation type
External applications can use a Get operation to get details about an entry in
AR System.

Like the Set operation, Get needs a qualification that must be specified in BMC
Remedy Developer Studio. You cannot use an attachment field as a field reference
in a qualification. For the Get operation, a qualification is automatically generated
for you, and a particular entry is retrieved. The qualification can be modified. For
the GetList operation, you must manually enter a qualification, or the system
retrieves all the entries.

Qualifications for a Get or GetList operation can be static, semidynamic, or
completely dynamic. These qualification types are described in “Set operation
type” on page 332.
Appendix A Web service operation types 333

BMC Remedy Action Request System 7.6.04
When AR System receives an incoming Get request, it performs these actions:

Determines whether the qualification is dynamic. If so, it expands the XPATH
expressions with data from the incoming XML to make the qualification static.

Searches the base form for entries matching this qualification. Unlike Set and
Create, Get can handle multiple entries. Also unlike Set and Create,
AR System completely ignores the input mapping; the input XML is used only
for expanding XPATH expressions. For information about XPATH expressions, see
“XPATH function” on page 335.

Gets field values from the matched entries.

The action of obtaining the field values triggers the OnGetEntry filters.

Uses the output mapping to generate XML code from these field values, and
sends an XML document back as a response.

You do not need an input mapping for the Get operation; you can create it, but the
system ignores it.

The default operations listed are Get and GetList. These are merely names for the
operation type Get. Use the mappings to create a Get or a GetList operation. Get
returns one entry, and GetList returns multiple entries. For GetList operations,
map the form to a complex type with
maxOccurs=aNumberGreaterThan1orUnbounded so that the resulting records
(>1) can be passed to the user. For more information, see “The Get operation type
for complex documents” on page 345.

Service operation type
External applications can use the Service operation to execute the Service Entry
filters on a form. For more details on Service Entry see the Workflow Objects Guide
and the C API Reference.

This operation type does not work on complex documents, so the document can
have only one entry for one form.

When AR System receives an incoming Service request, it performs these actions:

If the Primary Key is not Request ID, determines the entry ID for the item.

Executes the filters associated with the Service Execution Option, associated
with the form.

Ensures that the fields defined in the input mapping are the input fields to the
Service Entry call and the fields defined in the output mapping are the fields
expected in the output field list.

Takes the output field list and converts it into an XML document and returns it.

The default operation is listed as Service. These are merely names for the
operation type Service. Use the mappings to create the input field list and output
field list.
334 Integration Guide

XPATH function
XPATH function
When web services are published in AR System, the Get and Set operation types
accept a qualification string. At run time, a query is made using the specified
qualification, and the Get, GetList, and Set operations are executed on the entries
returned by the query. The format of the qualification string is similar to that used
in the advanced query bar in the user client, but an additional function called
XPATH is used for web service qualifications.

To access the available XPATH expressions, use the Expression Editor. See “To
construct XPATH expressions in the Expression Editor” on page 336.

An XPATH expression identifies an XML element inside an XML document. Its
syntax is similar to a directory path. When creating XPATH expressions, follow
these guidelines:

The XPATH function takes one argument, which must be an expression
referencing an element or an attribute in the input mapping of the operation.

The element or attribute being referenced does not have to be mapped to a field;
it might exist only in the XML schema and be used only for qualification.

The expression must start with /ROOT and must list all the elements in the path
including the one being referenced.

When referencing an attribute, use @ before the attribute name.

The XPATH function can be used anywhere in the qualification, and a value is
substituted based on the XML data type.

For strings, AR System adds extra double quotation marks around the value.

For date-time fields, the XML date time string is converted to the number of
seconds.

If more than one element matches the expression, the first element is considered.

An entire qualification string can be passed as one of the XML elements in the
input document to create totally dynamic queries. This is analogous to using the
EXTERNAL function.

If an element is missing in the input document, it is resolved to $NULL$.

XPATH expressions are similar to field references, for example, suppose you have
this qualification:

‘RequestID’ = $RequestID$

$RequestID$ is the value of the RequestID field in the current entry, and
‘RequestID’ is the field to search on.

Similarly:

‘RequestID’ = XPATH(“/ROOT/RequestID”)

XPATH(“/ROOT/RequestID”) is the value of the RequestID in the current XML
document, and ‘RequestID’ is the field to search on.
Appendix A Web service operation types 335

BMC Remedy Action Request System 7.6.04
This is an example of an XML document and some sample qualification strings
using XPATH expressions:

<? xml version=”1.0” ?>
<ROOT>

<Employee ID=”112”>Adam</Employee>
<Address>

<Street>1500 Salado Dr</Street>
<City>Mountain View</City>

</Address>
<HireDate>2004-01-01T00:00:00.0000000-08:00</HireDate>
<query>

<qualification>’Employee_ID’ > 100</qualification>
</query>

</ROOT>

For information about the XPATH specification, go to
http://www.w3.org/TR/xpath.

� To construct XPATH expressions in the Expression Editor

1 Expand the WSDL operation panel where you want to add the XPATH expression.

2 Click the ellipsis button [...] adjacent to the Qualification field to open the
Expression Editor.

3 In the Expression Editor, expand the Fields panel.

4 Double-click a field name, so that it appears in the editing field.

5 Click the = button.

6 Expand the XPATH panel.

7 Double-click an XML element, so that it appears in the expression editing area.

Alternatively, you can highlight an element and click the Add XPATH button.

8 Verify that your XPATH expression is correct—for example:

'Request ID' = XPATH(/ROOT/Request_ID)

Sample qualification XPATH resolved qualification Comments

‘Employee_Name’=XPATH(/ROOT/
Employee)

‘Employee_Name’=”Adam” Employee is of type string.

‘Employee_ID’=XPATH(/ROOT/
Employee/@ID)

‘Employee_ID’=112 ID is an attribute of type
integer.

‘City’=XPATH(/ROOT/Address/City) ‘City’=”Mountain View” City is of type string.

‘HireDate’=XPATH(/ROOT/HireDate) ‘HireDate’=1009872000 HireDate is of type
dateTime. It converts to the
number of seconds since
1/1/1970.

‘State’=XPATH(/ROOT/Address/State) ‘State’=$NULL$ State does not exist in the
input document.

XPATH(/ROOT/query/qualification) ‘Employee_ID’>100 Qualification is of type
string.
336 Integration Guide

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

Setting the start record and the maximum limit
9 Click OK to save your qualification.

TIP
You can also construct expressions by typing in the editing field.

Figure A-1: XPATH panel in the Expression Editor

For more information about using the Expression Editor, see the Workflow Objects
Guide.

Setting the start record and the maximum limit
If you select the GetList operation, an XPATH expression is displayed in the Start
Record field. This expression determines the zero-indexed first element returned
when the data is fetched. For example, to start at the first record matching the
qualification, use a value of 0. Similarly, the Max Limit field has an XPATH
expression that retrieves the value for the maximum number of records to return
from the XML document.

For example, suppose the Max Limit expression determines that 10 records should
be shown at a time. If 10,000 records match the qualification, only 10 records
starting from the Start Record are displayed.
Appendix A Web service operation types 337

BMC Remedy Action Request System 7.6.04
338 Integration Guide

Appendix

B
 Mapping web service data
This section describes the tools and processes used to map web service data.

The following topics are provided:

Mapping to simple and complex documents (page 340)
XML editing (page 351)
Data types (page 360)

For additional information about web services, see Chapter 6, “Web services.”
Appendix B Mapping web service data 339

BMC Remedy Action Request System 7.6.04
Mapping to simple and complex documents
The procedure for mapping documents is the same for both creating and
consuming web services.

AR System performs default mapping automatically when you create a web
service, or when you add an operation to a web service. By default, your base form
is mapped to the ROOT element in your XML Schema, and the fields in your form
are automatically mapped to element names in the XML document.

Simple documents
With a simple XML schema, the fields from one form are mapped to the XML
element names. The map is displayed as a list of ARFieldName/
XMLElementName pairs.

� To map to simple documents

1 In BMC Remedy Developer Studio, open a web service for editing.

2 In the web services editor, expand the WSDL Ports panel, the Port panel, and the
WSDL Operations panel.

3 Click on the operation you want to map, expanding the corresponding panel.

Tables for input mapping and output mapping appear.

4 Set the Data Source Type to Generated.

If you did not specify an XML Schema for the web service, the Data Source Type is
automatically set to Generated.

5 Click the Auto Map button to regenerate default mappings.

The XML element names are displayed in the XML Data Type column. The base
form name and fields are displayed in the Form/Field column.

NOTE
AR System sets default mappings automatically when you create a web service, or
when you add an operation to a web service. If the existing mappings are
satisfactory, you do not need to regenerate them.
340 Integration Guide

Mapping to simple and complex documents
Figure B-1: Mapping for a Get operation (simple document)

6 Review the mappings, and make any necessary adjustments to forms, fields, and
elements in your XML schema. (See Figure B-1.)

To modify the properties of an object in the XML Data Type column, select the
object and click the adjacent ellipsis button [...]. To view XML properties, hover
your mouse over the object.

To replace a form or field in the Form/Field column, select the object and click the
adjacent ellipsis button [...].

Mapped items must be of the same data type (see “Data types” on page 360).

7 Make any adjustments to the mapping, or to the form, fields, and elements in your
XML schema.

8 Save your web service.
Appendix B Mapping web service data 341

BMC Remedy Action Request System 7.6.04
� To remove existing mappings

1 Right-click a row in the Input Mapping or Output Mapping table.

2 Click Remove Selected.

TIP
If you remove a mapping by mistake, you can easily re-create it. Right-click the
ROOT element in the XML Data Type column, choose New > Element > Field,
rename the new field element, then map it to the appropriate field.

3 Save your web service.

� To map a field to an XML element name

1 In the Input Mapping or Output Mapping table, locate the XML element to which
you want to map a field, and highlight the corresponding row.

2 In the highlighted row, click the current field name that is mapped to your XML
element.

An ellipsis button [...] appears adjacent to the field name.

3 Click the ellipsis button [...], then select the field you want to map and click OK.

4 Save your web service.

To add fields or make other modifications to the XML schema, see “To add a new
element or attribute” on page 352 and “To change element ordering” on page 352.
To remove fields, see “To remove an existing field from the mapping list” on
page 357.

Complex hierarchical documents
For complex hierarchical documents, the XML schema maps to multiple
interrelated forms. In the following example, a purchase order XML document is
mapped to two forms, Purchase Order and Line Item, as represented by this figure:

Purchase Order

Request ID Description Date

007 XYZ Corp 2/12/08

012 ABC, Inc. 3/01/08

Line Item

Request ID Line ID Description PO ID

0015 1 Memory 007

0016 2 CPU 007

0017 3 HardDisk 007

0020 1 Scanner 012

0021 2 Printer 012
342 Integration Guide

Mapping to simple and complex documents
The data consists of two purchase orders, one for XYZ Corporation with three line
items (Memory, CPU, and HardDisk) and one for ABC, Inc. with two line items
(Scanner and Printer). The Purchase Order and Line Item forms are related
through their ID fields:

Request ID on the Purchase Order form. This is the primary key in the parent
form and it is unique. This is the key that establishes the relationship with the
foreign key in the LineItem form.

PO ID on the Line Item form. This is the foreign key in the child form; it
establishes the relationship primary key in the Purchase Order form.

Request ID on the Line Item form. This is the primary key in the child form, and
it is unique.

Line ID on the Line Item form. This is unique only in the subset of requests that
reference the same Purchase Order form. The Line ID together with the PO ID
form a “unique key.”

The XML input document in the example can be represented as follows:

<PurchaseOrder>
<Customer>XYZ Corp</Customer>
<Date>2/12/04</Date>
<Items>

<LineItem> <Id>1</Id> <Description>Memory</Description>
</LineItem>
<LineItem> <Id>2</Id> <Description>CPU</Description>
</LineItem>
<LineItem> <Id>3</Id> <Description>HardDisk</Description>
</LineItem>

</Items>
</PurchaseOrder>

The XML document does not include Request IDs. Request IDs have no meaning
outside AR System unless they are used as the primary key identifier for the
document. For example, if the purchase order (PO) document uses the Request ID
field as the PO Number, that number is also used externally. In this case, the
request ID field is probably renamed as the PO Number field. The server
automatically creates Request IDs for the parent and child forms, and assigns
foreign keys to the child form as the identifier between the child and parent.

The only IDs in the XML document are the Line IDs of the child form. Line IDs can
be numbers or strings, such as a description. Line IDs are used only in the modify
operation: the server compares the existing complex document with the new
document and determines which child items to modify, insert, and delete.
Appendix B Mapping web service data 343

BMC Remedy Action Request System 7.6.04
Set operations with line items
For a complex document, for example, a purchase order with three line items,
where you submit an XML document containing two line items for a Purchase
Order already existing in the system, the server compares the Line IDs of the
existing three line items with the Line IDs of the two new line items. The following
rules apply:

If there are matching Line IDs, the server updates the line item in the database
with the contents of the XML elements inside the corresponding line item in the
input document. Fields for which the XML elements are missing are left
untouched.

If a new Line ID does not exist in the database, the server creates a record in the
line item form.

If there is a missing Line ID—that is, if a line item exists in the server but not in
the input request—the server either deletes the line item from the server or
ignores it, depending on the option you select in BMC Remedy Developer
Studio on the Set Operation panel.

If you select Full from the list in the Composite Options field, the server
deletes missing line items.

If you select Partial from the list in the Composite Options field, the server
ignores missing line items.

As a consequence of these rules, a modify operation for a complex document can
result in create and delete actions.

Make sure that each Line ID is unique within the scope of one document. The
server cannot distinguish between duplicate LineIDs when performing a modify
action. The use of duplicate Line IDs might cause unexpected results.

The Set operation type for complex documents
The Set (or Modify) operation for complex documents is more complicated than it
is for simple documents. In a simple document, the base form might have ten
fields, for example, all mapped to XML elements. If the XML for your modify
request is returned with all ten XML elements, the server modifies each of the ten
fields with data from the ten XML elements. However, if your modify-request
XML is returned with fewer than ten elements and you specified MinOccurs=0 in
the Object Properties dialog box for the XML elements, the server modifies only the
fields in the input request. If your modify-request XML is returned with fewer than
ten elements and you set MinOccurs to a value other than 0, you receive an error
message.
344 Integration Guide

Mapping to simple and complex documents
The Get operation type for complex documents
For GetList operations, map the form to a complex type and set maxOccurs to a
number greater than 1 or unbounded, so that the resulting records (>1) can be
passed to the user. Instead of mapping the form to the ROOT element, which
cannot have maxOccurs=unbounded, map to another element below ROOT which
has maxOccurs=unbounded. All the fields on the form for a GetAll operation
should be mapped to the children of this element rather than being mapped to
children of ROOT. The default GetList operation already has this element called
getListValues; however, if you are creating custom mappings, make sure that
this element exists.

NOTE
The GetList operation uses more system resources than a native API call does
when retrieving data from AR System. To improve performance when using the
GetList operation, retrieve the data in smaller chunks. See “Setting the start
record and the maximum limit” on page 337.

Filter flow for complex documents
When a complex document such as PurchaseOrder (described on page 342) is
received by the AR System server, the AR System server updates the Line Item
form by generating Push Fields actions on the Purchase Order form for every line
item in the PurchaseOrder document.

For publishing—The Push Fields actions relating to the web service are executed
before other Push Fields actions on the Purchase Order form are executed.

For consuming—The Push Fields actions generated during the consumption of
a web service are executed before other Push Fields actions on the Purchase
Order form.

For a form with both publishing and consuming web services—The filter flow
is as follows:

Publishing Push Fields actions > Consuming Push Fields actions > Other Push
Fields actions.

Mapping to complex documents
To create the mapping of a complex document, you first need to create forms and
a complex XML Schema. See “Advanced XML editing” on page 358. Choose the
parent form as the base form of the web service. Additional forms are used as child
forms. You should not use a child form with more than one parent form.

� To map to complex documents

1 In BMC Remedy Developer Studio, open a web service for editing.

2 In the web services editor, expand the WSDL Ports panel, the Port panel, and the
WSDL Operations panel.

3 Click on the operation you want to map, expanding the corresponding panel.
Appendix B Mapping web service data 345

BMC Remedy Action Request System 7.6.04
Tables for input and output mapping appear.

NOTE
AR System sets default mappings automatically when you create a web service, or
when you add an operation to a web service.

4 Select the Data Source type for your mapping.

a To have AR System automatically generate a basic XML schema, set the Data
Source Type to Generated, click the Auto Map button, and skip to step f.

NOTE
You cannot use Developer Studio to modify XML elements in an external XML
schema. To modify XML elements in an external schema, edit the XML schema file
directly.

b If you are using an external XML schema, set the Data Source Type to XML
Schema.

NOTE
The XML Schema option is only available if you have specified a file name in the
XML Schema panel, and the file has been loaded.

c Select Support XSI Type, if necessary. If this option is selected, the system
specifies XSI Type for all XML data while creating XML documents.

d Click Choose, then click OK to verify that you want to change the mapping.

The Choose Start Element dialog box appears, displaying complex types and
elements.

Figure B-2: Choose Start Element dialog box

e Select your start element or complex type. See “Importing an external XML
schema” on page 358.

f Verify that your XML elements and complex types are displayed in the XML
Data Type column, and the parent form and fields are displayed in the Form/
Field column (see Figure B-4 on page 349).
346 Integration Guide

Mapping to simple and complex documents
TIP
To view the XML properties of an object in the XML Data Type column, hover your
mouse over the object. To edit XML properties, select the object and click the
ellipsis button [...].

5 Review the mappings, and make any necessary adjustments to forms, fields, and
elements in your XML schema. (See Figure B-4 on page 349.)

To replace a form or field in the Form/Field column, select the object and click the
adjacent ellipsis button [...].

6 Add child forms to the list of mapped objects.

a Right-click the ROOT element in the XML Data Type column.

b Choose New > Element > Form.

c Rename the new form element that appears under ROOT.

d Click the corresponding (blank) field in the Form/Field column.

e Click the ellipsis button [...], then select a form for mapping to your new form
element.

7 In the row where your parent form is mapped, click the field in the Mapping Info
column. The parent form is typically mapped to the ROOT element.

The Primary Key selector appears, as shown in Figure B-3.

Figure B-3: Primary Key selector

8 Click the ellipsis button [...] and choose a field to use as the primary key.

This is the field that uniquely identifies the entries in the specified form. It is
typically the Request ID field. The list of primary keys is limited to character fields
specified as unique in Form > Form Properties > Indexes.

9 Click OK to close the Primary Key dialog box.

10 Map any other fields in the parent form to elements in the XML schema.

NOTE
When you create a filter to consume a web service, the output mapping table does
not allow you to choose fields that only the system can modify.

You must map to the same data types. If you hover the cursor over the XML
element name or field name, the tooltip shows the data type. See “Data types” on
page 360.
Appendix B Mapping web service data 347

BMC Remedy Action Request System 7.6.04
11 In the row where one of your child forms is mapped, click the field in the Mapping
Info column.

The Distinguishing Key and Foreign Key selectors appear. (These selectors are
similar to the Primary Key selector in Figure B-3.)

12 Click the ellipsis button [...] and choose a value for Distinguishing Key. This is the
value that uniquely identifies each of the detail items in the child form of any given
parent entry.

NOTE
The AR System does not allow the mapping of an integer as the distinguishing key
during the consumption of a web service.

13 Click the ellipsis button [...] and choose a value for Foreign Key.

The combination of distinguishing key and foreign key should uniquely identify
an entry in a child form. BMC Remedy Developer Studio does not enforce this
relationship, but the AR System server returns an error if it detects noncompliance.

A field specified as foreign key should not be used in any field mapping, because
this field is used by the system to store the foreign key. If it is mapped, the value
of the mapped XML element is usually overridden by the foreign key value.

14 Map any other fields in the child form to XML elements.
348 Integration Guide

Mapping to simple and complex documents
Figure B-4: Mapping for a Get operation (complex document)

15 Repeat step 11 to step 14 to map other child forms to XML elements.

NOTE
The immediate children of all or choice element type cannot be mapped to another
form.

To map choice nodes, map the choice node in the XML schema to the choice field
in a form before mapping the choices.

16 Save your web service.

See “Supported schema constructs and AR System web service limitations” on
page 101.
Appendix B Mapping web service data 349

BMC Remedy Action Request System 7.6.04
Using join forms in web services
You can use join forms in web services but only for parent forms; child forms
cannot be join forms. For more information about join forms, see the Form and
Application Objects Guide.

Primary keys
Join forms can be used for publishing or consuming in the same way as regular
forms except for certain considerations when choosing a primary key in the Define
form mapping dialog box. When you map the parent form, the primary key must
be unique to the join form. The base forms which comprise the join form can each
have a unique key. The Request ID of the join form is a concatenation of the
Request IDs of the join base forms.

Because the primary key must be unique to the join form, this provides the
following possibilities:

For a Create operation:

When you publish a web service using a join form, a Create operation is not
automatically generated; you must make the Create operation yourself.

If the join form is an inner join, the Primary key can be a Unique Index from any
of the base forms that comprise the join form.

If the join form is an outer join, the Primary key can be a Unique Index only from
the primary base form.

The primary key cannot be the Request ID field.

For a Set operation:

If the join form is an inner join, the primary key can be one of the following
items:

Request ID of the join form

Request ID of any of the base forms

Unique Index from any of the base forms.

If the join form is an outer join, the primary key can be one of the following
items:

Request ID of the join form

Request ID of the primary base form

Unique Index of a field from the primary base form.

Output mapping
In a Create operation, if the web service base form is a join form, the output
mapping is ignored and neither a document nor a Request ID is returned.
350 Integration Guide

XML editing
Example
In the following example, PO - People is an inner join form between the PO form
and the People form.

The Unique key in the PO form is POID, the Unique key in the People form is
Name, and the join criteria between the two forms are Name (of PO form)= Name
(of People form).

Because the Unique key POID is also unique in the join form, choose it as the
Primary key.

Figure B-5: Join form in web services

XML editing
You can perform simple editing tasks with BMC Remedy Developer Studio or, for
more complex documents, you can create and edit an XML schema outside
AR System and import it. The following sections provide information about
simple and complex XML editing.

POID
Company name
PO date
Creator name creator
Phone

POID
Company name
PO date
Creator name creator
Phone

Join Criteria:
Creator Name
Join Criteria:
Creator Name

People formPeople form

Line Item formLine Item form

PO-People formPO-People form

PO formPO form

POID
Company name
PO date
Creator name creator

POID
Company name
PO date
Creator name creator

Creator Name
Phone
Creator Name
Phone

LineID
Item description
Appendix B Mapping web service data 351

BMC Remedy Action Request System 7.6.04
Simple XML editing
BMC Remedy Developer Studio allows you to change the format of the XML code
so that is compatible with your web service. The following changes are possible:

You can add, delete, or rename the XML elements.

You can create XML elements to enable grouping of existing XML elements. This
grouping is purely cosmetic.

You can use attributes instead of elements.

You can set nillable, MinOccurs, and MaxOccurs attributes of elements.

� To add a new element or attribute

1 Right-click an element in the XML Data Type column to display a list of actions.

2 Choose New > Element or New > Attribute.

The new element or attribute appears one level below the selected item. You can
add form elements, field elements, or field attributes.

3 Rename the new element or attribute.

� To change element ordering

1 Right-click an element in the XML Data Type column to display a list of actions.

2 Click Move Up, Move Down, Move Left, or Move Right.

The element is moved, along with its mapping.

Object properties
The properties of an object indicate the information that the object provides. You
can set various property values for the XML Schema objects as shown in the
following figure.

Figure B-6: XML Properties dialog box
352 Integration Guide

XML editing
To edit a property value, select the element in the XML Data Type column, then
click the ellipsis button [...] to open the XML Properties dialog box.

DefaultValue—This is the default value of an element unless it is overridden by
the value in the actual document (incoming or outgoing).

Element—If the value for Element is true, the object is an element. If the value is
false, the object is an attribute. The ROOT element cannot be edited.

MaxOccurs—This indicates maximum number of instances of the element. The
default value is 1. A value of “unbounded” indicates that the element might be
repeated any number of times. For example, a purchase order document might
contain any number of line items.

MinOccurs—This indicates number of instances of the element. The default
value is 1. If the value is 0, the element might or might not be present.

Nillable—Any leaf node (elements only) can be made nillable. Setting the
nillable attribute to true or false can be done only in the mapping dialog boxes.
The document is interpreted according to the rules described below.

Type—This indicates the XML data type of the element.

XML Type—Any leaf node (element or attribute) can be identified as XML Type.
If XML Type is true, the data can be treated as XML string data. In this case,
AR System does not treat it like a regular string (that is, the data is not encoded
or decoded).
Appendix B Mapping web service data 353

BMC Remedy Action Request System 7.6.04
Handling null, empty, and missing values
There are many rules for handling null, empty, and missing values.

Elements and attributes mapped to fields
The rules can be divided into four groups.

Incoming XML elements

Incoming XML attributes

Outgoing XML elements

Outgoing XML attributes

AR System has two sources for incoming XML: as the request for an AR System
published web service, or as a response from an external web service that
AR System is consuming. Similarly there are two sources for outgoing XML: as the
response from an AR System published web service, or the request to an external
web service that AR System is consuming.

In these tables it is assumed that “name” is an XML element or attribute which is
missing, empty, or nulled, and is mapped to an AR System field called “Name.”
The column headers are the design time properties—for example, “name” is
defined with minOccurs=0 and nillable=false. The row headers are run-time
representations—for example, in the incoming XML packet “name” appears as
<name></name>. The table specifies how AR System sets the XML element or
attribute to or from the AR System field.

TIP
To render a null field, create an empty element with xsi:nil=true as an attribute.
This is preferable to omitting the element in the request document, or creating an
empty element with the nillable attribute set to false.
354 Integration Guide

XML editing
Incoming XML elements

1 When an XML element is missing, AR System treats it the same way as a missing
field. Therefore, in a create operation, the field to which the XML element is
mapped assumes the AR System default value (or NULL if there is no default). In
a set operation and in consumption, the field remains unchanged.
2 When an XML element is missing, in spite of minOccurs=1, it is invalid XML. The
client should not send such an XML packet, but if it does, AR System displays an
error message.
3 When the XML element has empty content, AR System first tries to use the xsd
default if it exists. (There are two different defaults—the AR System default value
and the xsd default value. For empty contents, AR System always uses the xsd
default value.) Otherwise, it sets the field to NULL.
4 When the XML element has xsi:nil=true, AR System sets the field to NULL and
disregards the defaults.
5 When the XML element has xsi:nil=true but is not defined with nillable=true, it
is invalid XML. Clients should not send such an XML packet. Also, AR System sets
this field to NULL, disregarding the defaults.

Incoming XML attributes

1 If an attribute is defined with use=optional and the attribute is missing from the
XML, AR System tries to use the xsd default. If the xsd default does not exist,
AR System treats the attribute like a missing field. Therefore, in a create operation,
the field to which this attribute is mapped assumes the AR System default value
(or NULL if there is no default). In a set operation and in consumption, the field
remains unchanged.
2 If an attribute is defined with use=required, it should not be missing. Otherwise,
the XML is invalid and clients should not send such an XML packet. AR System
displays an error message.
3 If an attribute has an empty value, AR System sets the mapped field to NULL and
disregards the defaults.

minOccurs=0
and

nillable=false

minOccurs=0
and

nillable=true

minOccurs=1
and

nillable=false

minOccurs=1
and

nillable=true

Missing <name> Name is not
modified, or it is
set to AR default.1

Name is not
modified, or it is
set to AR default.1

Invalid XML.2 Invalid XML.2

<name></name>
OR
<name/>

Name=$NULL$ or
xsd default 3

Name=$NULL$ or
xsd default 3

Name=$NULL$ or
xsd default 3

Name=$NULL$ or
xsd default 3

<name xsi:nil=”true></name>
OR
<name xsi:nil=”true”/>

Invalid XML.5 Name=$NULL$ 4 Invalid XML.5 Name=$NULL$ 4

use=optional use=required

Missing <name> Name is set to xsd default, or it is not
modified, or it is set to AR default.1

Invalid XML.2

name= “” Name=$NULL$ 3 Name=$NULL$ 3
Appendix B Mapping web service data 355

BMC Remedy Action Request System 7.6.04
Outgoing XML elements

1 If a field is null, AR System generates the XML as xsi:nil=true. However, it
can do so only if nillable=true.
2 If nillable is false, AR System doesn’t generate the element at all for null fields.
However, it can do so only if minOccurs=0.
3 If nillable is false and minOccurs=1, AR System generates an element with
empty content.
4 If a character field contains an empty string, AR System generates an element
with empty content. AR System fields with empty strings are extremely unusual;
they can be specified only with the driver program or an API call.

Outgoing XML attributes

1 If a field is null, AR System generates an attribute with empty content.
2 If a character field contains an empty string, AR System generates an attribute
with empty content. AR System fields with empty strings are extremely unusual;
they can be specified only with the driver program or an API call.

Elements mapped to forms
While elements mapped to fields can only have maxOccurs=1, elements mapped
to forms can have maxOccurs>1. (Actually, elements mapped to fields can have
maxOccurs>1, but at run time at most one element should appear in the incoming
XML.)

Incoming XML elements

For incoming XML, the base form can be mapped only to an element with
maxOccurs=1. (It is acceptable if maxOccurs>1 at design time, but at run time there
is at most one element.)

minOccurs=0
and

nillable=false

minOccurs=0
and

nillable=true

minOccurs=1
and

nillable=false

minOccurs=1
and

nillable=true

Name is $NULL$ Missing name 2 <name xsi:nil=
“true”/> 1

<name/> 3 <name xsi:nil=
“true”/> 1

Name is “” <name/> <name/> 4 <name/> 4 <name/> 4

<name> is not mapped Missing name Missing name Invalid XML. Invalid XML.

use=optional use=required

Name is $NULL$ name="" 1 name="" 1

Name is "" name="" 2 name="" 2

<name> is not mapped Missing name Invalid XML.
356 Integration Guide

XML editing
The child forms can be mapped to elements with maxOccurs>1. If the number of
XML elements does not fall in the range set by minOccurs and maxOccurs, it is
invalid XML and the client should not send a document containing such XML.
However AR System ignores the minOccurs, maxOccurs constraints while parsing
this XML.

Outgoing XML elements

For outgoing XML, the base form can be mapped to an element with maxOccurs>1
in case of publishing and an operation of type get. This implies that multiple
entries in the base form are to be retrieved. If the number of entries in the base form
is less than the minOccurs, AR System returns an error. If the number of entries is
more than the maxOccurs, AR System returns only until the maxOccurs amount.

Child forms can be mapped to elements with maxOccurs>1. If the number of
matching entries in the child form does not fall in the range set by minOccurs and
maxOccurs, AR System returns an error.

Flat mapping
The typical procedure is to create the XML elements and then map them to the
fields. However, if you are creating a flat mapping, you can combine these two
steps into one. Remove the fields that you do not want to map and then click the
Generate Schema button on the Mapping dialog box. This creates XML elements
that are automatically mapped.

� To remove an existing field from the mapping list

1 In the Form/Field column, highlight the field name you want to remove.

2 Use the Backspace or Delete key to remove the field name.

The corresponding XML element is not removed.

� To remove a mapping

1 In the mapping table, right-click the mapping you want to remove.

Each mapping is represented by a row in the table.

2 Click Remove Selected.

XML editing is allowed only while you publish a web service from AR System.
When you consume an external web service, the XML format is decided by the
external web service and you must conform to it. BMC Remedy Developer Studio
disables all editing features in that case. You can choose only which fields to map
to which XML elements.

XML documents can specify the data type in the document itself instead of in the
XML schema. If you want the output document to contain XSI Type information
so that the consumers of the web service can process the document correctly, check
the Support XSI Type option above the mapping table. In this case, the system
generates XSI Type information.
Appendix B Mapping web service data 357

BMC Remedy Action Request System 7.6.04
Advanced XML editing
The mapping tables in BMC Remedy Developer Studio allow for simple XML
editing. For more complex editing, you can use an advanced XML schema editing
tool, such as XMLSpy. XML editing tools are not included with AR System. If you
have a thorough understanding of XML schemas, you can write them in a simple
text editor.

An online tutorial on XML schemas is available at this website:

http://www.xfront.com/index.html#schema

After you design an XML schema, you can import it into BMC Remedy Developer
Studio. After you import it, however, the XML editing features in BMC Remedy
Developer Studio are disabled. If you want to use BMC Remedy Developer Studio
to edit your XML schema, you must create the schema within Developer Studio.

If you use an old XML schema editor, the namespace for the XML schema might
be 2000 or 1999. BMC supports only namespaces of 2001—that is, with the
declaration http://www.w3.org/2001/XMLSchema. Using an XSD file with an
older namespace might produce unexpected mapping results.

Importing an external XML schema
One external XML schema can be used for all the mappings of one web service.
However, this XML schema can include or import other XML schemas, so to use
multiple XML schemas, create an XML schema that includes or imports all the
schemas you want to use.

� To import an external XML schema

1 Expand the XML Schema panel in Developer Studio.

2 Specify your XML Schema (XSD file) in the XML Schema field, or use the ellipsis
button [...] to browse to the XSD file.

If your schema definition is spread over multiple XSD files interlinked together
using import or include, you must type the URL of the topmost XSD file—that is,
the one that is not included or imported by others.

You can also enter a file system path to your XSD file, but the URL to the XSD file
is referenced in your generated WSDL file, so your path must be accessible over
the network. You should create a web server directory to hold your XSD files, and
enter the http path to this directory in the XML Schema field.

3 Click the Reload button.

4 Choose the XML Schema Source type in the drop-down list.

a If you entered a local file system path for your XSD, select Embedded. In this
case, AR System loads the specified XML schema and all dependent XML
schemas. It stores the entire XSD file and all other files that the XSD file includes
or imports. The WSDL also has all the XSDs embedded in the types section. This
is the default option.
358 Integration Guide

http://www.xfront.com/index.html#schema.
http://www.xfront.com/index.html#schema.

XML editing
b If you entered a network accessible path (http or ftp) for the XSD, you can select
Linked. In this case, AR System does not store the XSD files, but it does store a
reference to the specified schema in the web service object and in the WSDL file.
Some WSDL parsing tools (early versions of Microsoft.NET and MSSOAP) do
not support these kind of WSDLs.

A system-generated schema is always embedded in the WSDL.

If your schema definition is spread over multiple XSD files linked together using
import or include, you must type the URL of the topmost XSD file—that is, the one
which is not included or imported by anyone else.

5 In the WSDL Operations panel, expand an operation.

6 In the Data Source Type list, select XML Schema, and click the Choose button.

7 Click OK to verify that you want to change the mapping.

8 Select a start element.

Separate mappings can be based on separate global elements, but all of them must
come from the same XML schema. BMC Remedy Developer Studio displays a list
of global elements and global complex types that either reside in your XSD file, or
are included or imported into the file.

Figure B-7: Choose start element dialog box

If you select an element, the element and all its successors are added as a child of
the ROOT element. If you select a complexType, the contents of the complexType
is added as a child of the ROOT.

If you specify and load a different schema, AR System verifies that global elements
or complex types referred to in the current mappings are compatible with the new
schema and informs you of incompatible types. If you agree to update the existing
mappings, AR System updates them for you. If there are no overlapping global or
complex types, AR System preserves the content of the original mapping.

BMC Remedy Developer Studio does not support all features of XML schemas,
and when using a web service there are restrictions that apply to the external
WSDL file. For more information about limitations, see the AR System Release
Notes.
Appendix B Mapping web service data 359

BMC Remedy Action Request System 7.6.04
Data types
When mapping an XML element to an AR System field, BMC Remedy Developer
Studio allows only compatible data types, both for consuming and publishing.

NOTE
AR System web services do not support list and union data types. AR System
converts list data types IDREFS, ENTITIES, and NMTOKENS to strings.

AR System data types XML schema data types

Character string, duration, anyURI, QName,
NOTATION, normalizedString, token,
language, NMTOKEN, Name, NCName, ID,
IDREF, ENTITY, integer,
positiveInteger, nonPositiveInteger,
negativeInteger, nonNegativeInteger

Status History string

Diary string

Date/Time dateTime

Date date, gYearMonth, gYear, gMonthDay,
gDay, gMonth
Defaults:
YEAR - 1000 (leap year),
month - 01, day - 01

Time time

Currency (value) decimal

Currency (code) string

Currency (conversion date) dateTime

Integer int, long, unsignedLong, unsignedInt,
boolean, short, byte, unsignedShort,
unsignedByte

Real double, float

Decimal decimal

Drop-Down, Radio, Check Box string

Attachment (name) string

Attachment (data) base64Binary

Attachment (original size) int, long, unsignedLong, unsignedInt,
boolean, short, byte, unsignedShort,
unsignedByte
360 Integration Guide

Data types
The following complex AR System fields are treated as exceptions:

When you retrieve a diary field from AR System, the diary field is treated as a
long character field containing all the historical diary entries separated by a
special separator character. When you send a diary field to AR System, you send
only the current entry.

The Status History field is treated similarly to a diary field, but you cannot send
a status history entry to AR System.

Each currency and attachment field consists of three parts, and each part needs
to be mapped separately (see Figure B-8).

Figure B-8: Mapping currency and attachment fields
Appendix B Mapping web service data 361

BMC Remedy Action Request System 7.6.04
362 Integration Guide

Appendix

C
 ARDBC LDAP example:
Accessing inetorgperson data
This appendix contains an example of how to create a vendor form associated with
a collection of objects (using the inetorgperson object class) in an LDAP directory
service and how to attach data to it.

The following topics are provided:

Creating the inetorgperson vendor form (page 364)
Attaching fields to represent inetorgperson data (page 365)
Defining a filter to generate a DN (page 367)

NOTE
You must install and configure your ARDBC plug-in before you can create a
vendor to use the plug-in. See “Creating C plug-ins” on page 110 and
“Configuring the ARDBC LDAP plug-in” on page 137.
Appendix C ARDBC LDAP example: Accessing inetorgperson data 363

BMC Remedy Action Request System 7.6.04
Creating the inetorgperson vendor form
The inetorgperson object class is often present by default on some LDAP
directory services, such as iPlanet and OpenLDAP. To use the example in this
appendix if your LDAP service does not contain the inetorgperson object class,
replace the objectclass filter in the inetorgperson vendor form. The data that
corresponds to your new object class should contain the following attributes: uid,
sn, dn cn, ou, and objectclass. Instructions about how and when to change the
objectclass file are presented later in this section. The form and workflow are
provided with the LDAP plug-in software distribution in the inetorgperson.def
file, typically found in the ARSystemServerInstallDir\Plugins\ARDBC folder.

NOTE
The introgperson vendor form that is installed by default, is a sample vendor form
with default vendor information. The vendor information needs to be configured
for a specific environment before the form can be used. The default data is just a
placeholder and will not work.

� To create a vendor form using the inetorgperson objectclass

1 Start BMC Remedy Developer Studio and log in to an AR System server.

2 From the AR System Navigator list on the left side of the screen expand All Objects
and then select Forms.

3 From the forms list on the right side of the screen, select the default sample form,
inetorgperson of type Vendor.

The Vendor Form and data are displayed.

4 Adjust any of the fields as needed to configure the vendor information for your
implementation.

NOTE
The corresponding URL for inetorgperson is:

ldap://LDAPDirectoryServiceHost/o=remedy.com??
sub?(objectclass=inetOrgPerson)

If your LDAP server does not contain the inetorgperson objectclass, select a
comparable objectclass, such as person.

5 Click File > Save to save the vendor form.

You can modify the LDAP search URL at any time. In the Form Properties dialog
box, you can also configure the form to use the ARDBC LDAP plug-in. Other
ARDBC plug-ins require that you enter a different plug-in name and might not use
an LDAP search URL format to define a collection of objects.
364 Integration Guide

Attaching fields to represent inetorgperson data
Figure C-1: Form Properties window, showing LDAP search URL

NOTE
You might need to further refine the base-distinguished name portion of the URL
in the Table Name parameter of the form properties to refine the search further.
Some LDAP servers do not return the table of results if the base-distinguished
name used to search for entries is not specific enough.

6 To add or delete fields from a vendor form:

To add a field to the vendor form, choose Form > Add Fields from tableName.
Select a field to add from the Add Fields dialog box, and click OK.

To delete a field from the vendor form, click a field and choose Edit > Delete.
Deleted fields are returned to the Add Fields list for later access, if needed. This
only deletes the AR System field. It does not remove the column from the
database table.

Attaching fields to represent inetorgperson
data

After you create a vendor form, you populate the form with fields that contain data
from your inetorgperson data source. This section describes how to add a field
to represent the User ID in the inetorgperson example.

� To add a field to represent the uid (User ID) attribute in the inetorgperson
example

1 In BMC Remedy Developer Studio, open the vendor form you created earlier.

2 Right-click in the form and choose Add Fields from tableName.

The tableName variable is the object represented by
ldap://LDAPDirectoryServiceHost/o=remedy.com??sub?(objectclass=
inetorgperson).

3 In the Add Fields dialog box, select a field to add and click OK.
Appendix C ARDBC LDAP example: Accessing inetorgperson data 365

BMC Remedy Action Request System 7.6.04
4 Position the field on your form, as required.

5 Select the field to display its properties in the Properties tab.

6 In the Properties tab, expand the Vendor Information category (see Figure C-2).

Figure C-2: Field Properties tab—vendor information

7 Change the value of the Column property to uid.

8 Click File > Save.

� Alternative method of adding a field to represent the uid (User ID) attribute

1 Open the form where you want to add a field.

2 Add a character field to the form by choosing Form > Create a New Field >
Character.

3 Select the field to display its properties in the Properties tab.

4 In the Properties tab, expand the Display category (see Figure C-3).

5 Change the value of the Label property to User ID.

Figure C-3: Field Properties tab—display information
366 Integration Guide

Defining a filter to generate a DN
6 In the Properties tab, expand the Database category.

7 Change the value of the Entry Mode property to Required.

8 In the Properties tab, expand the Vendor Information category.

9 Change the value of the Column property to uid.

10 Position the field on your form, as required.

11 Click File > Save.

Defining a filter to generate a DN
In the inetorgperson example, an object’s distinguished name looks something
like this:

uid=abarnes, ou=People, o=remedy.com

The following procedure shows how to create an AR System filter to assemble the
distinguished name using the inetorgperson example.

� To define an AR System filter to construct the distinguished name using the
inetorgperson example

1 In BMC Remedy Developer Studio, choose File > New > Filter.

2 Select the server where you want to create the filter, and click Finish.

3 Right-click the Associated Forms panel, then choose Expand All Panels.

4 In the Associated Forms panel, click the Add button.

5 In the Form Selector dialog box, select the inetorgperson form and click OK.

6 In the Execution Options panel, select the Submit check box.

7 Right-click the If Actions panel, then choose Add Action > Set Fields.

A Set Fields subpanel appears, which includes a field-value table (see Figure C-4).

8 Click the first cell in the Field column, then click the ellipsis button [...].

9 Use the Field Selector to choose the Distinguished Name field, then click OK.

10 In the corresponding Value cell, type the following expression:

"uid=" + $User ID$ + ", ou=People, o=remedy.com"
Appendix C ARDBC LDAP example: Accessing inetorgperson data 367

BMC Remedy Action Request System 7.6.04
Figure C-4: Creating the inetorgperson filter

11 Click File > Save.

12 Name your filter inetorgperson:create, then click OK.

You can now log in to BMC Remedy User and open the inetorgperson task to
search and create entries.

Summary of fields
In the inetorgperson example, the following fields are needed:

Field Field properties

Distinguished Name Entry Mode: Optional
Read/Write
Default Value: none
Vendor Information Column: dn

Object Class Entry Mode: Required
Read Only
Default Value: top, person, organizationalPerson,
inetorgperson
Vendor Information Column: objectclass[*,]
368 Integration Guide

Defining a filter to generate a DN
In this example, the form looks like the form in Figure C-5.

Figure C-5: The inetorgperson form in BMC Remedy User

Last Name Entry Mode: Required
Read/Write
Default Value: none
Vendor Information Column: sn

Common Name Entry Mode: Required
Read/Write
Default Value: none
Vendor Information Column: cn

Organization Unit Entry Mode: Required
Read/Write

Default Value: People
Vendor Information Column: ou[*,]

Field Field properties
Appendix C ARDBC LDAP example: Accessing inetorgperson data 369

BMC Remedy Action Request System 7.6.04
370 Integration Guide

Appendix

D
 Web service examples
This section provides examples of creating and consuming web services of various
complexity.

The following topics are provided:

Example 1: Publishing a simple flat document (page 372)
Example 2: Consuming a simple flat document (page 377)
Example 3: Publishing a complex document (page 381)
Example 4: Consuming a complex document (page 394)

For more information, see Chapter 6, “Web services.”
Appendix D Web service examples 371

BMC Remedy Action Request System 7.6.04
Example 1: Publishing a simple flat document
In this example, you publish a web service that includes default operations of
Create, Get, GetList, Set, and Service for an employee record.

� To publish a simple flat document

1 Create a form that displays your employee data.

This is the base form used to create your web service (see “Forms and field
mappings for web services” on page 64). Figure D-1 shows a sample form called
Employee. All the fields are character fields.

Figure D-1: Sample form for employee record

2 On the Forms tab, right-click the form name to display its shortcut menu (see
Figure D-2).
372 Integration Guide

Example 1: Publishing a simple flat document
Figure D-2: Forms tab showing list of forms and web services selection

3 Select Create Web Service from the menu.

A new Web Service tab appears, with default settings based on your form.
Appendix D Web service examples 373

BMC Remedy Action Request System 7.6.04
Figure D-3: EmployeeWebService web service

BMC Remedy Developer Studio automatically fills in the name of the base form
(Employee). The Label and Description fields are optional. Default operations are
automatically displayed on the WSDL Operations panel.

4 Select an operation from the WSDL Operations list, and expand the corresponding
panel.

The fields on your Employee form are mapped to XML-compliant element names
in a default XML schema, as shown in Figure D-4. (You do not need to modify the
default mappings for this example.)

AR System fills
in the name of
the base form.

Default WSDL
operations are
created.

Label and
Description fields
are optional.
374 Integration Guide

Example 1: Publishing a simple flat document
Figure D-4: EmployeeWebService—Mapping tables for a Create operation

5 Close the WSDL Operations panel.

6 Set the permissions to Public.

The Permissions property is modified from the Properties tab corresponding to
EmployeeWebService. This step is important if you publish your web service over
an internet or intranet for general use.

7 Choose File > Save, and name your web service EmployeeWebService.

8 Click the WSDL Publishing Location tab (see Figure D-5 on page 376).

A sample URL for your WSDL file is displayed in the Specify mid-tier’s WSDL
handler URL field.

9 Modify the URL appropriately for your configuration:

a Replace <midtier_server> with the name of the web server where the mid tier
is running.

b Add /public after WSDL.

For example, if the mid tier server is TestServer, you would use this URL:

http://TestServer/arsys/WSDL/public/TestServer/EmployeeWebService
Appendix D Web service examples 375

BMC Remedy Action Request System 7.6.04
Figure D-5: EmployeeWebService—WSDL tab on Create Web Service window

10 Click File > Save to save your changes to EmployeeWebService.

Administrators with the appropriate SOAP protocol can now access this WSDL file
with any browser.

11 (optional) Click View to display the contents of your WSDL file.

12 (optional) If prompted, enter a user name and password and click Login.
376 Integration Guide

Example 2: Consuming a simple flat document
Example 2: Consuming a simple flat document
In this example, you access an external web service and, using a Set Fields filter
action, set the data into an AR System form. The external web service takes a stock
ticker symbol as input and returns the 20-minute delayed stock quotation for that
stock.

� To consume a simple flat document

1 In BMC Remedy Developer Studio, create a form called Stock Quote.

2 Add two fields:

A character field called Stock Ticker Symbol in which you enter the stock ticker
symbol (for example, BMC)

A decimal field called Delayed Stock Quote, in which the stock quotation is set
when information is received from the external web service

Figure D-6: Stock Quote form in BMC Remedy Developer Studio

3 In BMC Remedy Developer Studio, choose File > New > Filter.

4 Select the server on which you want to create the filter, and click Finish.

5 Right-click the Associated Forms panel, then choose Expand All Panels.

6 In the Associated Forms panel, click the Add button (see Figure D-7).

7 In the Form Selector dialog box, select the Stock Quote form and click OK.

8 From the State list, choose Enabled.

9 In the Execution Order field, enter the execution order for the filter.

10 In the Execution Options panel, select Modify.
Appendix D Web service examples 377

BMC Remedy Action Request System 7.6.04
Figure D-7: Stock Quote filter—Associated Forms and Execution Options panels

11 Right-click the If Actions panel, choose Add Action, and select Set Fields.

A new panel appears, where you configure the Set Fields action (see Figure D-8.)

12 From the Data Source list, choose WEB SERVICE.

13 From the Server Name list, select the server on which to store the web service
mappings as a server object.

14 In the WSDL File field, enter the URL for the WSDL file of the external web service.

http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl

NOTE
This WSDL reference might not work if its website is not functioning.

15 Click Reload.

16 If prompted, enter the user name and password required by the remote web server
for basic authentication.

17 From the Port drop-down menu, select the port for the web service.

18 From the Operation drop-down menu, select the getQuote operation.

The menu is automatically populated with the available operations for the web
service. This example has only one operation.
378 Integration Guide

Example 2: Consuming a simple flat document
Figure D-8: Stock Quote filter—If Actions and Set Fields panels

19 In the Input Mapping table, highlight the cell adjacent to the symbol element, as
shown in Figure D-8.

Note that the ROOT element of the XML schema is automatically mapped to the
Stock Quote form.

20 Click the ellipsis button.

21 Use the Field Selector to chose the Stock Ticker Symbol field, which you created in
step 2.

The field name appears in the Form/Field column. The symbol element (string
type) is now mapped to the Stock Ticker Symbol field (designed to contain a
string).
Appendix D Web service examples 379

BMC Remedy Action Request System 7.6.04
22 In the Output Mapping table, highlight the cell adjacent to the Result element, as
shown in Figure D-8.

23 Click the ellipsis button.

24 Use the Field Selector to chose the Delayed Stock Quote field, which you created
in step 2.

The Result element (string type) is now mapped to the Stock Quote field (designed
to contain a string).

25 Choose File > Save, and name your filter Stock Quote Filter.

26 Open BMC Remedy User.

27 Open a new Stock Quote form, and enter data in the required fields.

28 Save the Stock Quote form.

29 Search to open the form in Modify mode.

Recall that you created the Stock Quote Filter to execute on Modify (step 10).

30 Enter a symbol (for example, BMC) in the Stock Ticker Symbol field.

31 Click Save or Submit.

The quote for your stock is displayed in the Stock Ticker Symbol field (see
Figure D-9).

Figure D-9: Stock Quote form in BMC Remedy User
380 Integration Guide

Example 3: Publishing a complex document
Example 3: Publishing a complex document
In this example, you publish a web service with two operations:

CreatePurchaseOrder takes purchase order information as input and returns
the purchase order ID as output.

GetPurchaseOrder that takes the purchase order ID as input and returns
information for that purchase order.

In this example, the process for publishing a complex document is as follows:

Step 1 Create an XML schema and save it as an XSD file (page 381).

Step 2 Create forms (page 382).

Step 3 Create a web service (page 386).

Step 4 Map the CreatePurchaseOrder operation (page 387).

Step 5 Map the GetPurchaseOrder operation (page 390).

Step 6 View your WSDL file (page 392).

� To create an XML schema

1 Create an XML schema containing the elements for your purchase order.

Here is a sample XML schema:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.3 U (http://www.xmlspy.com) by
AR System -->
<xs:schema targetNamespace="http://tempuri.org" xmlns:xs="http://
www.w3.org/2001/XMLSchema" xmlns="http://tempuri.org"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="PO" type="PurchaseOrder">
<xs:annotation>

<xs:documentation>Comment describing your root element
</xs:documentation>

</xs:annotation>
</xs:element>
<xs:complexType name="PurchaseOrder">

<xs:sequence>
<xs:element name="POID" type="xs:string"/>
<xs:element name="CompanyName" type="xs:string"/>
<xs:element name="Description" type="xs:string"/>
<xs:element name="PhoneNumber" type="xs:string"/>
<xs:element ref="Items"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="LineItem">

<xs:sequence>
<xs:element name="ItemName" type="xs:string"/>
<xs:element name="Quantity" type="xs:int"/>
Appendix D Web service examples 381

BMC Remedy Action Request System 7.6.04
<xs:element name="ItemId" type="xs:string"/>
</xs:sequence>

</xs:complexType>
<xs:element name="Item" type="LineItem"/>
<xs:element name="Items">

<xs:complexType>
<xs:sequence>

<xs:element ref="Item" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

2 Name the schema PurchaseOrder.xsd.

� To create the forms

1 Create a form named Purchase Order.

This is the parent form.

2 Add the following character fields to the form:

PO ID

Company Name

Description

Phone Number

3 Provide a default value for the Submitter and Short Description fields, because
they are required fields.

Your form should be similar to the sample in Figure D-10.

Figure D-10: Purchase Order form in BMC Remedy Developer Studio

4 (optional) Hide the core fields on the form (that is, all except those you created in
step 2).

5 Choose Form > Form Properties.
382 Integration Guide

Example 3: Publishing a complex document
6 On the Indexes page, click the New button to create a new index definition.

7 Click the Add button, choose the PO ID field, then click OK.

8 In the Unique Index column, change the Unique Index value to Yes.

9 Click OK to save your index definition.

NOTE
You must define an index for the PO ID field because PO ID is the primary key in
this example. Usually, however, Request ID is the primary key. An index is
predefined for the Request ID field, by default.

10 Save the Purchase Order form.

11 Create another form named Line Items.

This is the detail form.

12 Add the following character fields to the Line Items form:

Line Item PO ID (the foreign key)

Item ID (the distinguishing key)

Item Name

13 Add an integer field named Quantity to the form.

14 Set the Data Length of the Line Item PO ID and Item ID fields to 40.

15 Provide a default value for the Submitter and Short Description fields, because
they are required fields.

Your form should be similar to the sample in Figure D-11.

Figure D-11: Line Items form in BMC Remedy Developer Studio

16 (optional) Hide the core fields on the form (that is, all except those you created in
step 12.)

17 Choose Form > Form Properties.
Appendix D Web service examples 383

BMC Remedy Action Request System 7.6.04
18 On the Indexes page, click the New button to create a new index definition.

19 Click the Add button.

20 Use the Field Selector to choose the Line Item PO ID and Item ID fields, and click
OK.

21 In the Unique Index column, change the Unique Index value to Yes.

Making the distinguishing key and the foreign key unique keeps the data
consistent, even if the data is submitted with other tools on the form.

22 Click OK to save your index definition.

23 Save the Line Items form.

NOTE
The following steps are optional. They enable you to view the line items of the
corresponding purchase order in the same form.

24 Open the Purchase Order form.

25 Right-click a blank area of the form, then choose Create a New Field from the
context menu.

26 Create a table field using the Table - List View option.

27 Select the field, then highlight the Tree/Table Property in the Properties tab.

28 Click the corresponding ellipsis button in the Value column of the Properties tab,
as shown in Figure D-13.

The Tree/Table Property dialog box opens.

29 In the Tree/Table Property dialog box, choose the Line Items form (see
Figure D-12).

30 In the Tree/Table Property dialog box, select the following fields:

Item ID

Item Name

Quantity

31 Click the right arrow button to add these fields to the list of table columns.

32 In the Qualification field, enter this qualification to make sure that PO ID from the
parent form (Purchase Order) matches Line Item PO ID from the Line Items form:

$PO ID$ = 'Line Item PO ID'

NOTE
If Request ID is your primary key, enter this qualification instead:
$Request ID$ = 'Line Item PO ID'
384 Integration Guide

Example 3: Publishing a complex document
Figure D-12: Field Properties dialog box—Tree/Table Property

33 Click OK to close the Tree/Table Property dialog box.

Your form should look similar to the sample in Figure D-13.

Figure D-13: Purchase Order form and Properties tab

34 Save and close the Purchase Order form.
Appendix D Web service examples 385

BMC Remedy Action Request System 7.6.04
� To create your web service

1 In AR System Navigator, double-click the Forms object to display a list of forms on
a tab.

2 In the Forms tab, right-click the Purchase Order form (see the example in Figure D-
2 on page 373).

3 Choose Create Web Service.

The web service appears in a new tab. AR System automatically fills in the Form
Name field.

4 Right-click the General tab and choose Expand All Panels.

5 In the XML Schema field, enter a path or browse to PurchaseOrder.xsd, which
you created at the beginning of this section.

6 Click the Reload button.

7 In the Label field, enter Purchase Order Web Service.

8 In the Description field, enter Web service to create and get a purchase
order.

9 In the WSDL Operations panel, perform the following actions:

a Right-click the Set Operation panel, and click Remove.

b Right-click the Service Operation panel, and click Remove.

c Right-click the Get Operation panel for the operation called GetList, and click
Remove.

10 Select Create.

11 In the Name field for the Create Operation, replace Create with
CreatePurchaseOrder.

12 In the Name field for the Get Operation, replace Get with GetPurchaseOrder.

13 Choose File > Save, and name your web service Purchase Order Web Service.
386 Integration Guide

Example 3: Publishing a complex document
Figure D-14: Purchase Order web service

� To map the CreatePurchaseOrder operation

1 Open the panel for the Create Operation called CreatePurchaseOrder.

2 Choose XML Schema from the Data Source Type drop-down menu, located above
the Input Map.

3 Click the Choose button, then click OK to verify that you want to proceed with
input mapping.

4 In the Choose Start Element dialog box, select PurchaseOrder and click OK.

Figure D-15: Choose start element dialog box

5 Select the ROOT element in the XML Data Type column.

Note that ROOT is already mapped to the Purchase Order form.
Appendix D Web service examples 387

BMC Remedy Action Request System 7.6.04
Figure D-16: Mapping for the CreatePurchaseOrder operation

6 Click Primary Key in the Mapping Info column.

7 Click the ellipsis button to open the Field Selector.

Figure D-17: Primary Key selection

8 Choose PO ID as your primary key, then click OK twice.

9 Map the fields from the Purchase Order form as follows, referring to Figure D-16:
.

10 Under the Items element in the XML Data Type column, select the Item element.

XML elements and complex types Form and fields Primary Key field

ROOT (PurchaseOrder) Purchase Order PO ID

POID PO ID

CompanyName Company Name

Description Description

PhoneNumber Phone Number
388 Integration Guide

Example 3: Publishing a complex document
11 In the Form/Field column, click the empty table cell adjacent to the Item element.

12 Click the ellipsis button, then choose the Line Items form and click OK.

The Item element is now mapped to the Line Items form, as shown in Figure D-16.

13 Click Distinguishing Key/Foreign Key in the Mapping Info column.

Figure D-18: Distinguishing Key and Foreign Key selection

14 Click the ellipsis button adjacent to the Distinguishing Key field.

15 Use the Field Selector to choose the Item ID field, and click OK.

NOTE
The AR System does not allow the mapping of an integer as the distinguishing key during
the consumption of a web service.

16 In the same manner, specify a Foreign Key value of Line Item PO ID.

17 Click OK to confirm your key selections.

18 Map the other fields from the Line Items form as follows, referring to Figure D-16:

19 For output mapping, choose Generated from the Data Source Type drop-down
menu.

20 Click the Auto Map button, then click OK to verify that you want to proceed with
output mapping.

The ROOT element in the XML Data Type column is mapped to the Purchase
Order form.

21 In the Mapping Info column, change the Primary Key to PO ID (see Figure D-17).

22 Verify that the Request ID element is mapped to the Request ID field.

Your output mapping table should look similar to the one in Figure D-16.

XML elements and
complex types

Form and fields Distinguishing Key field Foreign Key field

ROOT/Items/Item Line Items Item ID Line Item PO ID

ItemName Item Name

Quantity Quantity

ItemID Item ID
Appendix D Web service examples 389

BMC Remedy Action Request System 7.6.04
23 In the Properties tab, assign Public permissions for the web service.

24 Click File > Save.

� To map the GetPurchaseOrder operation

1 Open the panel for the Get Operation called GetPurchaseOrder.

2 Choose Generated from the Data Source Type drop-down menu, located above the
Input Map.

3 Click the Auto Map button.

4 Click OK to verify that you want to proceed with input mapping, then choose the
standard Get operation mapping option.

The input map should contain two XML elements, by default—ROOT and
Request_ID.

5 Click the Request_ID element, and change the name to POID.

Your input mapping table should look similar to the one in Figure D-19.

6 In the Qualification field, replace the qualification with this text:

'PO ID' = XPATH(/ROOT/POID)

TIP
You can type or paste the text, or you can use the Expression Editor to build the
qualification. To open the Expression Editor, click the ellipsis button.
390 Integration Guide

Example 3: Publishing a complex document
Figure D-19: Mapping for the GetPurchaseOrder operation

7 For output mapping, choose XML Schema from the Data Source Type drop-down
menu.

8 Click the Choose button, then click OK to verify that you want to proceed with
input mapping.

9 In the Choose Start Element dialog box, select PurchaseOrder and click OK (see
Figure D-15 on page 387).

10 Select the ROOT element in the XML Data Type column.

Note that ROOT is already mapped to the Purchase Order form.

11 Click Primary Key in the Mapping Info column.

12 Click the ellipsis button to open the Field Selector (see Figure D-17 on page 388).

13 Choose PO ID as your primary key, then click OK twice.

14 Map the fields from the Purchase Order form as follows, referring to Figure D-19:

XML elements and complex types Form and fields Primary Key field

ROOT Purchase Order PO ID

POID PO ID

CompanyName Company Name
Appendix D Web service examples 391

BMC Remedy Action Request System 7.6.04
15 Under the Items element in the XML Data Type column, select the Item element.

16 In the Form/Field column, click the empty table cell adjacent to the Item element.

17 Click the ellipsis button, then choose the Line Items form and click OK.

The Item element is now mapped to the Line Items form, as shown in Figure D-19.

18 Click Distinguishing Key/Foreign Key in the Mapping Info column (see Figure D-
18 on page 389).

19 Click the ellipsis button adjacent to the Distinguishing Key field.

20 Use the Field Selector to choose the Item ID field, and click OK.

NOTE
The AR System does not allow the mapping of an integer as the distinguishing key during
the consumption of a web service.

21 In the same manner, specify a Foreign Key value of Line Item PO ID.

22 Click OK to confirm your key selections.

23 Map the fields from the Line Items form as follows, referring to Figure D-19:

24 In the Properties tab, assign Public permissions for the web service.

25 Save the web service.

� To view the WSDL for the Purchase Order web service

1 Verify that your web service has public permissions.

2 Expand the WSDL Publishing Location panel.

A sample URL for your WSDL file is displayed in the Specify mid-tier’s WSDL
handler URL field (see Figure D-20).

3 Modify the URL appropriately for your configuration:

a Replace <midtier_server> with the name of the web server where the mid tier
is running.

b Add /public after WSDL.

Description Description

PhoneNumber Phone Number

XML elements and complex types Form and fields Primary Key field

XML elements and
complex types

Form and fields Distinguishing Key field Foreign Key field

ROOT/Items/Item Line Items Item ID PO ID

ItemName Item Name

Quantity Quantity

ItemID Item ID
392 Integration Guide

Example 3: Publishing a complex document
For example, if the mid tier server is TestServer, you would use this URL:

http://TestServer/arsys/WSDL/public/TestServer/Purchase Order Web
Service

4 Click File > Save.

5 Click View to display the content of the WSDL file.

6 If prompted, enter a user name and password and click Login.

The WSDL code is displayed, as shown in Figure D-20.

Figure D-20: WSDL file for the Purchase Order web service
Appendix D Web service examples 393

BMC Remedy Action Request System 7.6.04
Example 4: Consuming a complex document
In this example, you access the Purchase Order web service you created in
Example 3, and use the Set Fields filter action to get a purchase order and a line
item record.

NOTE
Before testing this example, verify that your web service has public permissions.

In this example, the process for consuming a complex document is as follows:

Step 1 Create the forms (see page 394).

Step 2 Create the input mappings (see page 397).

Step 3 Create the output mappings (see page 398).

Step 4 Consume the web service (see page 399).

Step 5 View and verify the web service (see page 400).

For information about setting your environment to consume a web service created
on the same AR System server, see “Managing web service performance issues” on
page 94.

� To create your forms

1 Create two forms by following step 1 through step 34 in Example 3, but name the
forms as follows:

Purchase Order Client

Line Items Client

TIP
To copy a form, open it and choose File > Save As.
394 Integration Guide

Example 4: Consuming a complex document
The Purchase Order Client form should be similar to the form in Figure D-21.

Figure D-21: Purchase Order Client form

The Line Items Client form should be similar to the form in Figure D-22.

Figure D-22: Line Items Client form

2 Choose File > New > Filter.

3 Select the server on which you want to create the filter, and click Finish.

4 Right-click the Associated Forms panel, then choose Expand All Panels.

5 In the Associated Forms panel, click the Add button (see Figure D-7).

6 In the Form Selector dialog box, select the Purchase Order Client form to use as the
base form, and click OK.

7 From the State list, choose Enabled.
Appendix D Web service examples 395

BMC Remedy Action Request System 7.6.04
8 In the Execution Order field, enter the execution order for the filter, or accept the
default value.

9 In the Execution Options panel, select Submit.

Figure D-23: Purchase Order Client filter—basic options

10 Right-click the If Actions panel, choose Add Action, and select Set Fields.

A new panel appears, where you configure the Set Fields action (see Figure D-24.)

11 From the Data Source list, choose WEB SERVICE.

12 From the Server Name list, select the server on which to store the web service
mappings as a server object.

13 In the WSDL field, enter the path or browse to your WSDL file.

In this example, your URL might look like this:

http://TestServer/arsys/WSDL/public/TestServer/Purchase Order Web
Service

You can also enter a path to a local WSDL file. For example:

C:\Temp\Purchase Order Web Service.wsdl

14 Click Reload.

15 If prompted, enter the user name and password required by the remote web server
for basic authentication.

16 From the Port drop-down menu, select the port for the web service.

17 From the Operation drop-down menu, select the getPurchaseOrder operation.

The menu is automatically populated with the available operations for the web
service.
396 Integration Guide

Example 4: Consuming a complex document
Figure D-24: Purchase Order Client filter—Set Fields action

� To create input mappings

1 In the Input Mapping table, select the ROOT element in the XML Data Type
column.

Note that ROOT is already mapped to the Purchase Order Client.

2 Click Primary Key in the Mapping Info column.

3 Click the ellipsis button to open the Field Selector (see Figure D-17 on page 388).

4 Choose PO ID as your primary key, then click OK twice.

5 Select the POID element in the XML Data Type column.

6 Click the adjacent cell in the Forms/Field column, then click the ellipsis button.

7 Choose the PO ID field and click OK.

Your input mapping should look similar to the one in Figure D-24.

8 Choose File > Save, and name your filter Purchase Order Client Filter.
Appendix D Web service examples 397

BMC Remedy Action Request System 7.6.04
� To create output mappings

1 Select the ROOT element in the XML Data Type column.

Note that ROOT is already mapped to the Purchase Order Client form.

2 Click Primary Key in the Mapping Info column.

3 Click the ellipsis button to open the Field Selector (see Figure D-17 on page 388).

4 Choose PO ID as your primary key, then click OK twice.

5 Map the fields from the Purchase Order Client form as follows, referring to
Figure D-24:

6 Under the Items element in the XML Data Type column, select the Item element.

7 In the Form/Field column, click the empty table cell adjacent to the Item element.

8 Click the ellipsis button, then choose the Line Items Client form and click OK.

The Item element is now mapped to the Line Items Client form, as shown in
Figure D-24.

9 Click Distinguishing Key/Foreign Key in the Mapping Info column (see Figure D-
18 on page 389).

10 Click the ellipsis button adjacent to the Distinguishing Key field.

11 Use the Field Selector to choose the Item ID field, and click OK.

NOTE
The AR System does not allow the mapping of an integer as the distinguishing key during
the consumption of a web service.

12 In the same manner, specify a Foreign Key value of Line Item PO ID.

13 Click OK to confirm your key selections.

14 Map the fields from the Line Items form as follows, referring to Figure D-19:

XML elements and complex types Form and fields Primary Key field

ROOT Purchase Order Client PO ID

POID PO ID

CompanyName Company Name

Description Description

PhoneNumber Phone Number

XML elements and
complex types

Form and fields Distinguishing Key field Foreign Key field

ROOT/Items/Item Line Items Client Item ID PO ID

ItemName Item Name

Quantity Quantity

ItemID Item ID
398 Integration Guide

Example 4: Consuming a complex document
Your output mapping should look similar to the one in Figure D-24.

15 Save your changes to the filter.

� To consume the web service in an AR system client

1 Log in to BMC Remedy User.

2 Open a new Purchase Order form.

To create the Purchase Order form, see “Example 3: Publishing a complex
document” on page 381.

3 Enter data in the required fields.

4 In the PO ID field, enter 111.

5 Save the record.

6 Open a new Line Items form.

To create the Line Items form, see “Example 3: Publishing a complex document”
on page 381.

7 Enter data in the required fields.

8 In the Line Item PO ID field, enter 111.

9 Save the form.

10 Open a new Purchase Order Client form.

11 In the PO ID field, enter 111.

12 Save the form.

Recall that the Purchase Order Client filter executes on Submit.

13 In the Purchase Order Client form, open the request you created in step 12.

If the GetPurchaseOrder web service was successful, the request is submitted and
contains the same values as the record in the Purchase Order form where you set
PO ID to 111.

The values corresponding to the request you created for the Line Items form
(step 6–step 9) also appear in the Line Items Client form.
Appendix D Web service examples 399

BMC Remedy Action Request System 7.6.04
� To view and verify your web service

1 Stop the AR System server.

2 Open the armonitor.cfg file.

The default location of this file is C:\Program Files\AR System\Conf.

3 Locate the following line (or a similar one), and comment it out:

"C:\Program Files\AR System\arplugin.exe" -i "C:\Program Files\
AR System\" -m

4 Copy the line, and run it from the command line.

5 Verify that the following message is displayed:

Loaded Web Services plugin properly
400 Integration Guide

Appendix

E
 Adding a certificate to a
certificate database
This appendix explains how to add a certificate to a certificate database (cert8.db
file).

The following topics are provided:

About certificate databases (page 402)
Creating a certificate database (page 402)
Adding a certificate to a certificate database (page 403)
Listing certificates in a certificate database (page 404)

NOTE
AR System release 7.5.00 and higher, use Mozilla Network Security Services (NSS)
3.11.4, which also supports cert7.db files and automatically converts a cert7.db
file to a cert8.db file. If you have a cert7.db certificate database, you do not need
to upgrade to cert8.db.
Appendix E Adding a certificate to a certificate database 401

BMC Remedy Action Request System 7.6.04
About certificate databases
AR System uses the Mozilla C-LDAP libraries to support LDAP plug-ins and
remote authentication. These libraries enable LDAP plug-ins to use NSS to
establish Secure Sockets Layer (SSL) connections with LDAP servers. To do this,
NSS requires the LDAP server’s certification authority (CA) certificate to be in a
certificate database (cert8.db file).

NOTE
This information is provided as a convenience only. BMC assumes that customers
have a working certificate database.

When you configure LDAP plug-ins that use SSL connections, you must specify
the directory that contains the certificate database. See these procedures:

“To configure the ARDBC LDAP plug-in” on page 137

“To configure settings for the AREA LDAP plug-in” on page 146

The sections in this appendix explain how to

Create a certificate database (page 402)

Add a certificate to a certificate database (page 403)

List the certificates in a certificate database (page 404)

NOTE
To perform the procedures in this appendix, use the command-line certutil
utility, which is included in the Mozilla NSS security tools set (see
http://www.mozilla.org/projects/security/pki/nss/tools/).

Creating a certificate database
If you do not have a certificate database (cert8.db file), create one on the
AR System server by using the certutil utility as follows.

� To create a certificate database

At the command line, enter this command:

certutil -N -d certDir

In this command, certDir is the directory in which the certificate database is
created.
402 Integration Guide

http://www.mozilla.org/projects/security/pki/nss/tools/

Adding a certificate to a certificate database
Adding a certificate to a certificate database
Add a certificate to a certificate database (cert8.db file) by using the certutil
utility as follows.

NOTE
The certificate that you want to add must exist on your LDAP server. For
information about creating certificates and adding them to your LDAP server, see
your LDAP server documentation.

� To add a certificate to a certificate database

At the command line, enter this command:

certutil -A -n nickname -t "trustedAttributes" -d certDir -i certName.cer

In this command:

-A adds an existing certificate to a certificate database.

The certificate database should exist. If it does not, this option creates one.

-n nickname specifies the nickname of the certificate.

If the nickname contains spaces, enclose it in double quotation marks.

-t "trustedAttributes" specifies the trusted attributes to apply to a
certificate when adding it to a certificate database.

Each certificate includes three trust categories: SSL, email, and object signing.
For each category, specify zero or more of these trust attribute codes:

Use commas to separate each category. Enclose the entire set of attributes in
double quotation marks. For example, this is a standard trust attribute
configuration: "PTCu,P,P".

-d certDir specifies the directory that contains the cert8.db and key3.db
files (these files must reside in the same directory).

The specified directory must exist. If it does not, the command fails.

-i certName.cer specifies the file name of the certificate to add to the
certificate database.

Code Description

p The client or server is a valid peer.

P The client or server is a trusted peer (implies p).

c The certificate was issued by a valid CA.

T This CA is trusted to issue client certificates (implies c).

C (SSL only) This CA is trusted to issue server certificates (implies c).

u This certificate can be used for authentication or signing.

w Send a warning. This attribute is used with another attribute to include a
warning when the certificate is used in the context of that attribute.
Appendix E Adding a certificate to a certificate database 403

BMC Remedy Action Request System 7.6.04
Listing certificates in a certificate database
List the certificates in a certificate database (cert8.db file) by using the certutil
utility as follows.

� To list all the certificates in a cert8.db file in a specified directory

At the command line, enter this command:

certutil -L -d certDir

where certDir specifies the directory that contains the cert8.db file.

Example
C:\conf>certutil -L -d cert
QAtest CT,P,P

� To list information about a specified certificate

At the command line, enter this command:

certutil -L -d certDir -n nickname

where certDir specifies the directory that contains the certificate database.

nickname is the nickname of the certificate whose information you want to list.

certDir is the directory in which the certificate database that contains the
certificate resides.

Example
C:\conf>certutil -L -d cert -n QAtest
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

0e:71:a2:de:d6:12:33:94:49:e9:2e:9d:3c:89:9b:54
Signature Algorithm: PKCS #1 SHA-1 With RSA Encryption
Issuer: "CN=bmc,DC=bmc,DC=com"
Validity:

Not Before: Wed Oct 15 10:08:36 2008
Not After : Tue Oct 15 10:17:24 2013

Subject: "CN=bmc,DC=bmc,DC=com"
Subject Public Key Info:

Public Key Algorithm: PKCS #1 RSA Encryption
RSA Public Key:

Modulus:
94:10:62:3c:b0:c6:65:99:b8:b3:ed:60:38:4c:1a:48:
40:3d:19:47:b5:0e:11:ac:57:f7:a9:c4:1b:48:4e:07

Exponent: 65537 (0x10001)
Signed Extensions:

Name: Microsoft Enrollment Cert Type Extension
Data: "CA"
404 Integration Guide

Listing certificates in a certificate database
Name: Certificate Key Usage
Usages: Digital Signature

Certificate Signing
CRL Signing

Name: Certificate Basic Constraints
Critical: True
Data: Is a CA with no maximum path length.

Name: Certificate Subject Key ID
Data:

ef:24:ae:81:c9:95:f6:e0:97:8c:38:f0:d4:66:8e:75:
78:89:fb:18

Name: CRL Distribution Points
URI: "ldap:///CN=bmc,CN=QAtest,CN=CDP,CN=Public%20Key

%20Services,CN=Services,CN=Configuration,DC=bmc,DC=com?
certificateRevocationList?base?objectClass=cRLDistribution
Point"

Name: Microsoft CertServ CA version
Data: 0 (0x0)

Signature Algorithm: PKCS #1 SHA-1 With RSA Encryption
Signature:

03:21:71:3e:00:0b:37:10:8f:27:df:d9:92:d7:ef:6f:
7c:af:db:c5:f5:4f:54:e3:9b:00:46:21:89:25:c8:2f

Fingerprint (MD5):
26:4E:87:0E:AE:8C:23:67:11:AF:90:75:C8:C6:8F:A7

Fingerprint (SHA1):
4C:D5:BF:57:78:DF:91:F8:23:BC:9C:95:A8:39:74:21:6A:50:D8:A7

Certificate Trust Flags:
SSL Flags:

Valid CA
Trusted CA
Trusted Client CA

Email Flags:
Valid Peer
Trusted

Object Signing Flags:
Valid Peer
Trusted
Appendix E Adding a certificate to a certificate database 405

BMC Remedy Action Request System 7.6.04
406 Integration Guide

Appendix

F
 AR System change ID utility
Beginning with version 7.6.04, AR System supports the AR System change ID
utility, which enables you to change the IDs of certain objects. This section explains
the purpose of the utility and describes its usage.

The following topics are provided:

Introduction to archgid (page 408)
Syntax of archgid (page 412)
Using archgid in prompt-driven mode (page 415)
Using archgid in bulk mode (page 417)
Appendix F AR System change ID utility 407

BMC Remedy Action Request System 7.6.04
Introduction to archgid
The AR System change ID utility (commonly called archgid) enables you to
change the ID of a form, field, view, or group. It serves the following purposes:To
synchronize IDs for the same form across multiple servers

To control the ID if needed for direct SQL access.

To change IDs of objects that are within BMC reserved ID ranges before
converting your pre-7.6.04 extensions and customizations to overlays and
custom objects

In most cases, you would need to change view IDs and field IDs. See the
Preserving Customizations with Overlays document, “BMC reserved ID ranges”
and “Comparing objects, identifying nonpermitted modifications, and fixing
them.”

File name, version, and location

The utility file is located at ARSystemServerInstallDir/ARSystem, and is named
as follows:

Windows—archgid.exe

UNIX—archgid

Compatibility

The archgid utility performs direct SQL database updates at a fundamental level
with the data dictionary. Before performing any updates the utility checks whether
the AR System database version is compatible. If the database version is
incompatible, it displays an error message.

The archgid utility is compatible with the following AR System databases:

AR System server 5.x releases—5.0, 5.0.xx, 5.1, and 5.1.xx

AR System server 6.x releases—6.0, 6.0.01, and 6.3

AR System server 7.x releases—7.0, 7.0.01, 7.1, 7.5, 7.6.02, 7.6.03, and 7.6.04

Execution modes

You can execute the archgid utility in any the following modes or a combination
of these:

Prompt-driven mode—To execute the utility in this mode, enter archgid at the
command line and press Enter. The utility displays the available options
sequentially, and prompts you for input until it has gathered all the required
information.

TIP
Do not use this mode when fixing numerous non-permitted customizations on
field IDs and view IDs.
408 Integration Guide

Introduction to archgid
Command-line mode—To execute the utility in this mode, enter archgid
followed by the required parameters and their values at the command line and
press Enter. If you forget to provide a required parameter or its value, the utility
prompts you for that input.

Updates to database, references, or associated objects

For each type of object ID that the archgid utility changes, it performs the
following updates to the database or the AR System object definitions:

Object type Corresponding updates

Form The following items are updated:
ID in all data dictionary tables, including those in which the form is used in join forms and
object relationship references
Name of the data tables for the form
All database views are rebuilt on the new table names.

Note: When changing form ID references in workflow, the workflow object is considered
connected only to the primary form referenced in shared workflow definitions. The utility
changes only the primary form’s ID, because that is considered to be the template or master
form for the shared definition.

View The following items are updated:
ID in all data dictionary tables
ID in all HTML/JSP web page definitions
Appendix F AR System change ID utility 409

BMC Remedy Action Request System 7.6.04
Field The name of the data columns for the field (if there is a database table or view) is updated,
and all database views are rebuilt on the new column names.
The following instances of the old ID are updated:

ID in all data dictionary tables, including those in which the field is referenced in join
forms, table or column references, query style menus, page fields, and object relationship
references
ID in deployable application data form qualifications
ID in linked Archive forms and the qualification for those forms
ID in all HTML and JSP web page definitions
ID in all active link, filter, and escalation definitions, including references in special Run
Process commands
ID in the AR System Message Catalog form if there is localized Help Text
ID in Distributed Mapping definitions, including DSO qualification, mapping, and return
mapping
ID in flashboards variable definitions

The following references to the old ID are updated:
References in menus to the current form are noted as warnings of possible issues but are
not changed, because the reference may or may not be to the field because a menu
definition is not associated with a form.
References in macros embedded in active links are noted as warnings of possible issues
but are not changed, because it is difficult to determine which form the ID is associated
with.

The following items are not updated:
Some references in web services as mentioned earlier
References to the ID as data in a qualification (not a common occurrence)
References to the ID stored as data in any form, except as mentioned earlier
These might include subsystems in applications that store qualifications or similar data
that can contain references to field IDs. For example, BMC Remedy Approval Server,
BMC Remedy Assignment Engine, AR System reports, BMC Service Level Agreement,
and Crisis Response .

Note: (Oracle only) Due to limitations in the Oracle 9i Release 2 and earlier databases, data for
an Attachment field cannot be preserved when changing its ID. To preserve the attachment
data, export the entry ID and attachment to a file, execute archgid, and reimport the data
to the new ID by using the import-in-place option.

IMPORTANT: Menus reference fields by using field IDs, not form IDs. Therefore the archgid
utility does not know whether to update those references. You must check the updated
form definition and if required, change the reference manually.

Object type Corresponding updates
410 Integration Guide

Introduction to archgid
WARNING
 During execution, the utility signals the AR System server to reset the cache so

that it refers to the recently updated database structure and data definitions. If you
access the system during this time, you might receive inconsistent responses. You
should also restart AR System clients so that they refer to these changes.

 If you execute this utility on a production server, the performance might be
impacted. Depending on the operation requested, the impact could be severe. The
changes being made to the data dictionary and database structures could lead to
runtime errors. Users who access AR System while the server is being restarted to
reflect the recent changes may receive inconsistent responses.

 When identifying and updating field ID references, the utility does not consider
the server name. If the form name matches, it is assumed to be the correct form
regardless of the server on which it is located. If you have cross-server references
and different forms with the same ID exist across different servers, this utility
might update the wrong IDs and references.

 For Web Services or Filter Set Fields that reference Web Services, the field ID
change will work only for simple web services documents. If you have a complex
web service document, changing the ID will not work correctly.

 In general, after the change, the system will be up and fully functional with all
references to the ID updated and ready to go. However, there may be situations
where the ID is used in a way that we cannot correct. These cases are unusual, but
they can occur. There is the possibility that some final, manual cleanup is required.

Group The permission definitions of all workflow objects that reference this group are updated.
The following instances of the old ID are updated:

ID of the group in the Group form
ID in the Computed Group Definition field of the Group form
ID in the Group List field of the User form
ID in the Computed Group List field of the User form
ID in the mapped group fields of the Roles (role mapping) form

The references in active links and filters that use the special Run Process command
Application-Confirm-Group are updated:

ID in Flashboards Data Source definitions
(optional) ID in field 112 in any form that contains field 112
(optional) ID in any of the additional dynamic group fields

The following items are not updated:
Any references to the ID as data in a qualification statement that is used to search a field
for a specific group ID
Role IDs

Object type Corresponding updates
Appendix F AR System change ID utility 411

BMC Remedy Action Request System 7.6.04
Syntax of archgid
This section describes the syntax of the archgid command, and uses the following
conventions:

Required parameters and their values are not enclosed in brackets.

Optional parameters and their values are enclosed in square brackets.

Braces indicate that you must specify only one of the enclosed paramaters or
values at a time.

The syntax of archgid is as follows:

archgid -c commandCode [-i newID] [-q] [-o]
[{-s formName} |
{-s formName -f {fieldName | fieldID}} |
{-s formName -v {viewName | viewID}} |
{-g {groupName | groupID} [-y]}]
[{-F count~oldID~newID~formName~ | -F fileContainingIDsToChange}]
-u adminUser -p adminPassword [-a adminAuthenticationString]
-x serverName [-t TCPPort] [-r RPCNum]
412 Integration Guide

Syntax of archgid
Table F-1 lists the parameters of the archgid utility and the data types of the
corresponding input values, and describes their usage.

Table F-1: archgid parameters (Sheet 1 of 3)

Parameter Value type Description

c Integer Command code—a number that indicates the type of object for which you want to
change the ID. It also indicates the type of parameter-value pair that

1—Form
2—Field
3—View
4—Group

Additionally, use the following command codes to update only field IDs or view IDs
in bulk mode:

10002—To change the specified field IDs (useful when changing a few field IDs).
Specify multiple triplets of form, old field ID, and new field ID, separated by spaces
and tilde characters (~) as follows:

count~oldID~newID~formName
The ~oldID~newID~formName string is repeated for every form, for example:
oldID~newID~formName~

archgid -c 10002 2~536871168~303549600~EMP:Contact Info
~536870913~303549300~EMP:Work Record -u Admin -p “”
-x EmpMngtAppSvr

10003—To change field IDs listed in a file (useful when changing numerous field
IDs). Specify the file name that contains triplets of form, old field ID, and new field
ID, as follows:

archgid -c 10003 -F fileName -u Admin -p “”
-x EmpMngtAppSvr

See description of the -F parameter in this table below.
10012—To change the specified view IDs (useful when changing a few view IDs).
The input format is the same as that for field IDs.
10013—To change view IDs listed in a file (useful when changing numerous view
IDs). The file format is the same as that for field IDs.

Note: If you use a bulk mode command code (10002, 10003, 10012, 10013), the -s, -f,
and -n parameters are ignored. If the utility encounters a problem (like an invalid
form name or a nonexistent object), it issues a warning, skips the corresponding
object, and continues processing.

i Integer New ID that you want to assign to the specified object.

q None Indicates whether to display the objects and the related database structures being
processed by the utility:

(Default) In the absence of this parameter, the utility displays processing
information on the screen. To record this information, redirect this output to a file.
To execute the utility in Silent mode, specify this parameter. No processing is
displayed or written to a log.

o None Indicates whether to display the confirmation prompt before running the utility:
(Default) In the absence of this parameter, the utility displays a confirmation
prompt before performing the updates.
To skip the confirmation prompt, specify this parameter.
Appendix F AR System change ID utility 413

BMC Remedy Action Request System 7.6.04
s Stringa Name of the form whose ID you want to change, or whose field ID or view ID you
want to change.

f Integer Name or ID of the field whose ID you want to change.

v Integer Name or ID of the view whose ID you want to change.

g Integer Name or ID of the group whose ID you want to change.

S String (Optional) One or more field IDs separated by spaces, tabs, colons, semicolons,
forward slash characters, or backslash characters that uniquely identify a form. The
IDs must identify a single form. If multiple forms match, the utility returns an error
and displays the matching forms.

Note: This parameter is ignored if you specify the -s parameter.

y None Flag used when changing a group ID to indicate whether the utility should update
related data fields.

(Default) In the absence of this parameter, the utility does update the related data
fields.
To update the group ID in all row-level security data fields of all forms with the
new ID, specify this parameter.

F String Name of the file that contains data for changing field IDs and view IDs.
The data is in the form of triplets of old ID, new ID, and form name. The IDs and form
names are separated by spaces or tabs, and the triplets are separated by new line
characters. For example:

536871168 303549600 EMP:Contact Info
536870913 303549300 EMP:Work Record
536870913 303549200 EMP:Insurance Info
536870915 303548700 EMP:DataLoadConsole

Note: This option should be used in conjunction with command codes 10002, 10003,
10012, and 10013.

Note: If you use this parameter to specify multiple objects at the command line or in a
file, the utility updates all of their IDs in a single run.

Note: If you use this parameter, the utility ignores the -s, -f, and -n parameters.

u String Name of the administrator user who executes the utility.

p String Password of the specified administrator user.

Z None Indicates that the archgid utility should not use the special system call.
This system call is used to mask the password, which in turn imposes the following
restrictions on the utility:

It only accepts passwords up to eight characters.
It does not allow you to redirect input from a file.

To overcome these restrictions, you can specify the -Z parameter. This prevents the
use of the special system call.

Note: If you specify this parameter, the password value that you enter is not masked.

Use this parameter only if your password is longer than eight characters or if you
want to run some reports with the redirected input .

Table F-1: archgid parameters (Sheet 2 of 3)

Parameter Value type Description
414 Integration Guide

Using archgid in prompt-driven mode
Examples The following examples depict how to use the archgid utility to change IDs of
various objects:

Changing form ID

archgid -c 1 -i 5626368972 -s “EMP:Contact Info” -u Admin -p “”
-x EmpDataAppSvr -t 9999

Changing view ID

archgid -c 3 -i 5402 -s “EMP:Contact Info” -v “Employee View”
-u Admin -p “” -x EmpDataAppSvr

Changing field ID

archgid -c 2 -i 8282564391 -s “EMP:Contact Info” -f EmpName
-u Admin -p “” -x EmpDataAppSvr -t 9999 -r 16002

Using archgid in prompt-driven mode
In the prompt-driven mode, the archgid utility allows you to enter values for all
the required parameters in a sequence. It displays the list of available input options
on the screen and prompts you to specify a choice.

NOTE
When the list input options is significantly large, you might not be able to scroll up
and view all the items.

The utility only prompts you to provide input for required parameters. To use the
following optional parameters, you must specify them at the command line before
pressing Enter:

-q

-o

a String (optional) Authentication string for the specified administrator user.
For Windows, where the NT domain is required for login, this is the domain name.

Note: If omitted from the command line, you are prompted to provide this value only
if the user name is required.

x String Name of the AR System server on which the object exists.

t Integer TCP port that the AR System server uses for communication.
This parameter is optional if the AR System server is registered with the portmapper.

Note: If omitted from the command line, you are prompted to provide this value only
if the server name is required.

r Integer (optional) RPC number of the AR System server.
a. If any parameter values of the String type contain spaces, enclose them in double quotation marks (for
example, “EMP:Contact Info Form”).

Table F-1: archgid parameters (Sheet 3 of 3)

Parameter Value type Description
Appendix F AR System change ID utility 415

BMC Remedy Action Request System 7.6.04
-y

-Z

See “Syntax of archgid” on page 412.

� To execute archgid in prompt-driven mode

1 Back up your database.

The utility makes fundamental changes to the AR System database structure and
data definitions. If you encounter any problems during the execution of archgid,
you might need to restore the database to its earlier working condition.

2 At the command prompt, navigate to the folder where the archgid utility is
located, type archgid and press Enter.

3 The utility prompts you sequentially for the user name, password, and
authentication string.

The user must be an AR System administator user.

4 By default, the utility displays a list of servers that it retrieves from the /etc/ar
file (UNIX) or the registry key HKEY_LOCAL_MACHINE\SOFTWARE\ARSystem\
ARServer\CurrentVersion\ServerList (Windows).

If multiple servers are listed in the file or the registry key, the utility displays a
numbered list of their names, and prompts you for a choice as follows:

1-serverName1 2-serverName2 3-serverName3 4-serverName4
Enter id of server:

Enter the number that corresponds to the server on which you want to change
object IDs. You can only specify one server—the utility only executes on one
server at a time.

If only one server is listed in the file or the registry key, the utility selects that
server and displays a message as follows:

Connecting to only server identified -- serverName

To override this list of servers, specify the -x parameter followed by the
appropriate server name.

5 If the utility prompted for a server name and you provided a valid one, it prompts
for the TCP port to be used.

If required, specify the TCP port number. Otherwise press Enter to proceed.

If you specified the -x parameter and the server name as its value and if a TCP
port is required, you must use the -t parameter to specify the TCP port value.
The utility does not separately prompt for the TCP port.

6 The utility displays a numbered list of object types (whose ID you can change), and
prompts you for a choice as follows:

Type of ID to change (1 - form, 2 - field, 3 - VUI, 4 - group):

Specify the number that corresponds to the object type for which you want to
change the ID.
416 Integration Guide

Using archgid in bulk mode
If you specify 1 (form), the utility displays a numbered list of all the forms on a
server and prompts you to choose one.

If you specify 2 (field), the utility displays a numbered list of all the forms on a
server, and prompts you to specify the one that contains the field whose ID you
want to change. After you specify the form, it displays a numbered list of all the
fields on that form and prompts you to choose one.

If you specify 3 (view), the utility displays a numbered list of all the forms on a
server, and prompts you to specify the one that contains the view whose ID you
want to change. After you specify the form, it displays a numbered list of all the
views on that form and prompts you to choose one.

If you specify 4 (group), the utility displays a numbered list of all the groups on
a server and prompts you to choose one. After you specify the group, it prompts
you to choose whether to update entries that have row-level security fields. If
you specify Y, the utility also updates the related data in the database.

7 After you specify the object type, the utility prompts you for the new ID.

If the new ID is not unique, the utility reports that it conflicts with an existing ID
and exits.

If the new ID is unique, the utility accepts the input and proceeds further.

8 If you did not specify the -o paramater, the utility displays the choices you
specified so far and prompts you for confirmation.

a Verify whether the displayed information is accurate.

b Confirm whether the utility should continue with the processing or not.

If you specify Y, the utility performs the necessary updates.

If you specify N, the operation is cancelled and no updates are made.

If you did not specify the -q paramater, information about the operations
performed and the tables updated is written to the log file.

Using archgid in bulk mode
In bulk mode, the archgid utility updates the IDs of all the specified objects
together in a single run. It consolidates performance and network-intensive
updates (like those for active links, filters, and escalations) into a single batch. It
retrieves the required definitions from the server, performs all updates for all
forms, and returns the updated data in a single pass. To further speed processing,
the utility updates the data dictionary for multiple items without resynchronizing
the running cache.

� To execute archgid in bulk mode

1 Back up your database.
Appendix F AR System change ID utility 417

BMC Remedy Action Request System 7.6.04
The utility makes fundamental changes to the AR System database structure and
data definitions. If you encounter any problems during the execution of archgid,
you might need to restore the database to its earlier working condition.

2 At the command prompt, navigate to the folder where the archgid utility is
located.

3 Type archgid -c commandCode.

Only the following command codes indicate bulk mode:

10002

10012

10003

10013

TIP
You cannot use these command codes in the prompt-driven mode. You can
provide the arguments associated with these codes only in the command-line
mode.

Also specify all the optional parameters of your choice and press Enter.

NOTE
When using these codes, if you do not specify the required parameters (for example,
server and user information), the utility prompts you for their values.
418 Integration Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Index
A
access control, AR System 33
active link actions

DDE 287, 291, 293
OLE Automation 279, 280

active links, execution order 89
AIE. See BMC Atrium Integration Engine
aliases, plug-in 119
Analyzer

custom rules 218
Apache AXIS, WSDL file 66
API

BMC Remedy Developer Studio 220
applications

licensing 323
overview of licensing 325

AR System
access control 33
active links, described 32
API, understanding 43
architecture, described 24
architecture, terminology 22
C API

clients 45
program structure 44
using for integration 46

clients
communications with server 30
described 26

communications
between clients and server 30
with database servers 30

components 32
data, accessing externally 198
database server, described 29
escalations, described 32
external processes 260
filters, described 32
forms, described 32
Java API

cloning objects 53

AR System (continued)
Java API (continued)

exception handling 53
installed files 50
overview 50
program model 52

menus, described 32
ODBC 202
plug-ins 106
security 33
server, communications with clients 30
server, described 28
XML data 235
XML objects 234
XML, using with AR System API 235

AR System Database Connectivity. See ARDBC
AR System External Authentication. See AREA
AR System filter. See ARF
architecture

AR System, described 24
AR System, terminology 22

ARDBC LDAP
Configuration form 137
example

attaching fields to a vendor form 365
creating a vendor form 364
defining a filter 367
generating a DN 367

ARDBC LDAP plug-in. See LDAP
ARDBC plug-ins

about 127
calling AR System API 129
creating vendor forms for 130
functions 128

AREA
authenticating unregistered users 155
authentication chaining mode, and 156, 157
configuring 155
cross referencing blank passwords 156
hub, setting up 164
overview 154
plug-ins
Index 419

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
AREA (continued)
plug-ins (continued)

about 124
functions 126
sample implementations 127

when to use 155
ARF plug-ins

about 132
functions 133

armonitor.conf (armonitor.cfg) file, SNMP and 318
arplugin server 120
arsnmp file 312
arsystem shell script 318, 319
attributes

missing XML 354
object in directory services 143
trust 403

authentication chaining mode
effect on authentication processing 157
specifying 156

authentication processing
authenticate unregistered users option 155
authentication chaining mode, specifying 156
configuring 155
cross reference blank passwords option 156

automation servers (OLE) 281

B
basic web services 72
Bind User 147
BMC Atrium Integration Engine 221
BMC Remedy Data Import

commands and options 245
examples 256
without mapping 255

BMC Remedy Developer Studio
custom Analyzer rules 218
custom context menu items for object lists 218
custom context menu items for servers 218
custom server object types 217
customizing 215
described 26
Eclipse plug-ins 216
exporting definitions 235
exporting objects (CLI) 239
extending 215
extension points 216, 219
importing definitions 235
importing objects (CLI) 239
Java API 220
plug-in directory 220

BMC Remedy Developer Studio (continued)
plug-in prerequisites 219
plug-ins 216
project dependencies 219

BMC Remedy Mid Tier, described 28
BMC Remedy SNMP Agent. See SNMP
BMC Remedy User

Crystal Reports 205
described 26
macros, third-party applications 296
ODBC driver installed 202
path and DDE server name 296

BMC Software, contacting 2

C
C API

clients 45
overview 42
program structure 44
understanding 43
using for integration 46

cert7.db file 401
cert8.db file 401, 402
certificate databases

about 402
adding certificates to 403
cert7.db and cert8.db files 401, 402
configuring

ARDBC LDAP plug-ins 138
AREA LDAP plug-ins 147

creating 402
listing certificates 404
trust attributes 403

certificates
adding to certificate databases 403
listing in certificate databases 404
viewing information about 404

certutil utility 402
choice element, web services 103
com.bmc.arsys.studio.analyzer.core 219
com.bmc.arsys.studio.analyzer.core.analyzerRules 2

20
com.bmc.arsys.studio.api 219
com.bmc.arsys.studio.commonui 219
com.bmc.arsys.studio.commonui.genericaction 220
com.bmc.arsys.studio.commonui.typeaction 220
com.bmc.arsys.studio.commonui.typeinformation 2

20
com.bmc.arsys.studio.model 219, 220
com.bmc.arsys.studio.model.modelprovider 219
com.bmc.arsys.studio.model.modeltype 219
420 Integration Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
com.bmc.arsys.studio.ui 219
command, DDE 292
command-line utilities. See utilities
complex documents

filter flow 345
hierarchical, web services 342
publishing (web services) 381, 394

configuration files
arsnmpd 312
snmpd 317

configuring
applications for licensing 326
AR System with internet access through proxy

server 67
Crystal Reports 205
LDAP plug-in 137
SNMP 311
traps for SNMP 316

consuming
complex documents, web services 394
simple flat documents, web services 377

create operation type (web services) 332
creating

objects (LDAP) 142
plug-ins 110
vendor forms 140
vendor forms for ARDBC plug-ins 130
web services 61, 72

Crystal Reports
date/time strings 210
join forms 210
limitations 210
login, AR System 205
report fields in 208
setting up 205
sorting in lists 210
using 205

customer support 3
customizing

BMC Remedy Developer Studio 215

D
data

importing 245
organizing, in directory services 140
types, web services 360

data visualization field
creating 174
finding examples 175
Java classes 171
native libraries 172

data visualization field (continued)
overview 168
registering 178
right-to-left format 182
services and BMC Remedy Mid Tier 168
services and clients 170
storing shared library files 172

databases
certificate 402

DDE
action 291
active link values, setting 293
active links 287
BMC Remedy User macros 296
DoExecMacro topic 297
examples 297, 300, 303
executing macros 287
fields, setting values 293
item name 286
keyword 293
macros, samples 300
Microsoft Excel integration 300–303
Microsoft Word integration 303–305
overview 286
request operation result syntax 293
RunMacro function 297
server name for BMC Remedy User 296
service name 286
time-out settings 290
topic name 286
win.ini configuration 296

DefinitionExport options 236
DefinitionImport options 236
dependencies, BMC Remedy Developer Studio

project 219
deployable applications

configuring to license 326
fixed licenses 324
floating licenses 324
license options 324
licenses on server, applying 327
licenses to license pools, applying 329
licenses to users, applying 328
licensing (overview) 323
licensing of forms not reversible 326
read licenses 324

Developer Studio. See BMC Remedy Developer
Studio

directives, SNMP
community-based 314
user-based 314

directory services
Index 421

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
directory services (continued)
defined 140
distinguished name attribute 141
mapping data 140
object attributes in 143
objects in 140
organizing data 140

Distinguished Name
AREA LDAP configuration 147
defined 141
defining filters for 367
described 143

documentation, AR System 13
documents

AR System 303
complex hierarchical, web services 342
complex, filter flow 345
simple, web services 340
web services and style 64

DoExecMacro DDE topic 297
dynamic data exchange. See DDE

E
Eclipse plug-ins 216
escalations, execution order 89
examples

BMC Remedy Data Import 256
DDE

integration with MS Excel 300
integration with MS Word 303
program and buffer 297
requests, assigning values from 293

export 239
import 239
OLE automation active link action 283
runmacro 242
web services

complex document, consuming 394
complex document, publishing 381
simple flat document, consuming 377
simple flat document, creating 372

execution order, active links and filters 89
export

command-line options 236
examples 239
objects (CLI) 239

extending
BMC Remedy Developer Studio 215

extension points, BMC Remedy Developer
Studio 216, 219

extensions, BMC Remedy Developer Studio 216

external processes, running from AR System 260

F
fields

See also individual database by name
database name, identifying 208
inetorgperson form, summary 368
modifying in view and vendor forms 194
values, setting with DDE request results 293

filters
Distinguished Name, defining for 367
execution order 89
flow for complex documents 345

fixed licenses, deployable applications 324
flat mapping, XML 357
floating licenses, deployable applications 324
forms

ARDBC LDAP Configuration 137
ARDBC plug-in vendor 130
directory services, building 140
licensing in deployable application not

reversible 326
mapping to collection of objects (LDAP) 140
vendor, creating 140

functions
ARDBC plug-in 128
AREA plug-in 126
ARF plug-in 133

G
get operation type (web services) 333
get operation type, complex documents 345
global information, protecting plug-in 111
guidelines, import and export utilities 236

H
HARDWARE keyword 280, 291
holiday time. See business time
https, accessing WSDL or web services over 68

I
import

command-line options 236
data 245
examples 239
external XML schema 358
objects (CLI) 239
422 Integration Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
import (continued)
with mapping 255

importing
multithreaded environments 253

inetorgperson
summary of fields in example 368
vendor form, example 364

input values, plug-in 111
installing plug-in components 108
integration

areas for 18
asynchronous 18
at the AR System client 36
at the AR System server 36
at the database 36
benefits 18
C API, overview 42
defined 17
methods 38
Microsoft Excel with AR System 300
Microsoft Word with AR System 303
points, choosing 38
real-time 18
with AR System 19

integration point
AR System client 36
AR System server 36
C API 42
choosing 38
database 36
multiplatform issues 37

integration system vendors (ISVs), licensing
applications 323

internet access through proxy server, configuring 67
ISVs. See integration system vendors
item name (DDE) 286

J
Java API

BMC Remedy Developer Studio 220
exception handling 53
installed files 50
objects, cloning 53
online documentation 53
overview 50
program model 52

Java data import utility 243
Java plug-in 112

API, online documentation for 112
JavaScript

limitations 267

JavaScript (continued)
Run Process action, running from 266

join forms
Crystal Reports and 210
web services 350

K
keywords

DDE 293
HARDWARE 280, 291

L
LDAP

ARDBC LDAP configuration form 137
AREA plug-in

configuring 152
configuring group search 150
configuring groups 152
mapping groups 151

certificate databases and 402
configuring certificate databases for ARDBC

plug-ins 138
configuring certificate databases for AREA

plug-ins 147
defined 136
distinguished name 147
mapping data 140
object creation 142
overview of plug-in 136
performance tips 144
plug-in, configuring 137
Request ID field limitations 142
requirements of plug-in 136
troubleshooting tips 144
URL standard 140

libraries, native 172
library files, shared 172
licenses

See also deployable applications
application, managing 328
deployable applications overview 324
options for deployable applications 324
overview of application 325

limitations
Crystal Reports 210
Request ID field with LDAP 142
web services 101
WSDL, for consumption 94

line items, web services 344
list of web services, viewing 80
Index 423

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
logging in, Crystal Reports and 205

M
macros

DDE programming 287, 296
MS Office applications, examples 300
runmacro utility 240
third-party applications 296

mapping data
BMC Remedy Data Import utility 255
LDAP 140

memory, managing plug-in 111
methods (OLE)

adding 281
deleting 281

methods of integration 38
Microsoft

.NET, WSDL file 66
See also Internet Explorer
Access, integration with AR System 211
Excel, integration with AR System 300
Word, integration with AR System 303

modifying fields in view and vendor forms 194
mutlithreaded environments

importing 253

N
naming plug-ins 117
native libraries 172
nillable attributes, web services 354

O
object classes

defined 142
objectclass attribute 142

objects
creation, supporting 142
directory service 140
identifying uniquely 141
properties, simple XML editing 352

ODBC
clients, compatibility with 205
Crystal Reports and 205–210
data sources, adding multiple 202
driver installed with BMC Remedy User and mid

tier 202
Microsoft Access and 211
Microsoft Excel and 212

ODBC (continued)
overview 202

OLE
active links 280
Automation active link action

example 283
automation active link action 279
methods, adding 281

operations
types, web services 332

options
BMC Remedy Data Import utility 245
DefinitionExport 236
DefinitionImport 236
runmacro 241

P
path (DDE) 292
performance tips for LDAP 144
plug-in API

installing 108
Java

abstract classes 112
interfaces 112
online documentation 112

plug-in server
configuring 114
installing 108
running 120

plug-ins
See also ARDBC plug-ins; AREA plug-ins; ARF

plug-ins; plug-in server
about 106
aliases 119
AR Filter 107
ARDBC 106, 127
ARDBC LDAP 137
AREA 106, 124
AREA LDAP 145

configuring 152
configuring group search 150
configuring groups 152
mapping groups 151

ARF 132
arplugin server 120
BMC Remedy Developer Studio 216
BMC Remedy Developer Studio

prerequisites 219
certificate databases and 402
conventions 111
creating 110
424 Integration Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
plug-ins (continued)
Eclipse 216
global information 111
input values 111
installing components 108
Java 112
memory 111
multithread safety 111
naming 117
port numbers 118
return values 111
service 114, 120

points, BMC Remedy Developer Studio
extension 216, 219

port numbers, plug-in 118
predefined web services 64
product support 3
project dependencies, BMC Remedy Developer

Studio 219
proxy server

configuring AR System with internet access
through 67

configuring web services with 67
Java plug-in server and 67

publishing
complex document, web services 381
simple flat document, web services 372
web services 72

R
read licenses, deployable applications 324
Remote Procedure Call. See RPC message style
reporting

configuring for DDE 293
logging in from Crystal Reports 205

Request ID field
identifying objects uniquely 141
LDAP limitations 142

retrieving data from another application 264
return values, plug-in 111
right-to-left format 182
RPC message style 64
rules, custom Analyzer 218
Run Process action

client and server processes, and 260
retrieving data from another application 264
running a process on the web 266
running JavaScript on a browser 266
using to start an external application 260

runmacro
commands and options 240

runmacro (continued)
DDE function 297
examples 242

S
schema

constructs not supported, XML 103
Secure Sockets Layer. See SSL
security, AR System 33
servers

application licenses, applying 327
automation (OLE) 281
DDE name 296
plug-in 120

service name (DDE) 286
service operation type (web services) 334
service, plug-in 120
set operation type

complex documents 344
web services 332

set operation type (web services) 332
shared library files 172
simple documents

flat, consuming (web services) 377
flat, publishing (web services) 372
web services 340

Simple Network Management Protocol. See SNMP
simple XML editing

null, empty, or missing values, handling 354
object properties 352

SNMP
access control 313
AR System processes monitored 309
armonitor configuration file 316, 318
arsnmp file 312
community-based directives 314
configuration 311
configuration files 311
directives 313, 314
overview 308
Remedy MIB 310
Remedy SNMP Agent functions 309
snmpd file 317
starting Remedy SNMP Agent 318
stopping Remedy SNMP Agent 319
system information 313
trap configuration 316
traps 310
troubleshooting 319
user-based directives 314
versions supported 308
Index 425

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
SOAP
encoding rules for web services 64
headers and authentication 95
web services 62

spreadsheets, in AR System 300
SSL

certificate databases and 402
support, customer 3
SystemWebService.def file 64

T
technical support 3
third-party applications and macros 296
time-out settings, DDE 290
topic name (DDE) 286
troubleshooting LDAP 144
trust attributes 403
type library information (OLE) 281

U
URLs

LDAP 140
protected permissions for WSDL file 79
WSDL (Apache AXIS) 66
WSDL (Microsoft.NET) 66
WSDL file 79
XSD file 358

users
application licenses, applying 328, 329

utilities
BMC Remedy Data Import 243
certutil 402
DefinitionExport 235
DefinitionImport 235
runmacro 240, 241, 242

V
values, handling null, empty, or missing 354
vendor forms

about 184
attaching fields, example 365
creating for

ARDBC plug-ins 130
collections of LDAP objects 140, 364

example 364
inetorgperson example 364
troubleshooting 144
using 184

view forms
data types supported 190
modifying fields 194

viewing, list of available web services 80

W
warnings

licensing of forms in application not
reversible 326

web services
accessing, over https 68
advanced XML editing 358
authentication 95
basic 65, 72
basic, creating 72
choice element 103
clients, writing 66
complex documents 342
Configuration Tool for Remedy mid tier 96
create operation 332
creating 72
custom, creating 75
data types 360
examples 372
external XML schema, importing 358
fetch record

setting maximum 337
setting starting record 337

get operation 333, 345
internet access through a proxy server 67
join forms 350
limitations 101
line items 344
list, viewing 80
mapping 340, 345
nillable attributes 354
object properties 352
operations 77, 332
predefined 64
proxy server 67
publishing 72
service operation 334
set operation 332, 344
simple documents 340
simple XML editing 352
SOAP protocol 62
XML editing 351, 358
XPATH function 335

workflow actions
DDE 291
OLE Automation 279
426 Integration Guide

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
WSDL
accessing, over https 68
file 75, 78, 79
limitations for consumption 94
protected permissions in URL 79
public permissions in URL 79
URL to WSDL file 79
web services implementation 62
WSDL file (Apache AXIS) 66
WSDL file (Microsoft.NET) 66

X
XML

advanced editing 358
AR System API and 235
data and AR System 235
flat mapping 357
missing attributes 354
objects and AR System 234
schema constructs not supported 103
simple editing 352
URL with XML schema 358
web services, editing 351

XPATH function
web services 335, 337
Index 427

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
428 Integration Guide

183982
183982
183982
183982

183982

	Contents
	Preface
	Audience
	AR System documents

	What does “integration” mean?
	Benefits
	Areas for integration
	Real-time versus asynchronous integration
	Integrating with AR System

	Architectural overview of AR System
	Terminology
	Form
	Request
	Workflow
	Application

	Multitier architecture
	AR System clients
	Web client
	BMC Remedy User
	BMC Remedy Developer Studio
	BMC Remedy Data Import
	BMC Remedy Alert

	BMC Remedy Mid Tier
	AR System server
	Database servers
	Communications between clients and the AR System server
	Communications between AR System servers and database servers
	Many-to-many connections
	AR System components
	Security and access control

	Integration considerations
	Where to integrate
	AR System client
	AR System server
	Database integration

	Multiplatform issues
	Choosing an implementation method
	Integration technologies

	AR System C API
	Overview
	Understanding the AR System API
	Program structure
	Multithreaded API clients
	Using the API for integration
	Example: Network management platform integration accessories

	Issues and considerations

	Java API
	Overview
	Installed files
	Contents of the AR System Java API installation

	Run-time configuration
	Java driver

	Programming model
	ARServerUser
	Server objects
	Cloning objects
	Exception handling

	Programming with the Java API
	Sample

	Web services
	Overview of web services in AR System
	Web service standards
	Predefined AR System web services
	Forms and field mappings for web services
	Basic and custom web services
	Creating web service clients

	Setting up the environment for web services
	Verifying the AR System server configuration for web services
	Configuring for a proxy server
	Accessing WSDL or web services over https

	AR System web services architecture
	Information flow for web services published in AR System
	Information flow for consuming a web service in AR System

	Publishing a web service
	Creating a web service
	Viewing a list of web services

	Registering a web service
	Web Services Registry prerequisites and configuration
	Managing web services registry entries
	Synchronizing the Registry and Category forms with the registry
	Exporting and importing data in the Registry and Category forms

	Consuming a web service
	Creating a Set Fields web service filter action
	Querying the registry
	WSDL limitations for consumption
	Managing web service performance issues

	SOAP headers and authentication
	Authentication information for a published web service
	Authentication information for consuming a web service

	Supported schema constructs and AR System web service limitations
	Supported XML schema constructs
	The choice element
	XML schema constructs not supported in AR System

	Plug-ins
	About AR System plug-ins
	Installing plug-in components
	Installed files

	Creating C plug-ins
	C plug-in conventions

	Creating Java plug-ins
	Classes, instances, and shared data
	Writing a Java plug-in

	Configuring the Java plug-in server
	Multithreading in the Java plug-in server
	Dynamic plug-in loading
	Plug-in naming conventions
	Restarting the plug-in server using the Set Server Info command

	Configuring the AR System server
	Defining plug-in aliases

	Running the plug-in server
	Logging plug-in information

	Common plug-in C functions and Java methods
	Common C plug-in functions
	Common Java plug-in methods

	AREA plug-ins
	AREA plug-in C API functions
	AREA plug-in Java API methods
	Sample AREA implementations

	ARDBC plug-ins
	ARDBC plug-in C API functions
	Calling AR System API from an ARDBC plug-in
	ARDBC plug-in Java API methods
	Creating a vendor form for an ARDBC plug-in

	AR filter API plug-ins
	AR filter API plug-in C function
	AR filter API plug-in Java methods

	LDAP plug-ins
	Overview of LDAP and AR System
	ARDBC LDAP plug-in
	Requirements
	Configuring the ARDBC LDAP plug-in
	Building AR System forms for directory services
	ARDBC LDAP run-time performance tips

	AREA LDAP plug-in
	Configuring the AREA LDAP plug-in
	Configuring AREA LDAP group search
	Configuring AR System servers to use the AREA LDAP plug-in
	What’s next?

	AR System external authentication
	Overview of AREA authentication
	About the AREA LDAP plug-in
	Specifying AREA plug-in server settings

	Configuring authentication processing
	Specifying when to use internal and external authentication
	Specifying authentication chaining mode
	Determining AREA behavior
	Configuring Atrium SSO integration

	Setting up the AREA hub

	Data visualization fields
	Overview
	Services provided to the data visualization modules on BMC Remedy Mid Tier
	Services provided on clients
	Using Java classes
	Working with native libraries
	Storing shared library files on the mid tier
	Creating data visualization fields
	Creating data visualization modules on the mid tier
	Registering data visualization modules

	Configuring right-to-left format in a data visualization field (DVF)

	Vendor forms
	About vendor forms
	Creating vendor forms

	View forms
	About view forms
	Database requirements for view forms
	AR System requirements for view forms
	Field properties for fields on view forms
	Database data types for view forms

	Creating and modifying view forms
	Mapping an alternative AR System field type
	Modifying view forms

	Setting up a remote database for view forms

	SQL database access
	Accessing AR System data externally
	Pushing data from AR System with SQL
	Pulling data into AR System with SQL
	Issues and considerations

	ODBC database access
	Overview
	Creating multiple data sources
	Compatibility with ODBC clients
	Using Crystal Reports with AR System
	Using field labels or database names in Crystal Reports
	Crystal Report report options considerations
	Selecting report fields in Crystal Reports
	Using Crystal Reports with join forms
	Limitations when using Crystal Reports

	Using Microsoft Access with AR System
	Using Microsoft Excel with AR System
	Issues and considerations

	Extending BMC Remedy Developer Studio
	About extending BMC Remedy Developer Studio
	Prerequisites for creating plug-ins
	Software requirements
	Project dependencies

	Extension points
	BMC Remedy Developer Studio API
	Installation directory

	BMC Atrium Integration Engine
	The AIE integration with AR System

	BMC Atrium Orchestrator
	Overview
	The AR System Orchestrator Configuration form
	Modifying entries in the AR System Orchestrator Configuration form

	AR System workflow for Atrium Orchestrator integration
	Job status for asynchronous execution operations

	Exporting and importing data and definitions
	Overview
	Exporting objects and data to XML format
	AR System objects in XML
	AR System data in XML
	Using XML with the AR System API

	Using the import/export command-line utility
	Guidelines for using the import/export utility
	DefinitionImport and DefinitionExport options
	Import/export examples

	Using the runmacro command-line utility
	runmacro example

	Using the BMC Remedy Data Import utility
	Options for BMC Remedy Data Import command-line utility
	Importing in a multithreaded environment
	Importing with a mapping file
	Importing without a mapping file
	Localization tips
	BMC Remedy Data Import utility examples

	Using the BMC Remedy User CLI

	Running external processes (Run Process)
	Overview
	Client and server processes
	Using Run Process to start applications
	Example: open a reference document from an active link button
	Example: call a pager application from a filter

	Using Run Process/$PROCESS$ to retrieve data from applications
	Run a process on the web
	Limitations in using JavaScript

	Issues and considerations

	OLE automation
	OLE overview
	AR System and OLE automation
	Active links and OLE automation
	Using the GUID
	The OLE automation active link interface
	Reading the method tree

	Maintaining server context across multiple active link actions
	Working with ActiveX controls
	AR System as an OLE automation server
	DCOM support
	The OLE automation active link action
	OLE automation example-Sample:SpellCheck

	Issues and considerations

	Dynamic data exchange
	Overview
	DDE parameters used by AR System
	Methods of integration

	Configuring your system to use DDE with AR System
	Working with your dde.ini file
	DDE time-out settings

	Using active links with DDE
	Using the DDE active link action
	Using the DDE active link keyword

	Using BMC Remedy User reporting with DDE
	Configuring BMC Remedy User to pass report data
	Creating a report for DDE export

	Using a DDE execute from an external application to trigger AR System
	Using AR System with DDE, third-party applications, and macros
	DDE server name and BMC Remedy User path
	Supported DDE topic and function
	Example program and buffer

	Examples
	Integrating with Microsoft Excel
	Integrating with Microsoft Word
	Using DDE to pass data to Excel for graphing

	Issues and considerations

	Simple network management protocol
	Overview
	BMC Remedy SNMP Agent functions
	Monitoring AR System

	Sending traps
	SNMP configuration
	The arsnmpd configuration file
	System information
	Access control information
	Location of the armonitor configuration file

	The snmpd configuration file
	The armonitor configuration file
	Starting BMC Remedy SNMP Agent
	Stopping BMC Remedy SNMP Agent
	Troubleshooting

	Making applications licensable for integration system vendors
	Application licensing options
	Application licensing overview
	Making applications licensable
	Adding the application license to your server
	Assigning application licenses to users

	Web service operation types
	Create operation type
	Set operation type
	Get operation type
	Service operation type
	XPATH function
	Setting the start record and the maximum limit

	Mapping web service data
	Mapping to simple and complex documents
	Simple documents
	Complex hierarchical documents
	Mapping to complex documents
	Using join forms in web services

	XML editing
	Simple XML editing
	Object properties
	Handling null, empty, and missing values
	Advanced XML editing

	Data types

	ARDBC LDAP example: Accessing inetorgperson data
	Creating the inetorgperson vendor form
	Attaching fields to represent inetorgperson data
	Defining a filter to generate a DN
	Summary of fields

	Web service examples
	Example 1: Publishing a simple flat document
	Example 2: Consuming a simple flat document
	Example 3: Publishing a complex document
	Example 4: Consuming a complex document

	Adding a certificate to a certificate database
	About certificate databases
	Creating a certificate database
	Adding a certificate to a certificate database
	Listing certificates in a certificate database

	AR System change ID utility
	Introduction to archgid
	Syntax of archgid
	Using archgid in prompt-driven mode
	Using archgid in bulk mode

	Index

