
Mason Glidden
HW2, for Keyboard

1) Binary model is less efficient
 I created a rough KLM for your model vs. a square keyboard (5x5 – I’m
ignoring one character to make the math easier). On average, a user would have
to make 4 actions per character (moving half the distance of the square). In your
model, you need 2 actions minimum, and then an additional 0-4 (4 actions
require zero more, 8 require one more, 8 require two more, 4 require three more,
2 require four more). This averages out to 4.69 actions per character. While the
numbers would change a bit if factoring in character frequency, the fact remains
that your prototype is less efficient than a standard on-screen keyboard.
(efficiency, major)

2) Binary search model does not match the real world
 The binary search action is inconsistent with real keyboards. The user
does not store the alphabet as a tree diagram, and no real-world search
interfaces operate in this fashion. While a standard on-screen keyboard does not
require any instruction, your model has a significant learning curve. (match the
real world, minor)

3) Lines don’t point to the character they select

The line between the large arrow and the characters does not point to the

initially selected character. When the user selects a direction, they then follow the
line down to the row of characters. Yet the highlighted character is not on that
path, forcing the user to jump around and find the cursor. I found myself
expecting P to be highlighted in this case. (consistency, minor)

4) Hold message is misleading

‘Hold enter to focus’ is misleading. When I first tried to switch to the

autocomplete box, I help down the enter key (and nothing happened) – the
trigger is on a release after a hold. Consider firing the change when the user has
held down the enter key for a specified time, as the current message is confusing
and inconsistent with the system. (consistency and standards, cosmetic)

5) No method to go back to prior fields
Once a user has entered a field, there is no way for them to get back to

the previous screen. If a user hits enter instead of an arrow key, the screen
progresses without any way to backtrack. On a remote, where the enter key is
usually in the center of all the arrow keys and prone to a fat-finger problem, this
issue is even more severe. (user control & freedom, error recovery, major)

6) Down arrow action is inconsistent with other arrows

While three of the arrows allow the user to navigate around the interface,
the down arrows selects input mode. This inconsistency makes it more difficult
for users to build a model in their mind. I often found myself going up, realizing
that I should have stayed where I was, and hitting down to get back (only to have
the mode change). I would recommend that you make the down arrow bring you
down to your last state. (consistency, minor)

7) Numeric entering is not balanced

In the numeric input mode, one side has 6 numbers while the other only

has 4. This breaks the consistent split in other modes and decreases the
efficiency. The ‘5’ should be moved to the right side. (consistency, efficiency,
cosmetic)

8) Selected character fails the squint test

While the pink glow looks nice, it fails the squint test. It’s not distinctive

enough, and I can’t tell that anything is there when I squint (even on a large
monitor). When trying to move quickly I found myself having to slow down and
search the characters to find the cursor. Compared to the bright, large sections of
pink visible earlier, this highlight is lacking. (visibility of system status, minor)

9) Interface collapses at low screen resolution

 Since your design is meant for a TV platform, you should make sure that
the interface works at SD resolutions (640x480). The screenshot above shows
what happens at SD resolution. Everything collapses together, making it
confusing and hard to read. A significant portion people still use SD TVs – you
can’t ignore such a large part of your target audience. (aesthetic, catastrophic)

10) Cannot delete extra characters

While the user can replace characters, there is no method for deleting
characters. If a user accidently types one too many characters (perhaps they
thought they had moved on to the text screen already), there is no way to remove
the character. (user control, error recovery, major)

11) No multi-key repeat support
 (holding down a key on last level)

If I made a mistake on the last level and ended up on the wrong side, I
would always try to hold down the left or right key to move to where I wanted. On
a standard keyboard this would pause for a moment before quickly repeating the
keypress over and over. Not only does this bring you closer to the real world, but
it makes error recovery faster as well. (match the real world, efficiency, error
recovery, minor)

12) Deciding left/right requires significant recall
For characters near the middle of the alphabet, I found myself having to

recite the alphabet in my head to figure out the correct direction. The user should
not have to recall the exact location of a letter. In later levels this is solved by
showing all possible characters in each side and allowing overflow from one side
to the other. (recognition vs recall, major)

13) Line start locations are not mirrored

Both sets of lines originate from the left character. This throws the

interface off balance, and looks strange which switching between the two. It’s a
very minor point, but it would be nice to see mirrored locations. (aesthetic,
consistency, cosmetic)

14) Down key has inconsistent behavior depending on location

The down key moves down when the user has the text field selected, and
changes the input mode elsewhere. This inconsistency leads to confusion and
errors. The down arrow key is meant for navigation – a different key should be
used for mode changes. (consistency, error prevention, major)

15) UI Elements are too far apart

Imagine the current interface scaled up to a 50-inch TV. There would be
massive gaps between related elements. If the user is trying to find a movie, they
will have to visually traverse the entire screen to see the search results. Consider
making the interface more compact. (aesthetic, minor)

16) Interface shifts between top bar and first arrows

 I took two screenshots (one when selecting the text box, another while
selecting the first set of arrows) and combined them together in photoshop. As
you can see, everything below the textbox shifts a bit between the two selections.
The movement is also visible when moving between the two items. This is a very
minor point, but the movement can be distracting to the user. (aesthetic,
cosmetic)

17) Can select a movie that doesn’t exist by quickly hitting enter

By hitting enter on the final page, you can select a non-existent movie to

watch. Since this is clearly an error condition, you should not allow the user to get
into this mode. They can only watch movies that appear in the autocomplete list –
don’t allow any deviation. (error prevention, major)

18) Arrows and autocomplete box can be selected simultaneously

When traversing the autocomplete list, the list and the arrows are selected

simultaneously. The focus is actually in the autocomplete list, so the highlight on
the arrows should be removed. (consistency, aesthetic, cosmetic)

19) Symbols aren’t consistent with a keyboard

The list of symbols seems pretty arbitrary. First of all, the order deviates

from the numeric row on the keyboard – ‘!’ should be first, followed by ‘@’.
Furthermore, the group of characters is arbitrary and some of the characters are
useless. None of the movies in your autocomplete list contain a ‘<’ character,
while nine contain a ‘ character. (consistency & standards, match the real world,
minor)

