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Abstract

Hurricanes and anti-cyclones can be understood in terms of the unitless
quanitity known as the Rossby number. The Rossby number is a ratio
of the centrifugal forces to the Coriolis force in a system. Because the
Rossby number is unitless, it can be studied across scales of systems so
that Rossby numbers for hurricanes are comparable with Rossby numbers
for radial inflow laboratory experiments.

1 Introduction

Even though hurricanes are powerful phenomena that warrant close study, they
are so large in scale that it is difficult to study them directly. In the laboratory,
it is possible to observe water as it drains from a tank in a rotating frame and
gather data about the speed at which it spirals relative to the distance from
the center. The data can be used to study the effects of the Coriolis force and
a centrifugal force and how they balance with a gravitational pressure gradient
force. The following analyses will seek to form a supported laboratory model
than can be successfully applied to larger scale systems such as hurricanes.

2 Experimental Data: Radial Inflow

The radial inflow experiment is designed to test the the balance of forces aprro-
priate to a spiralling vortex. The experimental setup includes a bucket with a
hole in the center of the bottom plugged with a cork. The bucket is filled with
standing water (to remove air bubbles) and is elevated within another enclosure
(as seen in Figure 1).

The apparatus is rotated at a constant rate while a camera rotates in syn-
chronization. The apparatus is considered “spun up” when a paper dot can be
placed in the bucket and appear stationary from the camera view. This is re-
ferred to as solid body rotation. After the apparatus is spun up, the cork is
removed so that the water is able to drain away. Paper dots can then be placed
in the bucket and tracked using tracking software to determine each particle’s
position at a given time.
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Figure 1: Experimental setup.[1]

2.1 Theory

What can the bucket experiment reveal about the forces present in a rotating
frame? The pertinent velocities, for one, can be seen in Figure 2. For an
explanation of velocity variables, consider the following:

• The radial velocity is given by v
r

.

• The azimuthal velocity is given by v
✓

.

Both velocities are relative to the rotating camera and measured in pixels per
second. For an explanation of horizontal position variables, consider the follow-
ing:

• The radius from the center is given by r, in pixels.

• The angle relative to the horizontal is given by ✓, in radians.

Figure 2: Aerial view of the apparatus.[1]

As the particle is moving azimuthally with velocity v
✓

, it is moving with
an additional velocity component relative to the observer. Since the bucket is
rotating at a constant rate, given by ⌦ in radians per second, the particle is
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moving with a component due to rotation. This component is given by ⌦r, so
that the absolute azimuthal velocity, V

✓

is given by

V
✓

= v
✓

+ ⌦r. (1)

Using the conservation of angular momentum it is possible to find a rela-
tionship between v

✓

and the r. At any point, the angular momentum will be
given by V

✓

r, which is a constant. Since the relative azimuthal velocity is zero
at the edge (r = R), the angular momentum is also given by ⌦R2. Setting these
equal to one another gives rise to the following relationship:

v
✓

= ⌦

✓
R2 � r2

r

◆
. (2)

As the fluid rotates, its surface takes on a parabolic shape[2] defined by the
following:

H0 =
⌦2r2

2g

[1]

, (3)

where g is the constant acceleration due to gravity and H0 is the height of the
parabolic surface.[1]

Another governing equation derives from the force of gravity and how it
relates to pressure assuming hydrostatic balance. Using this relationship, it is
possible to relate the velocities and horizontal position with a vertical position.
This relationship is given by

p = ⇢g(H � z), (4)

⇢ is the constant density, H is the height of the surface, z is the height (i.e.
the bottom is z = 0) and p is the difference in pressure from the atmospheric
pressure.[1] It is possible to derive a force balance using Equations 1 and 4,
obtaining a centrifugal and pressure gradient force, respectively. This balance
in the inertial frame is given by

V 2
✓

r
=

1

⇢

@p

@r
. (5)

When written in terms of the rotating frame from Equation 1 and taking the
partial derivative with respect to r of Equation 4, Equation 5 becomes

v2
✓

r
+ 2⌦v

✓

+ ⌦2r = g
@H

@r
. (6)

Through manipulation of variables, ⌦2r can be rewritten as a partial deriva-
tive with respect to r, and the pressure gradient force can be redefined in terms
of the surface’s divergence from the parabola described by Equation 3. This
height difference is given by h and results in a new equation:

2⌦v
✓

+
v2
✓

r
= g

@h

@r
. (7)
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In a more general form, the quantity 2⌦ can be replaced by the quantity f ,
the Coriolis parameter, giving the following:

fv
✓

+
v2
✓

r
= g

@h

@r
. (8)

This equation is known as gradient wind balance, and it is used to describe
a system in which the pressure gradient force is balanced by both the Coriolis
force, given by 2⌦v

✓

, and the outward centrifugal force, given by v

2
✓
r

. The the
pressure gradient force is balanced largely by the Coriolis force and the outward
centrifugal force is negligible, the system is said to be in geostrophic balance;
the opposite scenario is known as cyclostrophic balance. A parameter, known
as the Rossby number, can be defined to compare the Coriolis and centrifugal
forces, and is represented by R0 in the equation derived from the ratio of the
Coriolis force to the centrifugal force[1]:

R0 =
|v

✓

|
2⌦r

. (9)

When the Rossby number is large (R0 >> 1), the centrifugal force is dominant,
but when the Rossby number is small (R0 << 1), the Coriolis force is domi-
nant. When the Rossby number is near one (R0 ⇡ 1), the forces are in balance
and the system is said to be under gradient wind balance. Since it is calcu-
lated using experimental parameters, Equation 8 gives the experimental value
for the Rossby number.[1] Using Equation 2 from the conservation of angular
momentum, a theoretical Rossby number can be calculated from the following:

R0 =
1

2

 ✓
R

r

◆2

� 1

!
. (10)

2.2 Results

In the experiment, three runs were performed, each with a different ⌦ (0.5005,
1.000, and 1.500 radians per second). It was difficult to obtain a value for R
(the edge of the bucket), so the maximum calculated radius (125 pixels) is used
for R. In each case, blue diamonds represent the measured value ofR0 while red
squares represent the theoretical value of R0 for a given radius.

In the first run, the rotation was set to a constant 1,001 millif, or 0.5005
radians per second. Figure 3 shows Rossby number data for particles under
these conditions. Though the high-radius average appears fairly consistent with
the theoretical values, the lower-radius averages are not. This difference may
indicate a balance of forces slightly different from what was assumed. Since the
values are above their theoretical counterparts, it may be that the centrifugal
force is playing a larger role than expected.

In the second run, the rotation was set to a constant 2,000 millif, or 1.000
radians per second. Figure 4 shows Rossby number data for particles under
these conditions.
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Figure 3: Average measured Rossby numbers and theoretical Rossby number as
a function of radius. Notice that the average measured values do not exactly
correlate with the theoretical values. This difference may indicate a divergence
from the force balance described.

Figure 4: Average measured Rossby numbers and theoretical Rossby number as
a function of radius. Notice that the average measured values do not exactly
correlate with the theoretical values. This difference may indicate a divergence
from the force balance described.
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Again, the high-radius average appears fairly consistent with the theoretical
values, but the lower-radius averages are not. Since the measured values are
lower than their theoretical counterparts, it may be that the Coriolis force is
playing a larger role than expected.

In the third and final run, the rotation was set to a constant 3,000 millif,
or 1.500 radians per second. Figure 5 shows Rossby number data for particles
under these conditions.

Figure 5: Average measured Rossby numbers and theoretical Rossby number as
a function of radius. Notice that the average measured values do not exactly
correlate with the theoretical values. This difference may indicate a divergence
from the force balance described.

The high-radius average appears to fall along the theoretical curve while the
lower-radius values are, again, below it. This, again, may indicate a larger role
for the Coriolis force than previously expected.

The measured values roughly, though not exactly, correspond with the theo-
retical predictions. This is certainly true for the larger-radius averages as noted
in Figures 3, 4 and 5. This model does not explain everything exhibited in the
experiment, but it does provide a solid framework for predicting the general
behavior of this system. In terms of radius, the measurements are accurate
within 1.5 pixels. The general trend, though with exceptions, is that the larger
radii correspond with lower Rossby numbers and vice versa. Since the Rossby
number is a non-dimensional quantity, it can be used across systems, including
those in the atmosphere.
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3 Atmospheric Data

The expectation is that hurricanes should behave similarly to the particles in
the laboratory experiment with one modification.

fv
✓

+
v2
✓

r
= g

@h

@r
. (11)

In all governing equations for the lab experiment, ⌦ is used to represent the
rate of rotation. For a hurricane, f will be used such that

f = 2⌦ sin(lat), (12)

where lat represents the latitude of the hurricane’s center to compensate for the
fact that the center of the hurricane is not necessarily aligned with the axis of
Earth’s rotation. Otherwise, it is expected that the governing equations will be
the same. In this case, the Rossby number is given by the following:

R0 =
|v

✓

|
2r⌦ sin(lat)

. (13)

The hurricane to be considered is Hurricane Florence. The data is from 10
September 2006. Scatterometer data is from 9:50 UTC while GFS analyzed
data is from 12:00 UTC. The center of Hurricane Florence is estimated to be
29N, 67W, and the radius is approximated as 550 km. The calculated (lower
curve) and theoretical (upper curve) Rossby numbers are shown in Figure 6
based on the Scatterometer data.
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Figure 6: Calculated and Theoretical (Equation 10 with radius of 550 km)
Rossby numbers for Hurricane Florence.

Notice that above 250 km, the curves are fairly close to one another. Below
200 km, though, the curves are much more divergent. Based on these curves,
Florence is expected to behave geostrophically above 250 km from the center
(when the Rossby number is much less than one) and to behave cyclostophically
within 50 km (when the Rossby number is much greater than one). For more
information, consider the Scalar and Wind data.

Figure 7 displays the observed wind speeds of Hurricane Florence at 850
mb (relatively close to Earth’s surface), while Figure 8 displays the geostrophic
wind speeds at 850 mb.
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Figure 7: Hurricane Florence, Observed Wind, 850 mb
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Figure 8: Hurricane Florence, Geostrophic Wind, 850 mb

Wind data for 850 mb is included in Table 1. Notice that for the larger radii,
the observed wind is estimated to be the same at the geostrophic wind. This is
not the case for the closer radii when the observed wind is better matched by
the cyclostrophic wind.

Table 1: Wind speeds at 850 mb for Florence.
r (km) v

obv

(m/s) v
geo

(m/s)
183 7.5 5
367 10 10
550 7.5 7.5
733 7.5 7.5

Figure 9 displays the observed wind speeds of Hurricane Florence at 500 mb,
while Figure 10 displays the geostrophic wind speeds at 500 mb.
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Figure 9: Hurricane Florence, Observed Wind, 500 mb
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Figure 10: Hurricane Florence, Geostrophic Wind, 500 mb

Notice the second cyclone that has formed. This cyclone, rather than being
formed like Florence, is a product of the Jet Stream, and it is stronger at upper
levels instead of at the surface (see Figure 11).

Wind data for 500 mb is included in Table 2. In this case, the observed wind
matches the geostrophic wind at these larger radii.

Table 2: Wind speeds at 500 mb for Florence.
r (km) v

obv

(m/s) v
geo

(m/s)
367 5 5
733 5 5

Figure 11 displays the observed wind speeds of Hurricane Florence at 150
mb (far from Earth’s surface), while Figure 12 displays the geostrophic wind
speeds at 150 mb.
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Figure 11: Hurricane Florence, Observed Wind, 150 mb
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Figure 12: Hurricane Florence, Geostrophic Wind, 150 mb

Notice the gradient for the second cyclone. Wind data for the Jet Stream
cyclone is recorded in Table 3.

Table 3: Wind speeds at 150 mb for the Jet Stream cyclone.
r (km) v

obv

(m/s) v
geo

(m/s)
220 5 10
330 12.5 17.5
440 15 20
550 10 17.5

The differences between the observed and geostrophic wind indicate that
this cyclone may not be behaving geostrophically; rather, it may fall under the
category of gradient wind.

At 150 mb, a change occurs. At higher pressures, the system behaved cy-
clonically, spinning in a counterclockwise manner due to the pressure gradient
force and opposing Coriolis and centrifugal forces. At this level, the cyclone
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changes direction in response to a reversal in the pressure gradient, and it be-
comes an anti-cyclone. This change in direction serves to conserve the angular
momentum of the system. Even though the Florence system has changed di-
rection, the Jet Stream cyclone is still rotating cyclonically. This cyclone will
instead be weakened in the lower troposphere, and it will sit on top of a surface
anti-cyclone.

4 Data Comparison

The laboratory experiment can be treated, essentially, as an upside down hurri-
cane (the fluid vacates down instead of up). The wind data taken from Hurricane
Florence at 850 and 500 mb match closely with the experimental data as well
as the theory. The Rossby number is a dimensionless quantity that was defined
in order to describe these systems as a function of the distance from the center
of the system. Both systems are studied in terms of the Rossby number.

That is to say, at large radii, both systems exhibited low Rossby numbers.
Because of the way the Rossby number is defined, these systems were exhibit-
ing a stronger Coriolis force than centrifugal force. As a result, both were in
geostrophic balance at the higher radii. Though low radii data were difficult
to obtain for Hurricane Florence, the intermediate piece of data obtained fits
in with the model, though, again, it is only one data point. Interestingly, the
hurricane data fit the model better than the laboratory data in terms of the
Rossby number.

One distinction to be made is the anti-cyclonic behavior exhibited in the at-
mospheric system. This phenomena was not observed in the laboratory experi-
ment, but that is due to the way the experiment was designed. The laboratory
setup was not designed to exhibit anti-cyclonic behavior, so it did not; however,
it may be to create such an experiment to display this high pressure system
pattern by utilizing a lid to stop the cyclonic motion. Another important dis-
tinction is the influence of friction. In the laboratory experiment, friction does
not play a large role in the behavior of the system until the water level is suffi-
ciently low; for the larger atmospheric system friction plays a much larger role,
and a model to accurately depict the system would need to incorporate friction
in some manner.

5 Conclusion

The radial inflow experiment provides an accessible and accurate way to ob-
serve and analyze the behavior of large scale systems such as hurricanes. Even
though these two systems are separated by several orders of magnitude, they
follow nearly identical governing equations. These governing equations derive
from the balance of forces within the radial inflow laboratory experiment and
withstand the tests of observation and analysis. These equations are tested
on large atmospheric systems to evaluate their worth and the model’s worth.
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Through initial analyses, the model persists. Both cases, laboratory and atmo-
spheric, demonstrate that the pressure gradient force is balanced at high radii
by the Coriolis force, indicated by the low Rossby number. Though not defini-
tive, the data also suggest that the pressure gradient force is balanced at low
radii by a centrifugal force, indicated by a high Rossby number.

6 Suggestions For Improvement

Though this model has been shown accurate, to a degree, with more experimen-
tation and more precise analyses, it is possible to improve upon this model and
more accurately describe both the atmosphere and the laboratory experiment.

One of the first problems noticed was that the particle tracker was tracking
too many particles at once. In later runs, this problem was alleviated by using
one or two particles at a time. Another problem with the particle tracker came
with long tracks. Whenever a single particle was following a path for a certain
length of time, the tracker would “reset” and consider the remainder of the track
as belonging to a new particle. This made it difficult to record and analyze full
paths from start to finish. Improving the particle tracker to prevent this problem
would provide more and better data. A higher resolution particle tracker would
also allow for more precise and accurate data.

In performing the analyses on both the laboratory and atmospheric data,
one of the more difficult (and error-bearing) problems was estimating centers.
For the particle tracker, it was much simpler since it considered the hole in the
bottom (i.e. the center) to be a particle and tracked it as such. Unfortunately,
this is another problem in itself. In regards to the hurricane data, the center
was much more difficult to identify with much accuracy. Future analyses that
can provide better determination of this feature would improve the experiment.

In both the experiment and the atmospheric data, there were cases where
the calculated Rossby number was significantly lower than the theoretical value
and where the calculated value was considerably higher, which may indicate
some factors that had not been considered. When collecting data and designing
experiments for this problem in the future, it may be useful to consider how
friction would affect the smaller system, even if it is negligible. This would
make it easier, or perhaps just possible, to consider the importance of friction
in the behavior of hurricanes.

References

[1] Marshall, John. “12.307 Project 1: Radial Inflow Experiment.”

[2] Marshall, John and Alan Plumb. “Chapter 6: The equations of fluid motion.”
Available at http://paoc.mit.edu/labweb/notes/chap6.pdf.

16


