Towards Nuclear Reactions from Lattice QCD

RauilBriceno

(in collaborationwith Zohreh Davoudi)

Paving the Road From QCD to Nuclear Reactions

Fusion
Stars Supernovae, Neutron Stars

Big Bang Nucleosynthesis
13.7 billion years

Inertial Confinement FusionTarget (NIF)

Spectrum

Lattice QCD

L

$$
a \Rightarrow 0
$$

- Numerical solution
- Finite periodic Euclidean spacetime
- Consider continuum limit
- Maiani-Testa theorem (1990)
- Lüscher (1991) $E_{L}, m \rightarrow \delta\left(q^{*}\right)$

Community effort.

Analytical

Numerics

Actions, observables, systematics....

Inversion algorithms, code development, production,...

Status Report: Spectrum

$$
m_{\pi}=m_{K} \sim 800 \mathrm{MeV} \quad \text { I }
$$

Status Report: Spectrum

$m_{\pi} \sim 510 \mathrm{MeV} \quad \boldsymbol{\sim} \quad \mathrm{L}-2.9-5.8 \mathrm{fm}$

Status Report:
 A glimpse into the future

$$
C(t)=Z_{0} \mathrm{e}=\mathrm{F}, \mathrm{~F}, 4
$$

low statistics ~ 250 configurations

Bound to unbound?

Expected spectrum for the jet: 0 He sector:

Optimistic yet Cautious!

Numerical Observation:

- Below break-up:3-Boay=1Luscher: Bouthamer Leemember (2012)]

Questions/Issues:

- Proof?
- Validity of Etischer?
- Compact two particle states? [Guopadek dwards 5 scepanak (2012)]
- EV effects from off-shell states?
- Partial wave mixing? Kicuzer tammer Gieishamer (20092012)]
- Model independent breakup recombination?

Coupled Channels: 2-Body

Coupled Channels: 2-Body

Two-channels 2 phases +1 mixing angle

- Boosted systems*

$$
\begin{aligned}
& \pi \pi-K \overparen{K} \\
& {\left[m_{\pi} \sim 310 \mathrm{MeV} \mathrm{~m} \times \mathrm{c} 530 \mathrm{MeV}\right]}
\end{aligned}
$$

- Bellow 4 pion threshold
- Spectrum from poles of

FV Scattering Amplitude

S-channel 2PI

- Quantization condition (RB\&Zoheh DavoudiarXiv:i204i110):

$$
\operatorname{det}\left(\mathcal{M}^{-1}+\delta \mathcal{G}^{V}\right)=0
$$

Holds for arbitrary numbers of channels

$\pi \pi-\nwarrow \AA$

$$
[m \pi \sim 310 \mathrm{MeV} \text { mik }
$$

\section*{8
 | F |
| :---: |
| F_{2} |}

$$
L\left[m_{\pi}^{-1}\right]
$$

$$
\begin{aligned}
& \mathrm{d}=[0,0,0] \\
& \mathrm{d}=[1,0,0]
\end{aligned}
$$

On going work [in collaboration Daniel Bolton \& Keith Roberton (Baylor U), Zohreh Davoudi (UW)]

NN Weak Matrix Elements

- 2-Body ~ dominant uncertainty in deuteron breakup
- Detmold \& Savage (2004) background field
- $S_{0-3} S_{1}$ coupled chanets
- 5-point correlation functions

Summary plot by H-W Lin (2011)
IV Weak Matrix Element
$\left(\left|\mathcal{M}_{1_{S_{0}-3} S_{1}}^{\infty}\right|-g_{A} W_{3} \frac{\delta J_{0}^{V} e^{i 2 \phi}}{\left(\delta I_{0}^{V}\right)^{2}}\right)^{2}=\left(\frac{2 \pi V}{q_{0}^{* 2}}\right)^{2}\left(\phi^{\prime}+\delta_{{ }_{3} S_{1}}^{\prime}\right)\left(\phi^{\prime}+\delta_{1 S_{0}}^{\prime}\right)\left|\mathcal{M}_{{ }^{1} S_{0}-{ }_{3} S_{1}}^{V}\right|^{2}$

Kinematic function (L, E*)

Unto the 3-Body Problem

Unto the 3-Body Problem

- Scalar sector
- Dimer formalism 3 $2+1 /$ kapan 199% !

2-body contact interactions

$$
\mathcal{D}^{V}=\longrightarrow \quad=\quad+
$$

- Simplification comes at acost

$$
\text { R } \sigma_{d}=0
$$

$$
\mathrm{F}_{\mathrm{F}}^{\mathrm{i}} \mathrm{~F}
$$

$$
I_{d B}
$$

Infinite vs. Finite

Volume Spectrum

$$
\left(\mathcal{D}^{V}\right)-1
$$

(pos)

Infinite vs. Finite

Volume Spectrum

FV spectrimis ALWAYS discretized No cuts/integrals Only poles/sums

Some Technicalities

- Spectrum from poles of correlation function

> 3-particle creation amplitude

- Two loop diagrams:

- Only dimer poles contribute!
-Loops decouple!

Some Technicalities

Finite volume
"scattering amplitude"

Continuous bosondimer relative momenta

Finite volume dimer

Three-Body Result

$\operatorname{det}\left(\mathcal{M}_{V}^{\infty-1}+\delta \mathcal{G}^{V}\right)=0$

"Scattering amplitude" between boson and finite volume dimer

Diagonal in angular momentum

Mixed the three particle states
(coupled-channels)

Three particle states:

Recovering Lüscher

(Negative energies, deeply bound diboson)

- Below break-up:

$$
\mathcal{M}_{d B}=\frac{3 \pi}{m} \frac{1}{q_{d B}^{*} \cot \delta_{d B}-i q_{d B}^{*}}
$$

- CM momentum:

$$
q_{d B}^{* 2} \equiv \frac{4 m}{3}\left(E^{*}+\frac{\gamma_{d}^{* 2}}{m}\right)
$$

diboson binding
energy in the
moving frame

Consistent with Bour et al. (2012)

$$
q_{d B}^{*} \cot \delta_{d B}=\frac{1}{\pi L} S^{P}\left(\left(q_{d B}^{*} L / 2 \pi\right)^{2}\right)
$$

> ~ Boosted Zeta function for two particles with $m_{2}=2 m_{1}$

$$
S^{P}\left(\tilde{p}^{2}\right)=\sum_{\mathbf{n}}^{\Lambda_{n}} \frac{1}{(\mathbf{n}-L \mathbf{P} / 6 \pi)^{2}-\tilde{p}^{2}}-4 \pi \Lambda_{n}
$$

- Bound states:

$$
\gamma_{d B}+\left.q_{d B}^{*} \cot \delta_{d B}\right|_{q_{d B}^{* 2}=-\gamma_{d B}^{2}}=\mathcal{O}\left(e^{-\gamma_{d B} L}\right)
$$

Exponential Corrections

- Finite volume dimer:

Obtained from 3-
particle spectrum

Extrapolate to infinite volume!

- Excited state

Dimer is NOT compact [Guo et al. (2012)]

Boosts

Symmetry is reduced:

Boson-dibosonCM:

- diboson is boosted $H_{d}=40,2,4$.
- dB is unboosted. $\mathrm{I}_{d B}=\{0,4,6,6$,

Boson-diboson Boosted:

- $J_{d B}=\{0,1,2, \quad$, $\}$

Bour et al. (2011), Davoudi \& Savage (2011), Fu (2012): Boosted two-particle system with different masses

Take-Home Message

- FV spectrum is ALWAYS discretized
- 3-Body quantization condition reduices to Euscher like equation

- Boson-diboson phase shift has large EV effects

- Requires extrapolation
- Partial wave mixing J $=2$ (unboosted), J = 1 (boosted)

Three body problem requires caution!

In progress...

- Above threshold!

N Nuclear sector

- Partial wavemixing due toboost
- Cubic aimer propagator

How to participate
Info for Organizers
Program archive

Visitor Info
Schools \& Workshops
Jobs
People
About Us
Friends of the INT
NAC
UNEDF
Links
Safety

Programs \& Workshops

- 2012 Programs

Light Nuclei from First Principles (INT-12-3)
September 17 - November 16, 2012
N. Barnea, D. Lee, L. Platter

- 2013 Programs

Computational and Theoretical Advances for Exotic Isotones in the Medium Mass Reaion (INT-13-1a) March
Nuclear Reactions from Lattice QCD
May 6
A. An

Ad/var
Juhe
F. Ped March 11-12, 2013
R. Briceno, Z. Davoudi, T. Luu

August5-August su, 2015
D. Gazit, W. Haxton, A. Schwenk, N. Tolich

Quantitative Large Amplitude Shape Dynamics: Fission and Heavy Ion Fusion (INT-13-3) September 23 - November 15, 2013
G.F. Bertsch, W. Nazarewicz, A.N. Andreyev, W. Loveland

- 2013 Workshops

Nuclear Structure and Dynamics at Short Distances
February 11-22, 2013
R. Ent, G. A. Miller, M. Sargsian, J. P. Vary

Nuclear Reactions from Lattice QCD
March 11-12, 2013
R. Briceno, Z. Davoudi, T. Luu

Neutrino-Nucleus Interaction for Next Generation Neutrino Oscillation Experiments
December 3-13, 2013
G. Garvey, D. Harris, C. Mauger, J. Morfin, H. A. Tanaka, R. Tayloe, G. P. Zeller

Acknowledgements

- Zohreh Davouol \& Marth Savage
- Mchael Doring Max lansen. Alan Jamison, David Kaplan, Huey, Wen Eh, Akak Rusetsky, \& Steve Sharpe

THANKS!

