MIT Lattice Club Nov. 21, 2012

Towards Nuclear Reactions from Lattice QCD

Raúl Briceño

(in collaboration with Zohreh Davoudi)

Paving the Road From QCD to Nuclear Reactions

Fusion

Inertial Confinement Fusion Target (NIF)

Stars, Supernovae, Neutron Stars

Solar Dynamics Observatory (NASA)

Sequoia (LLNL)

Spectrum

Lattice QCD

L

Movie by José Rodríguez

 $a \rightarrow$

- Numerical solution
- Finite periodic Euclidean spacetime
- Consider continuum limit
- Maiani-Testa theorem (1990)
- Lüscher (1991) : $E_L, m \to \delta(q^*)$

Community effort!

Analytical

Numerics

Actions, observables, systematics,...

Inversion algorithms, code development, production,...

Status Report: Spectrum

 $m_{\pi} = m_K \sim 800 \mathrm{MeV}$

high statistics

Status Report: Spectrum

 $m_{\pi} \sim 510 \text{MeV}$ L = 2.9 - 5.8 fm

Status Report: A glimpse into the future

 $C(t) = Z_0 e^{-tE_0} + \cdots$

low statistics ~ 250 configurations

Detmold and Orginos (2012)

Bound to unbound?

Expected spectrum for the $J^{\pi} = 0^{+4}$ He sector.

If we did obtain this spectrum, what would it mean?

NPLQCD (2012): Beane et al.

Optimistic yet Cautious!

Numerical Observation:

• Below break-up: 3-Body → Lüscher [Bour, Hammer, Lee, Meißner (2012)]

Questions/Issues:

- Proof?
- Validity of Lüscher?
- Compact two-particle states? [Guo, Dudek, Edwards, Szczepaniak (2012)]
- FV effects from off-shell states?
- Partial wave mixing? [Kreuzer, Hammer, Greißhammer (2009-2012)]
- Model independent break-up/recombination?

Coupled Channels: 2-Body

Coupled Channels: 2-Body

 $f_0(980), a_0(980) : \{\pi\pi, 4\pi, 6\pi, K\bar{K}, \ldots\}$

- Two-channels: 2 phases + 1 mixing angle
- Boosted systems*

*Rummukainen and Gottlieb (1995) / Kim, Sachrajda, and Sharpe (2005)

 $\pi\pi - KK$

 $[m_{\pi} \sim 310 \text{MeV}, \text{m}_{\text{K}} \sim 530 \text{MeV}]$

- Bellow 4 pion threshold
- Spectrum from poles of:

relativistic two particle propagator

$$\begin{pmatrix} (\mathbf{X} \times \mathbf{X} \\ \mathbf{X} \times \mathbf{I} \end{pmatrix} = \begin{pmatrix} (\mathbf{X} \times \mathbf{X} \\ \mathbf{X} \times \mathbf{I} \end{pmatrix} + \begin{pmatrix} (\mathbf{X} \times \mathbf{X} \\ \mathbf{X} \times \mathbf{I} \end{pmatrix} \begin{pmatrix} \mathbf{V} & \mathbf{0} \\ \mathbf{V} & \mathbf{0} \end{pmatrix} \begin{pmatrix} (\mathbf{X} \times \mathbf{X} \\ \mathbf{X} \times \mathbf{I} \end{pmatrix}$$

FV Scattering Amplitude

s-channel 2PI

• Quantization condition (RB & Zohreh Davoudi arXiv:1204.1110):

$$\det\left(\mathcal{M}^{-1} + \delta \mathcal{G}^V\right) = 0$$

Holds for arbitrary numbers of channels

IV Scattering Amplitude

Kinematic function (L, E*,m)

• Derived independently by Max Hansen and Steve Sharpe (2012)

NN Weak Matrix Elements

- Axial vector current: $A^{\mu=3} = \frac{1}{2} \left(\bar{u}\gamma^3\gamma^5 u \bar{d}\gamma^3\gamma^5 d \right)$
 - 2-Body ~ dominant uncertainty in deuteron break-up
- Detmold & Savage (2004): background field
 - ${}^{1}S_{0} {}^{3}S_{1}$ coupled channels
- 5-point correlation functions

reaction in FV

Unto the 3-Body Problem

Unto the 3-Body Problem

Scalar sector

• $J_d = 0$

2-body contact interactions

• Dimer formalism: 3 = 2+1 [Kaplan (1997)]

• Simplification comes at a cost:

J_d J_{dB}

Infinite vs. Finite Volume Spectrum

Infinite vs. Finite Volume Spectrum

FV spectrum is ALWAYS discretized No cuts/integrals Only poles/sums

"Lüscher poles"

Some Technicalities

Spectrum from poles of correlation function

3-particle creation amplitude

- Two loop diagrams:
- $A_{3} V K_{3} V A_{3} = A_{3} V V A_{3} + A_{3} V V A_{4}$

Cut in IV

3-body interaction

Kernel

- Only dimer poles contribute!
- Loops decouple!

Poles canceled by zeros of dimer

Poles in FV

2-body interaction

Some Technicalities

Finite volume "scattering amplitude"

"Scattering amplitude" between boson and finite volume dimer

$$\mathcal{M}_{V}^{V} = \mathcal{K}_{3} + \mathcal{K}_{3} V \mathcal{M}_{V}^{V}$$

 $\widetilde{\mathcal{M}_{V}^{\infty}} = \widetilde{K_{3}} + \widetilde{K_{3}} \infty \widetilde{\mathcal{M}_{V}^{\infty}}$

Poles determine spectrum in finite volume

Continuous bosondimer relative momenta

Finite volume dimer

Infinite volume scattering amplitude

Disagreement with Guo et al. (2012)

boson

Three-Body Result

 $\det\left(\mathcal{M}_V^{\infty-1} + \delta \mathcal{G}^V\right)$

triboson

"Scattering amplitude" between boson and finite volume dimer

Diagonal in angular momentum

Mixed the three particle states (coupled-channels)

Three-particle states:

Kinematic function of (L, E_L)

Mixes angular momentum

Diagonal in the three particle states

diboson

Recovering Lüscher

 3π

 $\mathcal{M}_{dB} = \frac{3\pi}{m} \frac{1}{q_{dB}^* \cot \delta_{dB} - iq_{dB}^*}$

(Negative energies, deeply bound diboson)

• Below break-up:

• CM momentum: $q_{dB}^{*2} \equiv \frac{4m}{3} \left(E^* + \frac{\gamma_d^{*2}}{m} \right)$

• Quantization condition:

$$q_{dB}^* \cot \delta_{dB} = \frac{1}{\pi L} S^P \left(\left(q_{dB}^* L / 2\pi \right)^2 \right)$$

diboson binding

energy in the

moving frame

Consistent with Bour et al. (2012)

~ Boosted Zeta function for two particles with m₂=2m₁

$$S^P\left(\tilde{p}^2\right) = \sum_{\mathbf{n}}^{\Lambda_n} \frac{1}{(\mathbf{n} - L\mathbf{P}/6\pi)^2 - \tilde{p}^2} - 4\pi\Lambda_n$$

Bound states:

$$\gamma_{dB} + q_{dB}^* \cot \delta_{dB} |_{q_{dB}^{*2} = -\gamma_{dB}^2} = \mathcal{O}(e^{-\gamma_{dB}L})$$

Exponential Corrections

• Finite volume dimer:

Obtained from 3particle spectrum

$$\delta^L_{dB} = \delta^\infty_{dB} + \mathcal{O}(e^{-\gamma^*_d L})$$

off-shell

• Excited state:

 $q_{E^*,1}^{*2} \equiv \frac{4}{3}(E^*m - q_1^{*2}) < 0$

Extrapolate to infinite volume!

Dimer is NOT compact [Guo et al. (2012)]

Included in quantization condition

• For positive energies: FV effects are power-law

Corrections $\sim e^{-2L\sqrt{(q_1^{*2}-E^*m)/3}}$

Boosts

Symmetry is reduced:

Boson-diboson CM:

- diboson is boosted: $J_d = \{0, 2, 4, ...\}$
- dB is unboosted: $J_{dB} = \{0, 4, 6, ...\}$

Boson-diboson Boosted: • $J_{dB} = \{0, 1, 2, ...\}$

Bour et al. (2011), Davoudi & Savage (2011), Fu (2012): Boosted two-particle system with different masses

Take-Home Message

- FV spectrum is ALWAYS discretized
- 3-Body quantization condition reduces to Luscher-like equation

 $\longleftrightarrow \quad \delta^L_{dB} = \delta^\infty_{dB} + \mathcal{O}(e^{-\gamma^*_d L})$

- $\{E_L^*, a_d, r_d\} \to \{q_{dB}^*, q_d^*, \delta_{dB}^L\}$
- Boson-diboson phase shift has *large* FV effects

- Requires extrapolation
- •Partial wave mixing: J = 2 (unboosted), J = 1 (boosted)
- Three-body problem requires caution!

In progress...

- Above threshold!
- Nuclear sector

- Partial wave mixing due to boost
- Cubic dimer propagator

INSTITUTE FOR NUCLEAR THEORY

Home | Contact | Search | Site Map

How to participate
Info for Organizers
Program archive

Programs & Workshops

2012 Programs

March C. Ba

Quah

May 6

A. An

Juhe

F./Pe

Ad

Light Nuclei from First Principles (INT-12-3) September 17 - November 16, 2012 N. Barnea, D. Lee, L. Platter

Visitor Info

Schools & Workshops

Jobs

People

About Us

Friends of the INT

NAC

UNEDF

Links

Safety

2013 Programs

Computational and Theoretical Advances for Exotic Isotopes in the Medium Mass Region (INT-13-1a)

Nuclear Reactions from Lattice QCD March 11-12, 2013 R. Briceno, Z. Davoudi, T. Luu

August 5 - August 30, 2013 D. Gazit, W. Haxton, A. Schwenk, N. Tolich

Quantitative Large Amplitude Shape Dynamics: Fission and Heavy Ion Fusion (INT-13-3) September 23 - November 15, 2013 G.F. Bertsch, W. Nazarewicz, A.N. Andreyev, W. Loveland

2013 Workshops

Nuclear Structure and Dynamics at Short Distances February 11-22, 2013 R. Ent, G. A. Miller, M. Sargsian, J. P. Vary

Nuclear Reactions from Lattice QCD March 11-12, 2013

R. Briceno, Z. Davoudi, T. Luu

Neutrino-Nucleus Interaction for Next Generation Neutrino Oscillation Experiments December 3-13, 2013 G. Garvey, D. Harris, C. Mauger, J. Morfin, H. A. Tanaka, R. Tayloe, G. P. Zeller

(Last modified 9/13/2012)

Acknowledgements

- Zohreh Davoudi & Martin Savage
- Michael Döring, Max Hansen, Alan Jamison, David Kaplan, Huey-Wen Lin, Akaki Rusetsky, & Steve Sharpe

THANKS!