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Wilson's Lattice Gauge Theory



Wilson's classical link variables
U = exp(Gu(x + &22)) € SU(N), SO(N), Sp(N)
and their behavior under gauge transformations
Q. Quyp
T Uz T+ [

Wy = U, QL

Resulting anti-Hermitean non-Abelian vector potential

Gu(x) = igG/j(x)%, ae{l,2,...,dg}
and its behavior under gauge transformations
26u(x) = Q(x)(Gul(x) + 8,)Qx)"
Non-Abelian field strength
G (%) = 0,6y (x) = 0, Gu(x) + [Gu(x), Gy ()]
and its behavior under gauge transformations

26, (x) = Qx) G (x)Q(x)!
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Gauge invariant plaquette action

1
S =~z 37 (U U UL, 5, UL, + hic)

X7M<V
Classical continuum limit

S[U] - —/d4x TH( G G )

Functional integral using Haar measure
7= H/ dUy. . exp(—S[U])

defines a quantum fleld theory using continuous classical field
variables as fundamental degrees of freedom. Wilson (1974)
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Quantum Link Models



U(1) quantum link model
Tep
T Uz T+ [
U=S+iS=5,, U =5-iS=5_
Generator E of U(1) gauge transformations
[E,U]=U, [E,U"]=-U' E=S3 [U,U]=2E
Generator of U(1) gauge transformations

Gx = Z(Ex—ﬂ,u — Exp)

o
U(1)-invariant Hamiltonian “action” operator

H=-J>" (UulspnUl,, UL, +he), [H,Gl=0
X, u<v
Functional integral of a quantum link model
Z = Trexp(—fpH)
defines a gauge theory using discrete quantum variables
Chandrasekharan, UJW, Nucl. Phys. B492 (1997) 455



Spectrum of the U(1) quantum link model on a 2 x 2 lattice
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Ground state of the quantum link model on a 2 x 2 lattice
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Banerjee, Widmer, UJW



Spectra for H = —J > (Un + UL) + Ao (Un + UL)?
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Spectra for H = —J > (Un + UL) + Ao (Un + UL)?
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state splitting as a function of the lattice volume
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Numerical simulation of a (2 + 1)-d U(1) quantum link model
with the first efficient cluster algorithm for a gauge theory
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The system has a second order finite-temperature phase transition in the
universality class of the 2-d Ising model, at which charge conjugation is
spontaneously broken. Classical simulations can be used to validate a
corresponding quantum simulator.

Chandrasekharan, Gerber, Pepe, Stebler, UJW
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and Balents in the context of spin liquids

© 2009: Design of a U(1) quantum link simulator with Rydberg ions by
Weimer, Miiller, Lesanovsky, Zoller, and Blichler



U(N) quantum link operators
UY = Sj+isy, Ut = S7—iSY, i,j € {1,2,.... N}, [UT (UN¥] #£0
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U(N) quantum link operators
UY = Sj+isy, Ut = S7—iSY, i,j € {1,2,.... N}, [UT (UN¥] #£0
SU(N), x SU(N)g gauge transformations of a quantum link
[L2, LP] = ifypc L€, [R?, RP] = ifype RS, a,b,c € {1,2,..., N> — 1}
(L%, R°] = [L° E] =[R%,E] =0
Infinitesimal gauge transformations of a quantum link
[L2,U] = —\2U, [R?, U] = UN?, [E,U] = U

Algebraic structures of different quantum link models

U(N):UY, L2, R? E, 2N?4+2(N?—1)+1 = 4N?>—1 SU(2N) generators

D) = N(2N—1) SO(2N) generators

SO(N): 0¥, L2, R?, N2+2N(N2_

Sp(N): UY, 12, R? 4N242N(2N+1) = 2N(4N+1) Sp(2N) generators
Brower, Chandrasekharan, UJW, Phys. Rev. D60 (1999) 094502



Consequences for non-Abelian quantum link simulators

e U(1) embedded in SU(2): minimal representation {2}

e U(2) embedded in SU(4): minimal representation {4}

e U(3) embedded in SU(6): minimal representation {6}

e SU(2) embedded in SU(4): minimal representation {6}

e SU(3) embedded in SU(6): minimal representation {20}

e Sp(1) = SU(2) embedded in Sp(2) = SO(5): minimal rep. {4}
e 50(3) = SU(2) embedded in SO(6) = SU(4): minimal rep. {4}

A non-Abelian gauge theory quantum simulator requires at least
4 states per link.



Generator of SU(N) gauge transformations

Gl = Z(Rj i T L)
n
U(N)-invariant Hamiltonian “action” operator

H=—-1Y Tr(UeplsppUl,, UL, +he), [H G =0
X,pu<v
Functional integral of a quantum link model
Z = Trexp(—fSH)
defines a quantum field theory using discrete variables



Low-energy effective action of a quantum link model

p 1 1
S[G,] :/O dX5/d4x 522 <Tr Guw Gus + 5 Tr a5cﬂa5cu> , Gs =0
undergoes dimensional reduction from 4 4+ 1 to 4 dimensions

1 g 1 (24772ﬂ>
~ exp

4 _
S[G,] — /d 52Tt Gl 2= 5 & il

4-d ordinary lattice
gauge theory

5-d quantum link model
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“Rishon Abacus” as a Quantum Simulator



Fermionic rishons at the two ends of a link

{C)’o Cﬁ} = 5Xy5U7 {C)’o ij} = {C)’j? CilfT} =0
Rishon representation of link algebra
c a

€T

T Uij Yy
Ul — cidt 12 — it ad R? — cityed E _l(ifi_ifi)
by = &6 Ly = alNjao Ry = ¢/Xjq, By = 5(g/q—clc
Can a “rishon abacus” implemented in ultra-cold atoms or
trapped ions be used as a quantum simulator?

Tr Up

detU,



Outline

Atomic Quantum Simulator for (1 + 1)-d U(1) Gauge Theory
Coupled to Fermionic Matter



Hamiltonian for staggered fermions and U(1) quantum links
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Hamiltonian for staggered fermions and U(1) quantum links

2
H=—t Z [1/11 U141 + h.c.} +m Z(—l)xwlwx+gj Z EE;X“

Bosonic rishon representation of the quantum links

1
Ut = bublyy, Exwrt = 5 (bl41bess — blby)

Gauge generator

1
GX:nf+n)1<+n)2<—25+§[(—1)x—1]

Microscopic Hubbard model Hamiltonian

Fl = thx+1+zhxx+l+mz 5+UZE)E

= —tBZ bLbL , —tg > b2 +1—tFZ¢X¢X+1+hc.

x odd X even

+ Zn Uagnﬁ—l—z —1)Uqng

x,a, 3



Optical lattice with Bose-Fermi mixture of ultra-cold atoms
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Quantum simulation of string breaking and quenched dynamics
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Quantum simulation of string breaking and quenched dynamics
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Outline

Quantum Simulator for Non-Abelian Gauge Theories



d-dimensional SU(N) gauge theory with staggered fermions

H o= =t (sowllULu) +he) +m > (1) wifv)
(xy) X

2 72

g g 5

+ 7 Z (Li}’Li}’ + Rijjy) + 7 Z Exy
() (xv)

1
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d-dimensional SU(N) gauge theory with staggered fermions

H = -ty <sxy¢j Ul + h.c.) +m > (~1y iy
() x

2 12

g g 2

+ 7 E :(LiyLiy + Rij?y) + 2 E :Exy
(xv) (xv)

1
- i > (UaxUiyUpzUzy + hoc.) = 7Y~ (detUsy +hc.)
(wxyz) (xy)

Meson, constituent quark, and glueball operators
L ; . P
My =90l Qeak = Cx‘i;j:kw)lm Ptk tl = C g Cr it

form a local U(2d + 1) algebra at each site x, thus providing a
formulation in terms of manifestly SU(N) gauge invariant
objects. However, the conserved rishon number gives rise to a
U(1) gauge symmetry on the links

Ny, = c)’:fc)’; + c}’jc;, [Ny, H =0



1-d SO(3) gauge theory with adjoint staggered fermions

H = —tZ(¢’TOUW+hC>+mZ

(xy)

= -ty ( B! B, +h.c.) +m> (-1
(xy) x



1-d SO(3) gauge theory with adjoint staggered fermions

H = —tZ(w"LOUWJrhc)erZ Y<apifapt

(xy)

= -ty ( B! B, +h.c.) +m> (-1
(xy) x

Majorana rishons in the {4} representation of SO(6)

’J_ a a
03 ax+0" -, L —O'X7+, ny—ay’



1-d SO(3) gauge theory with adjoint staggered fermions

H = —tZ(z/J"LO”W-i-hc)-I-mZ Y<apifapt

(xy)

= —t)_ (Bl.By-+he)+md (-
(xy) x

Majorana rishons in the {4} representation of SO(6)

i a _ a
03 UX+OJ o Ly=03., Ry =o0y_

Meson, baryon, and glueball operators
My =y, Bex =05 11, Ouix=o0) 0

form a local SO(4) algebra at each site x, thus providing a
formulation in terms of manifestly SO(3) gauge invariant
objects, in this case without any additional gauge symmetry
on the links.



Spectrum in the B = 1 sector (including 4-fermion coupling)

Eg vs 2-Momentum in B=1 Sector for L=14
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Spectrum in the B = 1 sector (including 4-fermion coupling)
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Restoration of chiral symmetry at baryon density ng >

AE with constant Baryon density ng
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Conclusions

e The construction of quantum simulators for non-Abelian gauge fields
using quantum links is currently in progress.

e This may allow the quantum simulation of “nuclear” physics and dense
“quark” matter, at least in qualitative toy models for QCD.

e Accessible effects may include chiral symmetry restoration, baryon
superfluidity, or color superconductivity at high baryon density.

e Real-time evolution, for example, the quantum simulation of “heavy
ion” collisions may also become accessible.

e The path towards quantum simulation of QCD will be a long one.
However, with a lot of interesting physics along the way.
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