Few body systems in lattice QCD

William Detmold

From quarks to nuclei

From quarks to nuclei

- Nuclear physics: an emergent phenomenon of the Standard Model

From quarks to nuclei

- Nuclear physics: an emergent phenomenon of the Standard Model
- How do nuclei emerge from QCD?

From quarks to nuclei

- Nuclear physics: an emergent phenomenon of the Standard Model
- How do nuclei emerge from QCD?
- Issues

From quarks to nuclei

- Nuclear physics: an emergent phenomenon of the Standard Model
- How do nuclei emerge from QCD?
- Issues
- Recent progress

Nuclear physics from LQCD

Nuclear physics from LQCD

- Can we compute the mass of ${ }^{208} \mathrm{~Pb}$ in QCD ?

Nuclear physics from LQCD

- Can we compute the mass of ${ }^{208} \mathrm{~Pb}$ in QCD ?
- Yes

Nuclear physics from LQCD

- Can we compute the mass of ${ }^{208} \mathrm{~Pb}$ in QCD ?
- Yes

$$
\langle 0| T q_{1}(t) \ldots q_{624}(t) \bar{q}_{1}(0) \ldots \bar{q}_{624}(0)|0\rangle
$$

Nuclear physics from LQCD

- Can we compute the mass of ${ }^{208} \mathrm{~Pb}$ in QCD ?
- Yes

$$
\langle 0| T q_{1}(t) \ldots q_{624}(t) \bar{q}_{1}(0) \ldots \bar{q}_{624}(0)|0\rangle
$$

- Long time behaviour gives ground state energy up to EW effects

$$
\xrightarrow{t \rightarrow \infty} \# \exp \left(-M_{P b} t\right)
$$

Nuclear physics from LQCD

- Can we compute the mass of ${ }^{208} \mathrm{~Pb}$ in QCD ?
- Yes

$$
\langle 0| T q_{1}(t) \ldots q_{624}(t) \bar{q}_{1}(0) \ldots \bar{q}_{624}(0)|0\rangle
$$

- Long time behaviour gives ground state energy up to EW effects

$$
\xrightarrow{t \rightarrow \infty} \# \exp \left(-M_{P b} t\right)
$$

- But...

An (exponentially hard) ${ }^{2}$ problem?

An (exponentially hard) ${ }^{2}$ problem?

- Complexity: number of

Wick contractions $=(A+Z)!(2 A-Z)$!

An (exponentially hard) ${ }^{2}$ problem?

- Complexity: number of Wick contractions $=(A+Z)!(2 A-Z)$!

- Dynamical range of scales (numerical precision)

An (exponentially hard) ${ }^{2}$ problem?

- Complexity: number of Wick contractions $=(A+Z)!(2 A-Z)$!

- Dynamical range of scales (numerical precision)
- Small energy splittings

An (exponentially hard) ${ }^{2}$ problem?

- Complexity: number of Wick contractions $=(A+Z)!(2 A-Z)$!

- Dynamical range of scales (numerical precision)
- Small energy splittings
- Importance sampling: statistical noise exponentially increases with A

The trouble with baryons

- Importance sampling of QCD functional integrals > correlators determined stochastically
- Variance in single nucleon correlator (C) determined by

$$
\sigma^{2}(C)=\left\langle C C^{\dagger}\right\rangle-|\langle C\rangle|^{2}
$$

- For nucleon:
$\frac{\text { signal }}{\text { noise }} \sim \exp \left[-\left(M_{N}-3 / 2 m_{\pi}\right) t\right]$
- For nucleus A :

$$
\frac{\text { signal }}{\text { noise }} \sim \exp \left[-A\left(M_{N}-3 / 2 m_{\pi}\right) t\right]
$$

The trouble with baryons

- Importance sampling of QCD functional integrals - correlators determined stochastically
- Variance in single nucleon correlator (C) determined by

$$
\sigma^{2}(C)=\left\langle C C^{\dagger}\right\rangle-|\langle C\rangle|^{2}
$$

- For nucleon:
$\frac{\text { signal }}{\text { noise }} \sim \exp \left[-\left(M_{N}-3 / 2 m_{\pi}\right) t\right]$
- For nucleus A :

$$
\frac{\text { signal }}{\text { noise }} \sim \exp \left[-A\left(M_{N}-3 / 2 m_{\pi}\right) t\right]
$$

The trouble with baryons

High statistics study using anisotropic lattices (fine temporal resolution)

The trouble with baryons

High statistics study using anisotropic lattices (fine temporal resolution)

Golden window of time-slices where signal/noise const

No? trouble with baryons

High statistics study using anisotropic lattices (fine temporal resolution)

Golden window of time-slices where signal/noise const

No? trouble with baryons

High statistics study using anisotropic lattices (fine temporal resolution)

Golden window of time-slices where signal/noise const

Interpolator choice can be used to suppress noise

Multi-baryon systems

- Scattering and bound states
- NB: Strong interaction bound states
- Dibaryons : H, deuteron, $\boldsymbol{\Xi} \boldsymbol{\Xi}$
- ${ }^{3} \mathrm{H},{ }^{4} \mathrm{He}$ and more exotic: ${ }^{4} \mathrm{He}_{\wedge},{ }^{4} \mathrm{He}_{\mu}, \ldots$.
- Correlators for significantly larger A
- Caveat: at unphysical quark masses no electroweak interactions

Bound states at finite volume

- Two particle scattering amplitude in infinite volume

$$
\mathcal{A}(p)=\frac{8 \pi}{M} \frac{1}{p \cot \delta(p)-i p}
$$

bound state at $p^{2}=-\gamma^{2}$ when $\cot \delta(i \gamma)=i$

- Scattering amplitude in finite volume (Lüscher method)

$$
\cot \delta(i \kappa)=i-i \sum_{\vec{m} \neq 0} \frac{e^{-|\vec{m}| \kappa L}}{|\vec{m}| \kappa L} \quad \kappa \stackrel{L \rightarrow \infty}{\longrightarrow} \gamma
$$

- Need multiple volumes
- More complicated for $\mathrm{n}>2$ body bound states

H-dibaryon

- Jaffe [1977]: chromo-magnetic interaction

$$
\left\langle H_{m}\right\rangle \sim \frac{1}{4} N(N-10)+\frac{1}{3} S(S+1)+\frac{1}{2} C_{c}^{2}+C_{f}^{2}
$$

most attractive for spin, colour, flavour singlet

- H-dibaryon (uuddss) J=I=0, s=-2 most stable

$$
\Psi_{H}=\frac{1}{\sqrt{8}}(\Lambda \Lambda+\sqrt{3} \Sigma \Sigma+2 \Xi N)
$$

- Bound in a many hadronic models
- Experimental searches
- Emulsion expts, heavy-ion, stopped kaons
- No conclusive evidence for or against

H dibaryon in QCD

- Early quenched studies on small lattices: mixed results [Mackenzie et al. 85, Iwasaki et al. 89, Pochinsky et al. 99, Wetzorke \& Karsch 03, Luo et al. 07, Loan I I]
- Semi-realistic calculations
- "Evidence for a bound H dibaryon from lattice QCD" PRL I06, 16200। (201I)
$N_{f}=2+1, \quad a_{s}=0.12 \mathrm{fm}, \quad m_{\pi}=390 \mathrm{MeV}, \quad L=2.0,2.5,3.0,3.9 \mathrm{fm}$
- "Bound H dibaryon in flavor SU(3) limit of lattice QCD" * PRL I 06, I 62002 (20| I)
$N_{f}=3, \quad a_{s}=0.12 \mathrm{fm}, \quad m_{\pi}=670,830,10 \mid 5 \mathrm{MeV}, \quad L=2.0,3.0,3.9 \mathrm{fm}$

- NB: Quark masses unphysical, single lattice spacing

H dibaryon in QCD

- Extract energy eigenstates from large Euclidean time behaviour of two-point correlators

$$
\begin{aligned}
& C_{\Lambda}(t)=\sum_{\mathbf{x}}\langle 0| \chi(\mathbf{x}, t) \bar{\chi}(0)|0\rangle \xrightarrow{t \rightarrow \infty} Z_{\Lambda} e^{-M_{\Lambda} t} \\
& C_{\Lambda \Lambda}(t)=\sum_{\mathbf{x}}\langle 0| \phi(\mathbf{x}, t) \bar{\phi}(0)|0\rangle \xrightarrow{t \rightarrow \infty} Z_{\Lambda \Lambda} e^{-E_{\Lambda \Lambda} t}
\end{aligned}
$$

$$
R(t)=\frac{C_{\Lambda \Lambda}(t)}{C_{\Lambda}^{2}(t)} \xrightarrow{t \rightarrow \infty} \widetilde{Z} e^{-\Delta E_{\Lambda \Lambda} t}
$$

- Correlator ratio allows direct access to energy shift

Simple extrapolations

- After volume extrapolation H bound at unphysical quark masses
- Quark mass extrapolation is uncertain and unconstrained

$$
\begin{aligned}
B_{H}^{\text {quad }} & =+11.5 \pm 2.8 \pm 6.0 \mathrm{MeV} \\
B_{H}^{\text {lin }} & =+4.9 \pm 4.0 \pm 8.3 \mathrm{MeV}
\end{aligned}
$$

- Other extrapolations, see [Shanahan,Thomas \& Young PRL. I 07 (20II) 092004, Haidenbauer \& Meissner I I 09.3590]
- Suggests H is weakly bound or just unbound

* 230 MeV point preliminary (one volume)

Deuteron

- Deuteron also investigated
- NPLQCD
- PACS-CS
- More work needed at lighter masses

Deuteron

- Deuteron also investigated
- NPLQCD
- PACS-CS
- More work needed at lighter masses

Many baryon systems

- Many baryon correlator construction is somewhat messy
- Interpolating fields - minimal expression as weighted sums

$$
\overline{\mathcal{N}}^{h}=\sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \sum_{\mathbf{i}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} \bar{q}\left(a_{i_{1}}\right) \bar{q}\left(a_{i_{2}}\right) \cdots \bar{q}\left(a_{i_{n_{q}}}\right)
$$

- Generation of weights can be automated (symbolic c++ code) for given quantum numbers
- Specify final quantum numbers (spin, isospin, strangeness etc)
- Build up from states of smaller quantum numbers just by using rules of eg angular momentum addition
- Similar ideas by Doi and Endres [I205.0585]
- Contraction just reads in weights and can be implemented independent of the particular process being considered

Many baryon systems

- Given a complex many baryon system to perform contractions for, always possible to group colour singlets at one end (sink)
- Contractions can be written in terms of baryon blocks (objects that are contracted at sink)
- A particular set of quantum numbers b for the block is select by a weighted sum of components of quark propagators

$$
\begin{aligned}
& \mathcal{B}_{b}^{a_{1}, a_{2}, a_{3}}\left(\mathbf{p}, t ; x_{0}\right)=\sum_{\mathbf{x}} e^{i \mathbf{p} \cdot \mathbf{x}} \sum_{k=1}^{N_{B(b)}} \tilde{w}_{b}^{\left(c_{1}, c_{2}, c_{3}\right), k} \sum_{\mathbf{i}} \epsilon^{i_{1}, i_{2}, i_{3}} \\
& \times S\left(c_{i_{1}}, x ; a_{1}, x_{0}\right) S\left(c_{i_{2}}, x ; a_{2}, x_{0}\right) S\left(c_{i_{3}}, x ; a_{3}, x_{0}\right)
\end{aligned}
$$

- Can be generalised to multi-baryon blocks if desired although storage requirements rapidly increase

Many baryon systems

$$
\begin{aligned}
{\left[\mathcal{N}_{1}^{h}(t) \overline{\mathcal{N}}_{2}^{h}(0)\right]_{U}=\int } & \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{Q C D}[U]} \sum_{k^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} q\left(a_{j_{n_{q}}}^{\prime}\right) \cdots q\left(a_{j_{2}}^{\prime}\right) q\left(a_{j_{1}}^{\prime}\right) \times \bar{q}\left(a_{i_{1}}\right) \bar{q}\left(a_{i_{2}}\right) \cdots \bar{q}\left(a_{i_{n_{q}}}\right)
\end{aligned}
$$

Many baryon systems

- Contractions

$$
\begin{aligned}
{\left[\mathcal{N}_{1}^{h}(t) \overline{\mathcal{N}}_{2}^{h}(0)\right]_{U}=\int } & \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{Q C D}[U]} \sum_{k^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} q\left(a_{j_{n_{q}}}^{\prime}\right) \cdots q\left(a_{j_{2}}^{\prime}\right) q\left(a_{j_{1}}^{\prime}\right) \times \bar{q}\left(a_{i_{1}}\right) \bar{q}\left(a_{i_{2}}\right) \cdots \bar{q}\left(a_{i_{n_{q}}}\right)
\end{aligned}
$$

Many baryon systems

- Contractions

$$
\begin{aligned}
{\left[\mathcal{N}_{1}^{h}(t) \overline{\mathcal{N}}_{2}^{h}(0)\right]_{U}=} & \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{Q C D}[U]} \sum_{k^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} q\left(a_{j_{n_{q}}}^{\prime}\right) \cdots q\left(a_{j_{2}}^{\prime}\right) q\left(a_{j_{1}}^{\prime}\right) \times \bar{q}\left(a_{i_{1}}\right) \bar{q}\left(a_{i_{2}}\right) \cdots \bar{q}\left(a_{i_{n_{q}}}\right) \\
= & e^{-\mathcal{S}_{e f f}[U]} \sum_{k_{w}^{\prime}}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n q}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} S\left(a_{j_{1}}^{\prime} ; a_{i_{1}}\right) S\left(a_{j_{2}}^{\prime} ; a_{i_{2}}\right) \cdots S\left(a_{j_{n_{q}}}^{\prime} ; a_{i_{n_{q}}}\right)
\end{aligned}
$$

Many baryon systems

- Contractions

$$
\begin{aligned}
{\left[\mathcal{N}_{1}^{h}(t) \overline{\mathcal{N}}_{2}^{h}(0)\right]_{U}=} & \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{Q C D}[U]} \sum_{k^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} q\left(a_{j_{n_{q}}}^{\prime}\right) \cdots q\left(a_{j_{2}}^{\prime}\right) q\left(a_{j_{1}}^{\prime}\right) \times \bar{q}\left(a_{i_{1}}\right) \bar{q}\left(a_{i_{2}}\right) \cdots \bar{q}\left(a_{i_{n_{q}}}\right) \\
= & e^{-\mathcal{S}_{e f f}[U]} \sum_{k_{w}^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} S\left(a_{j_{1}}^{\prime} ; a_{i_{1}}\right) S\left(a_{j_{2}}^{\prime} ; a_{i_{2}}\right) \cdots S\left(a_{j_{n_{q}}}^{\prime} ; a_{i_{n_{q}}}\right)
\end{aligned}
$$

- Make a particular choice of correlation function (momentum projection at sink) and express in terms of blocks (quark-hadron level contraction)

Many baryon systems

- Contractions

$$
\begin{aligned}
{\left[\mathcal{N}_{1}^{h}(t) \overline{\mathcal{N}}_{2}^{h}(0)\right]_{U}=} & \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{Q C D}[U]} \sum_{k^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} q\left(a_{j_{n_{q}}}^{\prime}\right) \cdots q\left(a_{j_{2}}^{\prime}\right) q\left(a_{j_{1}}^{\prime}\right) \times \bar{q}\left(a_{i_{1}}\right) \bar{q}\left(a_{i_{2}}\right) \cdots \bar{q}\left(a_{i_{n_{q}}}\right) \\
= & e^{-\mathcal{S}_{e f f}[U]} \sum_{k^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} S\left(a_{j_{1}}^{\prime} ; a_{i_{1}}\right) S\left(a_{j_{2}}^{\prime} ; a_{i_{2}}\right) \cdots S\left(a_{j_{n_{q}}}^{\prime} ; a_{i_{n_{q}}}\right)
\end{aligned}
$$

- Make a particular choice of correlation function (momentum projection at sink) and express in terms of blocks (quark-hadron level contraction)

Many baryon systems

$$
\begin{aligned}
{\left[\mathcal{N}_{1}^{h}(t) \overline{\mathcal{N}}_{2}^{h}(0)\right]_{U}=} & \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{Q C D}[U]} \sum_{k^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} q\left(a_{j_{n_{q}}}^{\prime}\right) \cdots q\left(a_{j_{2}}^{\prime}\right) q\left(a_{j_{1}}^{\prime}\right) \times \bar{q}\left(a_{i_{1}}\right) \bar{q}\left(a_{i_{2}}\right) \cdots \bar{q}\left(a_{i_{n_{q}}}\right) \\
= & e^{-\mathcal{S}_{e f f}[U]} \sum_{k_{w}^{\prime}=1}^{N_{w=1}^{\prime}} \sum_{k w}^{N_{w}} \tilde{w}_{h}^{\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} S\left(a_{j_{1}}^{\prime} ; a_{i_{1}}\right) S\left(a_{j_{2}}^{\prime} ; a_{i_{2}}\right) \cdots S\left(a_{j_{n_{q}}}^{\prime} ; a_{i_{n_{q}}}\right)
\end{aligned}
$$

Many baryon systems

- Contractions

$$
\begin{aligned}
{\left[\mathcal{N}_{1}^{h}(t) \overline{\mathcal{N}}_{2}^{h}(0)\right]_{U}=} & \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{Q C D}[U]} \sum_{k^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} q\left(a_{j_{n_{q}}}^{\prime}\right) \cdots q\left(a_{j_{2}}^{\prime}\right) q\left(a_{j_{1}}^{\prime}\right) \times \bar{q}\left(a_{i_{1}}\right) \bar{q}\left(a_{i_{2}}\right) \cdots \bar{q}\left(a_{i_{n_{q}}}\right) \\
= & e^{-\mathcal{S}_{e f f}[U]} \sum_{k_{w}^{\prime}=1}^{N_{w=1}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} S\left(a_{j_{1}}^{\prime} ; a_{i_{1}}\right) S\left(a_{j_{2}}^{\prime} ; a_{i_{2}}\right) \cdots S\left(a_{j_{n_{q}}}^{\prime} ; a_{i_{n_{q}}}\right)
\end{aligned}
$$

Many baryon systems

- Contractions

$$
\begin{aligned}
{\left[\mathcal{N}_{1}^{h}(t) \overline{\mathcal{N}}_{2}^{h}(0)\right]_{U}=} & \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{Q C D}[U]} \sum_{k^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} q\left(a_{j_{n_{q}}}^{\prime}\right) \cdots q\left(a_{j_{2}}^{\prime}\right) q\left(a_{j_{1}}^{\prime}\right) \times \bar{q}\left(a_{i_{1}}\right) \bar{q}\left(a_{i_{2}}\right) \cdots \bar{q}\left(a_{i_{n_{q}}}\right) \\
= & e^{-\mathcal{S}_{e f f}[U]} \sum_{k_{w}^{\prime}=1}^{N_{w=1}^{\prime}} \sum_{k w}^{N_{w}} \tilde{w}_{h}^{\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} S\left(a_{j_{1}}^{\prime} ; a_{i_{1}}\right) S\left(a_{j_{2}}^{\prime} ; a_{i_{2}}\right) \cdots S\left(a_{j_{n_{q}}}^{\prime} ; a_{i_{n_{q}}}\right)
\end{aligned}
$$

- Or write as determinant (quark-quark level contraction)

$$
\left\langle\mathcal{N}_{1}^{h}(t) \overline{\mathcal{N}}_{2}^{h}(0)\right\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D U} e^{-\mathcal{S}_{e f f}} \sum_{k^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \operatorname{det} G\left(\mathbf{a}^{\prime} ; \mathbf{a}\right)
$$

where

$$
G\left(\mathbf{a}^{\prime} ; \mathbf{a}\right)_{j, i}= \begin{cases}S\left(a_{j}^{\prime} ; a_{i}\right) & a_{j}^{\prime} \in \mathbf{a}^{\prime} \text { and } a_{i} \in \mathbf{a} \\ \delta_{a_{j}^{\prime}, a_{i}} & \text { otherwise }\end{cases}
$$

Many baryon systems

- Contractions

$$
\begin{aligned}
{\left[\mathcal{N}_{1}^{h}(t) \overline{\mathcal{N}}_{2}^{h}(0)\right]_{U}=} & \int \mathcal{D} q \mathcal{D} \bar{q} e^{-S_{Q C D}[U]} \sum_{k^{\prime}=1}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n q}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} q\left(a_{j_{n_{q}}}^{\prime}\right) \cdots q\left(a_{j_{2}}^{\prime}\right) q\left(a_{j_{1}}^{\prime}\right) \times \bar{q}\left(a_{i_{1}}\right) \bar{q}\left(a_{i_{2}}\right) \cdots \bar{q}\left(a_{i_{n_{q}}}\right) \\
= & e^{-\mathcal{S}_{e f f}[U]} \sum_{k_{w}^{\prime}}^{N_{w}^{\prime}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \\
& \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1}, j_{2}, \cdots, j_{n_{q}}} \epsilon^{i_{1}, i_{2}, \cdots, i_{n_{q}}} S\left(a_{j_{1}}^{\prime} ; a_{i_{1}}\right) S\left(a_{j_{2}}^{\prime} ; a_{i_{2}}\right) \cdots S\left(a_{j_{n_{q}}}^{\prime} ; a_{i_{n_{q}}}\right)
\end{aligned}
$$

- Or write as determinant (quark-quark level contraction)

$$
\left\langle\mathcal{N}_{1}^{h}(t) \overline{\mathcal{N}}_{2}^{h}(0)\right\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D} \mathcal{U} e^{-\mathcal{S}_{e f f}} \sum_{k^{\prime}=1}^{N_{w}^{\gamma}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime\left(a_{1}^{\prime}, a_{2}^{\prime} \cdots a_{n_{q}}^{\prime}\right), k^{\prime}} \tilde{w}_{h}^{\left(a_{1}, a_{2} \cdots a_{n_{q}}\right), k} \times \operatorname{det} G\left(\mathbf{a}^{\prime} ; \mathbf{a}\right)
$$

where

$$
G\left(\mathbf{a}^{\prime} ; \mathbf{a}\right)_{j, i}= \begin{cases}S\left(a_{j}^{\prime} ; a_{i}\right) & a_{j}^{\prime} \in \mathbf{a}^{\prime} \text { and } a_{i} \in \mathbf{a} \\ \delta_{a_{j}^{\prime}, a_{i}} & \text { otherwise }\end{cases}
$$

- Determinant can be evaluated in polynomial number of operations (LU decomposition)

Nuclei

- Recent studies at $\mathrm{SU}(3)$ point (physical m_{s})
- Isotropic clover lattices
- Single lattice spacing: 0.145 fm
- Multiple volumes: 3.4, 4.5, 6.7 fm
- High statistics

| Label | L / b | T / b | β | $b m_{q}$ | $b[\mathrm{fm}]$ | $L[\mathrm{fm}]$ | $T[\mathrm{fm}]$ | $m_{\pi}[\mathrm{MeV}]$ | $m_{\pi} L$ | $m_{\pi} T$ | $N_{\text {cfg }}$ | $N_{\text {src }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 24 | 48 | 6.1 | -0.2450 | 0.145 | 3.4 | 6.7 | $806.5(0.3)(0)(8.9)$ | 14.3 | 28.5 | 3822 | 48 |
| B | 32 | 48 | 6.1 | -0.2450 | 0.145 | 4.5 | 6.7 | $806.9(0.3)(0.5)(8.9)$ | 19.0 | 28.5 | 3050 | 24 |
| C | 48 | 64 | 6.1 | -0.2450 | 0.145 | 6.7 | 9.0 | $806.7(0.3)(0)(8.9)$ | 28.5 | 38.0 | 1212 | 32 |

SU(3) symmetric world

- In flavour $S U(3)$ symmetric case, multi-baryon states come in multiplets

$$
\begin{gathered}
\mathbf{8} \otimes \mathbf{8}=\mathbf{2 7} \oplus \mathbf{1 0} \oplus \overline{\mathbf{1 0}} \oplus \mathbf{8}_{S} \oplus \mathbf{8}_{A} \oplus \mathbf{1} \\
\mathbf{8} \otimes \mathbf{8} \otimes \mathbf{8}=\mathbf{6 4} \oplus 2 \mathbf{3 5} \oplus 2 \overline{\mathbf{3 5}} \oplus 6 \mathbf{2 7} \oplus 4 \mathbf{1 0} \oplus 4 \overline{\mathbf{1 0}} \oplus 8 \mathbf{8} \oplus 2 \mathbf{1} \\
\mathbf{8} \otimes \mathbf{8} \otimes \mathbf{8} \otimes \mathbf{8}=8 \mathbf{1} \oplus 32 \mathbf{8} \oplus 20 \mathbf{1 0} \oplus 20 \overline{\mathbf{1 0}} \oplus 33 \mathbf{2 7} \oplus 2 \mathbf{2 8} \oplus 2 \overline{\mathbf{2 8}} \oplus 15 \mathbf{3 5} \oplus 15 \overline{\mathbf{3 5}} \\
\oplus 12 \mathbf{6 4} \oplus 3 \mathbf{8 1} \oplus 3 \overline{\mathbf{8 1}} \oplus \mathbf{1 2 5}, \\
\mathbf{8} \otimes \mathbf{8} \otimes \mathbf{8} \otimes \mathbf{8} \otimes \mathbf{8}=\mathbf{3 2} \mathbf{1} \oplus 145 \mathbf{8} \oplus 100 \mathbf{1 0} \oplus 100 \overline{\mathbf{1 0}} \oplus 180 \mathbf{2 7} \oplus 20 \mathbf{2 8} \oplus 20 \overline{\mathbf{2 8}} \\
\oplus 100 \mathbf{3 5} \oplus 100 \overline{\mathbf{3 5}} \oplus 94 \mathbf{6 4} \oplus 5 \mathbf{8 0} \oplus 5 \overline{\mathbf{8 0}} \oplus 36 \mathbf{8 1} \oplus 36 \overline{\mathbf{8 1}} \\
\oplus 20 \mathbf{1 2 5} \oplus 4 \mathbf{1 5 4} \oplus 4 \overline{\mathbf{1 5 4}} \oplus \mathbf{2 1 6} .
\end{gathered}
$$

- Unphysical symmetries manifest in spectrum

Nuclei (A=2)

Quark-hadron contraction method

NPLQCD arXiv: I 206.5219

Nuclei (A=2)

Quark-hadron contraction method

Nuclei (A=2,3,4)

Quark-hadron contraction method

Nuclei (A=3,4)

- Empirically investigate volume dependence
- Need to ask if this is a $2+1$ or $3+1$ or $2+2$ etc scattering state

Nuclei (A=3,4)

- Empirically investigate volume dependence
- Need to ask if this is a $2+1$ or $3+1$ or $2+2$ etc scattering state

Nuclei (A=2,3,4)

Quark-hadron contraction method

Nuclei (A=2,3,4)

Quark-hadron contraction method

d, nn, ${ }^{3} \mathrm{He},{ }^{4} \mathrm{He}$

- PACS-CS: bound d,nn, ${ }^{3} \mathrm{He},{ }^{4} \mathrm{He}$
- Previous quenched work
- Recent unquenched study at $\mathrm{m}_{\pi}=500 \mathrm{MeV}$
- HALQCD
- Extract an NN potential
- Strong enough to bind $\mathrm{H},{ }^{4} \mathrm{He}$ at mps $=490 \mathrm{MeV} \mathrm{SU}(3) \mathrm{pt}$
- d, nn not bound

${ }^{4} \mathrm{He}$ binding

Nuclei (A=4,...)

Quark-quark determinant contraction method

Nuclei ($\mathrm{A}=4, . .$.)

Quark-quark determinant contraction method

Nuclei (A=4,...)

Quark-quark determinant contraction method

Density of states ...arrrrgh

- Current challenge is the density of scattering states in multi-hadron systems

- States far below thresholds are OK, but how do we learn about d-d scattering?

Density of states ...arrrrgh

- Current challenge is the density of scattering states in multi-hadron systems

- States far below thresholds are OK, but how do we learn about d-d scattering?

Density of states ...arrrrgh

- Current challenge is the density of scattering states in multi-hadron systems

- States far below thresholds are OK, but how do we learn about d-d scattering?

Issues

- Can we optimise noise suppression systematically
- For large A systems, how do we control the volume, lattice spacing, unphysical quark mass artefacts?
- EFT probably loses control/breaks down for $A>4$
- Maybe just empirically?
- What other kinds of observables can we calculate?
- Structure of bound nuclei

From quarks to nuclei

From quarks to nuclei

- QCD calculations of nuclei are possible

From quarks to nuclei

- QCD calculations of nuclei are possible
- More work needed to get to the physical quark masses

From quarks to nuclei

- QCD calculations of nuclei are possible
- More work needed to get to the physical quark masses
- Need big computers and good ideas

From quarks to nuclei

- QCD calculations of nuclei are possible
- More work needed to get to the physical quark masses
- Need big computers and good ideas

From quarks to nuclei

- QCD calculations of nuclei are possible
- More work needed to get to the physical quark masses
- Need big computers and good ideas
- Where is the field going?

From quarks to nuclei

- QCD calculations of nuclei are possible
- More work needed to get to the physical quark masses
- Need big computers and good ideas
- Where is the field going?
- Strong connections to experimental programs: hypernuclear spectroscopy at JLab, JPARC, FAIR

From quarks to nuclei

- QCD calculations of nuclei are possible
- More work needed to get to the physical quark masses
- Need big computers and good ideas
- Where is the field going?
- Strong connections to experimental programs: hypernuclear spectroscopy at JLab, JPARC, FAIR
- Answer questions that experiments have not and cannot: nnn, quark mass dependence

[FIN]

thanks to

