

Few body systems in lattice QCD

William Detmold

MIT Lattice Club, September 26th 2012

• Nuclear physics: an emergent phenomenon of the Standard Model

- Nuclear physics: an emergent phenomenon of the Standard Model
- How do nuclei emerge from QCD?

- Nuclear physics: an emergent phenomenon of the Standard Model
- How do nuclei emerge from QCD?
 - Issues

- Nuclear physics: an emergent phenomenon of the Standard Model
- How do nuclei emerge from QCD?
 - Issues
 - Recent progress

• Can we compute the mass of ²⁰⁸Pb in QCD?

- Can we compute the mass of ²⁰⁸Pb in QCD?
- Yes

- Can we compute the mass of ²⁰⁸Pb in QCD?
- Yes

$\langle 0|Tq_1(t)\ldots q_{624}(t)\overline{q}_1(0)\ldots \overline{q}_{624}(0)|0\rangle$

- Can we compute the mass of ²⁰⁸Pb in QCD?
- Yes

$$\langle 0|Tq_1(t)\ldots q_{624}(t)\overline{q}_1(0)\ldots \overline{q}_{624}(0)|0\rangle$$

• Long time behaviour gives ground state energy up to EW effects

$$\stackrel{t \to \infty}{\longrightarrow} \# \exp(-M_{Pb}t)$$

- Can we compute the mass of ²⁰⁸Pb in QCD?
- Yes

$$\langle 0|Tq_1(t)\ldots q_{624}(t)\overline{q}_1(0)\ldots \overline{q}_{624}(0)|0\rangle$$

• Long time behaviour gives ground state energy up to EW effects

$$\stackrel{t\to\infty}{\longrightarrow} \# \exp(-M_{Pb}t)$$

• But...

• Complexity: number of Wick contractions = (A+Z)!(2A-Z)!

$$a_{i}^{\dagger}(t_{1})a_{j}^{\dagger}(t_{1})a_{j}(t_{1})a_{i}(t_{1})a_{i}^{\dagger}(t_{2})a_{j}^{\dagger}(t_{2})a_{j}(t_{2})a_{i}(t_{2})$$

• Complexity: number of Wick contractions = (A+Z)!(2A-Z)!

• Dynamical range of scales (numerical precision)

• Complexity: number of Wick contractions = (A+Z)!(2A-Z)!

 $a_{i}^{\dagger}(t_{1})a_{j}^{\dagger}(t_{1})a_{j}(t_{1})a_{i}(t_{1})a_{i}^{\dagger}(t_{2})a_{j}^{\dagger}(t_{2})a_{j}(t_{2})a_{i}(t_{2})$

- Dynamical range of scales (numerical precision)
- Small energy splittings

• Complexity: number of Wick contractions = (A+Z)!(2A-Z)!

- Dynamical range of scales (numerical precision)
- Small energy splittings
- Importance sampling: statistical noise exponentially increases with A

- Importance sampling of QCD functional integrals
 Correlators determined stochastically
- Variance in single nucleon correlator (C) determined by

$$\sigma^2(C) = \langle CC^{\dagger} \rangle - |\langle C \rangle|^2$$

- For nucleon:
- $\frac{\text{signal}}{\text{noise}} \sim \exp\left[-(M_N 3/2m_\pi)t\right]$
- For nucleus A:

$$\frac{\text{signal}}{\text{noise}} \sim \exp\left[-A(M_N - 3/2m_\pi)t\right]$$

- Importance sampling of QCD functional integrals
 Correlators determined stochastically
- Variance in single nucleon correlator (C) determined by

$$\sigma^2(C) = \langle CC^{\dagger} \rangle - |\langle C \rangle|^2$$

• For nucleon:

 $\frac{\text{signal}}{\text{noise}} \sim \exp\left[-(M_N - 3/2m_\pi)t\right]$

• For nucleus A:

$$\frac{\text{signal}}{\text{noise}} \sim \exp\left[-A(M_N - 3/2m_\pi)t\right]$$

[Lepage '89]

Golden window of time-slices where signal/noise const

No? trouble with baryons

Golden window of time-slices where signal/noise const

No? trouble with baryons

Multi-baryon systems

- Scattering and <u>bound states</u>
 - NB: Strong interaction bound states
- Dibaryons : H, deuteron, $\Xi\Xi$
- 3 H, 4 He and more exotic: 4 He_A, 4 He_A, ...
- Correlators for significantly larger A
- Caveat: at unphysical quark masses no electroweak interactions

Bound states at finite volume

- Two particle scattering amplitude in infinite volume $\mathcal{A}(p) = \frac{8\pi}{M} \frac{1}{p \cot \delta(p) - ip}$ scattering phase shift bound state at $p^2 = -\gamma^2$ when $\cot \delta(i\gamma) = i$
- Scattering amplitude in finite volume (Lüscher method)

$$\cot \delta(i\kappa) = i - i \sum_{\vec{m} \neq 0} \frac{e^{-|\vec{m}|\kappa L}}{|\vec{m}|\kappa L} \qquad \kappa \xrightarrow{L \to \infty} \gamma$$

- Need multiple volumes
- More complicated for n>2 body bound states

H-dibaryon

• Jaffe [1977]: chromo-magnetic interaction

$$\langle H_m \rangle \sim \frac{1}{4}N(N-10) + \frac{1}{3}S(S+1) + \frac{1}{2}C_c^2 + C_f^2$$

most attractive for spin, colour, flavour singlet

H-dibaryon (uuddss) J=I=0, s=-2 most stable

$$\Psi_H = \frac{1}{\sqrt{8}} \left(\Lambda \Lambda + \sqrt{3}\Sigma\Sigma + 2\Xi N \right)$$

Bound in a many hadronic models

- Experimental searches
 - Emulsion expts, heavy-ion, stopped kaons
 - No conclusive evidence for or against

KEK-ps (2007)

 $K^{-12}C \rightarrow K^{+}\Lambda\Lambda X$

H dibaryon in QCD

- Early quenched studies on small lattices: mixed results [Mackenzie et al. 85, Iwasaki et al. 89, Pochinsky et al. 99, Wetzorke & Karsch 03, Luo et al. 07, Loan 11]
- Semi-realistic calculations
 - "Evidence for a bound H dibaryon from lattice QCD" PRL 106, 162001 (2011) N_f=2+1, a_s =0.12 fm, m_{π} =390 MeV, L=2.0, 2.5, 3.0, 3.9 fm
 - "Bound H dibaryon in flavor SU(3) limit of lattice QCD" * PRL 106, 162002 (2011) $N_f=3$, $a_s=0.12$ fm, $m_{\pi}=670$, 830, 1015 MeV, L=2.0, 3.0, 3.9 fm

• NB: Quark masses unphysical, single lattice spacing

H dibaryon in QCD

• Extract energy eigenstates from large Euclidean time behaviour of two-point correlators

Correlator ratio allows direct access to energy shift

Simple extrapolations

- After volume extrapolation
 H bound at unphysical quark masses
- Quark mass extrapolation is uncertain and unconstrained $B_{H}^{\text{quad}} = +11.5 \pm 2.8 \pm 6.0 \text{ MeV}$

 $B_{H}^{\text{lin}} = +4.9 \pm 4.0 \pm 8.3 \text{ MeV}$

- Other extrapolations, see [Shanahan, Thomas & Young PRL. 107 (2011) 092004, Haidenbauer & Meissner 1109.3590]
- Suggests H is weakly bound or just unbound

* 230 MeV point preliminary (one volume)

Deuteron

Deuteron

Many baryon systems

- Many baryon correlator construction is somewhat messy
- Interpolating fields minimal expression as weighted sums

$$\bar{\mathcal{N}}^{h} = \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \sum_{\mathbf{i}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} \bar{q}(a_{i_{1}})\bar{q}(a_{i_{2}})\cdots\bar{q}(a_{i_{n_{q}}})$$

- Generation of weights can be automated (symbolic c++ code) for given quantum numbers
 - Specify final quantum numbers (spin, isospin, strangeness etc)
 - Build up from states of smaller quantum numbers just by using rules of eg angular momentum addition
- Similar ideas by Doi and Endres [1205.0585]
- Contraction just reads in weights and can be implemented independent of the particular process being considered

[WD, K Orginos, 1207.1452]

Many baryon systems

- Given a complex many baryon system to perform contractions for, always possible to group colour singlets at one end (sink)
- Contractions can be written in terms of baryon blocks (objects that are contracted at sink)
- A particular set of quantum numbers b for the block is select by a weighted sum of components of quark propagators

$$\mathcal{B}_{b}^{a_{1},a_{2},a_{3}}(\mathbf{p},t;x_{0}) = \sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \sum_{k=1}^{N_{B(b)}} \tilde{w}_{b}^{(c_{1},c_{2},c_{3}),k} \sum_{\mathbf{i}} \epsilon^{i_{1},i_{2},i_{3}}$$

$$\times S(c_{i_{1}},x;a_{1},x_{0})S(c_{i_{2}},x;a_{2},x_{0})S(c_{i_{2}},x;a_{3},x_{0})$$

• Can be generalised to multi-baryon blocks if desired although storage requirements rapidly increase

Many baryon systems

$$\left[\mathcal{N}_{1}^{h}(t)\bar{\mathcal{N}}_{2}^{h}(0) \right]_{U} = \int \mathcal{D}q\mathcal{D}\bar{q} \ e^{-S_{QCD}[U]} \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} q(a'_{j_{n_{q}}}) \cdots q(a'_{j_{2}}) q(a'_{j_{1}}) \times \bar{q}(a_{i_{1}}) \bar{q}(a_{i_{2}}) \cdots \bar{q}(a_{i_{n_{q}}})$$

• Contractions

$$\left[\mathcal{N}_{1}^{h}(t)\bar{\mathcal{N}}_{2}^{h}(0) \right]_{U} = \int \mathcal{D}q\mathcal{D}\bar{q} \ e^{-S_{QCD}[U]} \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} q(a'_{j_{n_{q}}}) \cdots q(a'_{j_{2}}) q(a'_{j_{1}}) \times \bar{q}(a_{i_{1}}) \bar{q}(a_{i_{2}}) \cdots \bar{q}(a_{i_{n_{q}}})$$

• Contractions

$$\begin{split} \left[\mathcal{N}_{1}^{h}(t)\bar{\mathcal{N}}_{2}^{h}(0) \right]_{U} &= \int \mathcal{D}q\mathcal{D}\bar{q} \; e^{-S_{QCD}[U]} \; \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \; \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ & \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} q(a'_{j_{n_{q}}}) \cdots q(a'_{j_{2}}) q(a'_{j_{1}}) \times \bar{q}(a_{i_{1}}) \bar{q}(a_{i_{2}}) \cdots \bar{q}(a_{i_{n_{q}}}) \\ &= \; e^{-\mathcal{S}_{eff}[U]} \; \sum_{\mathbf{j}}^{N'_{w}} \sum_{k=1}^{N_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \; \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ & \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} S(a'_{j_{1}};a_{i_{1}}) S(a'_{j_{2}};a_{i_{2}}) \cdots S(a'_{j_{n_{q}}};a_{i_{n_{q}}}) \end{split}$$
• Contractions

$$\begin{split} \left[\mathcal{N}_{1}^{h}(t) \bar{\mathcal{N}}_{2}^{h}(0) \right]_{U} &= \int \mathcal{D}q \mathcal{D}\bar{q} \ e^{-S_{QCD}[U]} \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \ \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ &= \sum_{j} \sum_{i} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} q(a'_{j_{n_{q}}}) \cdots q(a'_{j_{2}}) q(a'_{j_{1}}) \times \bar{q}(a_{i_{1}}) \bar{q}(a_{i_{2}}) \cdots \bar{q}(a_{i_{n_{q}}}) \\ &= e^{-\mathcal{S}_{eff}[U]} \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \ \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ &= \sum_{j} \sum_{i} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} S(a'_{j_{1}};a_{i_{1}}) S(a'_{j_{2}};a_{i_{2}}) \cdots S(a'_{j_{n_{q}}};a_{i_{n_{q}}}) \end{split}$$

• Make a particular choice of correlation function (momentum projection at sink) and express in terms of blocks (quark-hadron level contraction)

• Contractions

$$\begin{split} \left[\mathcal{N}_{1}^{h}(t)\bar{\mathcal{N}}_{2}^{h}(0) \right]_{U} &= \int \mathcal{D}q\mathcal{D}\bar{q} \; e^{-S_{QCD}[U]} \; \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \; \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ &\qquad \sum_{j} \sum_{i} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} q(a'_{j_{n_{q}}}) \cdots q(a'_{j_{2}}) q(a'_{j_{1}}) \times \bar{q}(a_{i_{1}}) \bar{q}(a_{i_{2}}) \cdots \bar{q}(a_{i_{n_{q}}}) \\ &= \; e^{-\mathcal{S}_{eff}[U]} \; \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \; \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ &\qquad \sum_{j} \sum_{i} \sum_{i} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} S(a'_{j_{1}};a_{i_{1}}) S(a'_{j_{2}};a_{i_{2}}) \cdots S(a'_{j_{n_{q}}};a_{i_{n_{q}}}) \end{split}$$

• Make a particular choice of correlation function (momentum projection at sink) and express in terms of blocks (quark-hadron level contraction)

$$\begin{split} \left[\mathcal{N}_{1}^{h}(t)\bar{\mathcal{N}}_{2}^{h}(0) \right]_{U} &= \int \mathcal{D}q\mathcal{D}\bar{q} \; e^{-S_{QCD}[U]} \; \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \; \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ &\qquad \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} q(a'_{j_{n_{q}}}) \cdots q(a'_{j_{2}}) q(a'_{j_{1}}) \times \bar{q}(a_{i_{1}}) \bar{q}(a_{i_{2}}) \cdots \bar{q}(a_{i_{n_{q}}}) \\ &= e^{-S_{eff}[U]} \; \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \; \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ &\qquad \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} S(a'_{j_{1}};a_{i_{1}}) S(a'_{j_{2}};a_{i_{2}}) \cdots S(a'_{j_{n_{q}}};a_{i_{n_{q}}}) \end{split}$$

• Contractions

$$\begin{split} \left[\mathcal{N}_{1}^{h}(t)\bar{\mathcal{N}}_{2}^{h}(0) \right]_{U} &= \int \mathcal{D}q\mathcal{D}\bar{q} \; e^{-S_{QCD}[U]} \; \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \; \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ & \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} q(a'_{j_{n_{q}}}) \cdots q(a'_{j_{2}}) q(a'_{j_{1}}) \times \bar{q}(a_{i_{1}}) \bar{q}(a_{i_{2}}) \cdots \bar{q}(a_{i_{n_{q}}}) \\ &= \; e^{-\mathcal{S}_{eff}[U]} \; \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \; \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ & \sum_{\mathbf{j}} \sum_{\mathbf{i}} \sum_{\mathbf{i}} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} S(a'_{j_{1}};a_{i_{1}}) S(a'_{j_{2}};a_{i_{2}}) \cdots S(a'_{j_{n_{q}}};a_{i_{n_{q}}}) \end{split}$$

Contractions

$$\begin{split} \left[\mathcal{N}_{1}^{h}(t)\bar{\mathcal{N}}_{2}^{h}(0)\right]_{U} &= \int \mathcal{D}q\mathcal{D}\bar{q} \; e^{-S_{QCD}[U]} \; \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a_{1}',a_{2}'\cdots a_{n_{q}}'),k'} \; \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ &\qquad \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} q(a_{j_{n_{q}}}') \cdots q(a_{j_{2}}') q(a_{j_{1}}') \times \bar{q}(a_{i_{1}}) \bar{q}(a_{i_{2}}) \cdots \bar{q}(a_{i_{n_{q}}}') \\ &= e^{-\mathcal{S}_{eff}[U]} \; \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a_{1}',a_{2}'\cdots a_{n_{q}}'),k'} \; \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ &\qquad \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} S(a_{j_{1}}';a_{i_{1}}) S(a_{j_{2}}';a_{i_{2}}) \cdots S(a_{j_{n_{q}}}';a_{i_{n_{q}}}) \end{split}$$

• Or write as determinant (quark-quark level contraction)

$$\langle \mathcal{N}_1^h(t)\bar{\mathcal{N}}_2^h(0)\rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\mathcal{U} \ e^{-\mathcal{S}_{eff}} \sum_{k'=1}^{N_w} \sum_{k=1}^{N_w} \tilde{w}_h^{\prime(a_1',a_2'\cdots a_{n_q}'),k'} \ \tilde{w}_h^{(a_1,a_2\cdots a_{n_q}),k} \times \det G(\mathbf{a}';\mathbf{a})$$

where

$$G(\mathbf{a}';\mathbf{a})_{j,i} = \begin{cases} S(a'_j;a_i) & a'_j \in \mathbf{a}' \text{ and } a_i \in \mathbf{a} \\ \delta_{a'_j,a_i} & \text{otherwise} \end{cases}$$

Contractions

$$\begin{split} \left[\mathcal{N}_{1}^{h}(t) \bar{\mathcal{N}}_{2}^{h}(0) \right]_{U} &= \int \mathcal{D}q \mathcal{D}\bar{q} \; e^{-S_{QCD}[U]} \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \; \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ &= \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} q(a'_{j_{n_{q}}}) \cdots q(a'_{j_{2}}) q(a'_{j_{1}}) \times \bar{q}(a_{i_{1}}) \bar{q}(a_{i_{2}}) \cdots \bar{q}(a_{i_{n_{q}}}) \\ &= e^{-\mathcal{S}_{eff}[U]} \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \; \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ &= \sum_{\mathbf{j}} \sum_{\mathbf{i}} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} S(a'_{j_{1}};a_{i_{1}}) S(a'_{j_{2}};a_{i_{2}}) \cdots S(a'_{j_{n_{q}}};a_{i_{n_{q}}}) \end{split}$$

• Or write as determinant (quark-quark level contraction)

$$\langle \mathcal{N}_1^h(t)\bar{\mathcal{N}}_2^h(0)\rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\mathcal{U} \ e^{-\mathcal{S}_{eff}} \sum_{k'=1}^{N_w} \sum_{k=1}^{N_w} \tilde{w}_h^{\prime(a_1',a_2'\cdots a_{n_q}'),k'} \ \tilde{w}_h^{(a_1,a_2\cdots a_{n_q}),k} \times \det G(\mathbf{a}';\mathbf{a})$$

where

$$G(\mathbf{a}';\mathbf{a})_{j,i} = \begin{cases} S(a'_j;a_i) & a'_j \in \mathbf{a}' \text{ and } a_i \in \mathbf{a} \\ \delta_{a'_j,a_i} & \text{otherwise} \end{cases}$$

 Determinant can be evaluated in polynomial number of operations (LU decomposition)

Nuclei

- Recent studies at SU(3) point (physical m_s)
 - Isotropic clover lattices
 - Single lattice spacing: 0.145 fm
 - Multiple volumes: 3.4, 4.5, 6.7 fm
 - High statistics

Label	L/b	T/b	β	$b m_q$	$b [{\rm fm}]$	$L [\mathrm{fm}]$	$T [\mathrm{fm}]$	$m_{\pi} [{ m MeV}]$	$m_{\pi} L$	$m_{\pi} T$	$N_{\rm cfg}$	$N_{\rm src}$
А	24	48	6.1	-0.2450	0.145	3.4	6.7	806.5(0.3)(0)(8.9)	14.3	28.5	3822	48
В	32	48	6.1	-0.2450	0.145	4.5	6.7	806.9(0.3)(0.5)(8.9)	19.0	28.5	3050	24
С	48	64	6.1	-0.2450	0.145	6.7	9.0	806.7(0.3)(0)(8.9)	28.5	38.0	1212	32

• In flavour SU(3) symmetric case, multi-baryon states come in multiplets

 $\mathbf{8}\otimes\mathbf{8}\ =\ \mathbf{27}\oplus\mathbf{10}\oplus\overline{\mathbf{10}}\oplus\mathbf{8}_{S}\oplus\mathbf{8}_{A}\oplus\mathbf{1}$

 $\mathbf{8}\otimes\mathbf{8}\otimes\mathbf{8} = \mathbf{64}\oplus \mathbf{2}\ \mathbf{35}\oplus\mathbf{2}\ \overline{\mathbf{35}}\oplus\mathbf{6}\ \mathbf{27}\oplus\mathbf{4}\ \mathbf{10}\oplus\mathbf{4}\ \overline{\mathbf{10}}\oplus\mathbf{8}\ \mathbf{8}\oplus\mathbf{2}\ \mathbf{1}$

 $\mathbf{8} \otimes \mathbf{8} \otimes \mathbf{8} \otimes \mathbf{8} = 8 \ \mathbf{1} \oplus 32 \ \mathbf{8} \oplus 20 \ \mathbf{10} \oplus 20 \ \overline{\mathbf{10}} \oplus 33 \ \mathbf{27} \oplus 2 \ \mathbf{28} \oplus 2 \ \overline{\mathbf{28}} \oplus 15 \ \mathbf{35} \oplus 15 \ \overline{\mathbf{35}} \oplus 12 \ \mathbf{64} \oplus 3 \ \mathbf{81} \oplus 3 \ \overline{\mathbf{81}} \oplus \mathbf{125} \quad , \qquad (1:$

$$\begin{split} \mathbf{8} \otimes \mathbf{8} \otimes \mathbf{8} \otimes \mathbf{8} \otimes \mathbf{8} &= 32 \ \mathbf{1} \oplus 145 \ \mathbf{8} \oplus 100 \ \mathbf{10} \oplus 100 \ \overline{\mathbf{10}} \oplus 180 \ \mathbf{27} \oplus 20 \ \mathbf{28} \oplus 20 \ \overline{\mathbf{28}} \\ &\oplus 100 \ \mathbf{35} \oplus 100 \ \overline{\mathbf{35}} \oplus 94 \ \mathbf{64} \oplus 5 \ \mathbf{80} \oplus 5 \ \overline{\mathbf{80}} \oplus 36 \ \mathbf{81} \oplus 36 \ \overline{\mathbf{81}} \\ &\oplus 20 \ \mathbf{125} \oplus 4 \ \mathbf{154} \oplus 4 \ \overline{\mathbf{154}} \oplus \mathbf{216} \quad . \end{split}$$

• Unphysical symmetries manifest in spectrum

Nuclei (A=2)

Nuclei (A=2)

Nuclei (A = 2, 3, 4)

Quark-hadron contraction method

- Nuclei (A=3,4)
- Empirically investigate volume dependence
- Need to ask if this is a 2+1 or 3+1 or 2+2 etc scattering state

Nuclei (A=3,4)

- Empirically investigate volume dependence
- Need to ask if this is a 2+1 or 3+1 or 2+2 etc scattering state

Nuclei (A=2,3,4)

Quark-hadron contraction method

Nuclei (A=2,3,4)

Quark-hadron contraction method

d, nn, ³He, ⁴He

- PACS-CS: bound d,nn, ³He, ⁴He
 - Previous quenched work
 - Recent unquenched study at m_{π} =500 MeV
- HALQCD
 - Extract an NN potential
 - Strong enough to bind H, ⁴He at m_{PS}=490 MeV SU(3) pt
 - d, nn not bound

0.1

⁴He binding

Nuclei (A=4,...)

Quark-quark determinant contraction method

WD, Kostas Orginos, 1207.1452

WD, Kostas Orginos, 1207.1452

Density of states ...arrrrgh

• Current challenge is the density of scattering states in multi-hadron systems

 States far below thresholds are OK, but how do we learn about d–d scattering?

Density of states ...arrrrgh

• Current challenge is the density of scattering states in multi-hadron systems

 States far below thresholds are OK, but how do we learn about d–d scattering?

Density of states ...arrrrgh

• Current challenge is the density of scattering states in multi-hadron systems

 States far below thresholds are OK, but how do we learn about d–d scattering?

Issues

- Can we optimise noise suppression systematically
- For large A systems, how do we control the volume, lattice spacing, unphysical quark mass artefacts?
 - EFT probably loses control/breaks down for A>4
 - Maybe just empirically?
- What other kinds of observables can we calculate?
 - Structure of bound nuclei

• QCD calculations of nuclei are possible

- QCD calculations of nuclei are possible
 - More work needed to get to the physical quark masses

- QCD calculations of nuclei are possible
 - More work needed to get to the physical quark masses
 - Need big computers and good ideas

- QCD calculations of nuclei are possible
 - More work needed to get to the physical quark masses
 - Need big computers and good ideas

- QCD calculations of nuclei are possible
 - More work needed to get to the physical quark masses
 - Need big computers and good ideas
- Where is the field going?

- QCD calculations of nuclei are possible
 - More work needed to get to the physical quark masses
 - Need big computers and good ideas
- Where is the field going?
 - Strong connections to experimental programs: hypernuclear spectroscopy at JLab, JPARC, FAIR

- QCD calculations of nuclei are possible
 - More work needed to get to the physical quark masses
 - Need big computers and good ideas
- Where is the field going?
 - Strong connections to experimental programs: hypernuclear spectroscopy at JLab, JPARC, FAIR
 - Answer questions that experiments have not and cannot: nnn, quark mass dependence

[FIN]

thanks to

