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Nuclear physics from LQCD

• Can we compute the mass of 208Pb in QCD?

• Yes

• Long time behaviour gives ground state energy 
up to EW effects

• But...

h0|Tq1(t) . . . q624(t)q1(0) . . . q624(0)|0i

t!1�! # exp(�MPbt)
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An (exponentially hard)2 problem?

• Complexity:  number of
Wick contractions = (A+Z)!(2A-Z)!

• Dynamical range of scales 
(numerical precision)

• Small energy splittings

• Importance sampling: statistical 
noise exponentially increases with A

keV

73Ge



The trouble with baryons

• Importance sampling of QCD functional integrals 
➤ correlators determined stochastically 

• Variance in single nucleon correlator (C) determined by 

• For nucleon: 

• For nucleus A:

N
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The trouble with baryonsNo?

@ mπ = 390 MeV

Interpolator choice can be used to suppress noise



Multi-baryon systems

• Scattering and bound states

• NB: Strong interaction bound states

• Dibaryons : H, deuteron, ΞΞ

• 3H, 4He and more exotic: 4HeΛ, 4HeΛΛ ,...

• Correlators for significantly larger A

• Caveat: at unphysical quark masses no
electroweak interactions



Bound states at finite volume
• Two particle scattering amplitude in infinite volume

bound state at                when

• Scattering amplitude in finite volume (Lüscher method)

• Need multiple volumes

• More complicated for n>2 body bound states

cot �(i) = i� i
X

~m6=0

e�|~m|L

|~m|L

A(p) =

8⇡

M

1

p cot �(p)� ip

cot �(i�) = ip2 = ��2

scattering 
phase shift


L!1�! �



H-dibaryon
• Jaffe [1977]: chromo-magnetic interaction 

most attractive for spin, colour, flavour singlet

• H-dibaryon (uuddss) J=I=0, s=-2 most stable

• Bound in a many hadronic models

• Experimental searches

• Emulsion expts, heavy-ion, stopped kaons

• No conclusive evidence for or against 

hHmi ⇠
1
4
N(N � 10) +

1
3
S(S + 1) +

1
2
C2

c + C2
f

 H =
1p
8

⇣
⇤⇤+

p
3⌃⌃+ 2⌅N

⌘
KEK-ps (2007) 

K- 12C →K+ ΛΛ X 



H dibaryon in QCD

• Early quenched studies on small lattices: mixed results 
[Mackenzie et al. 85,  Iwasaki et al. 89,  Pochinsky et al. 99,  Wetzorke & Karsch 03, Luo et al. 07, Loan 11]

• Semi-realistic calculations 
• “Evidence for a bound H dibaryon from lattice QCD”

PRL 106, 162001 (2011) 
Nf=2+1,   as=0.12 fm,   mπ=390 MeV,   L=2.0, 2.5, 3.0, 3.9 fm

• “Bound H dibaryon in flavor SU(3) limit of lattice QCD”  *
PRL 106, 162002 (2011) 
Nf=3,   as=0.12 fm,   mπ=670, 830, 1015 MeV,   L=2.0, 3.0, 3.9 fm

• NB: Quark masses unphysical, single lattice spacing

* use a somewhat different method



• Extract energy eigenstates from large Euclidean time 
behaviour of two-point correlators

• Correlator ratio allows direct access to energy shift

H dibaryon in QCD

C⇤(t) =
X

x

h0|�(x, t)�(0)|0i t!1�! Z⇤e�M⇤t

C⇤⇤(t) =
X

x

h0|�(x, t)�(0)|0i t!1�! Z⇤⇤e�E⇤⇤t

R(t) =
C⇤⇤(t)
C2

⇤(t)
t!1�! eZe��E⇤⇤t
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FIG. 21: � and �� on the 243 volume. Two body from linear combo of SS and PP .
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exploratory quenched calculation of 4He at a relatively
large pion mass [21]. Our present results are from calcu-
lations on four ensembles of nf = 2+1 anisotropic clover
gauge-field configurations at a pion mass of m⇥ ⇤ 389
MeV, a spatial lattice spacing of bs ⇤ 0.1227(8) fm,
an anisotropy factor of ⌅t = bs/bt = 3.500(32) (for
details, see Refs. [22, 23]), and with spatial-extents of
16, 20, 24, 32, corresponding to spatial dimensions of L ⇤
2.0, 2.5, 3.0 and 3.9 fm respectively.

Lüscher’s method [24–27] is employed to extract two-
particle scattering amplitudes below inelastic thresh-
olds from Lattice QCD calculations. In the situation
where only a single scattering channel is kinematically
allowed, the deviation of the energy eigenvalues of the
two-hadron system in the lattice volume from the sum
of the single-hadron masses is related to the scatter-
ing phase shift, ⇥. The form of the baryon interpolat-
ing operators and the baryon and baryon-baryon corre-
lators that we use, and the methodology for extracting
the energy shift is discussed in detail in Ref. [28]. The

energy shift, �E(AB)
n (in temporal lattice units (t.l.u)),

of two particles of equal mass, m (in t.l.u), is given by

�E(AB)
n = 2

p
q2n/⌅

2
t +m2 � 2m. The subscript n is to

denote the nth energy-level in the lattice volume. This
relation determines a squared momentum, q2n (in spatial
lattice units (s.l.u)), which can be either positive or neg-
ative. For S-wave scattering below inelastic thresholds,
q2n is related to the real part of the inverse scattering
amplitude,

qn cot ⇥(qn) =
1

⇧ L
S

 
q2n

✓
L

2⇧

◆2
!

, (1)

where the S-function is given by

S(x) = lim
�⇥⇤

|j|<�X

j

1

|j|2 � x
� 4⇧ ⇥ , (2)

thereby implicitly determining the value of the phase

shift at the energy �E(AB)
n .

Determining energy-levels with the same quantum
numbers in multiple volumes allows for the exponential
volume dependence of a bound state to be distinguished
from the power-law volume dependence of a scattering
state. With calculations at two di⇤erent lattice volumes
that both have q20 < 0 and q0 cot ⇥(q0) < 0 it is possible to
perform an extrapolation (at leading order in the expo-
nential volume expansion) to the infinite-volume limit to
determine the binding energy of a bound state. Writing
q = i⇤ for states that are negatively shifted in energy in
the lattice volume, the volume-dependence of the bind-
ing momentum in the large volume limit follows directly
from eq. (1) and is of the form [27]

⇤ = � +
1

L
c1
⇣
e��L +

⌃
2 e�

⌅
2�L

⌘
+ ... , (3)

where � is the infinite-volume value of the binding mo-
mentum, under the assumption that � ⌅ m⇥, and c1 is
treated as a fit parameter. With calculations in two vol-
umes, the calculated binding momenta and the relations
resulting from eq. (1) can be solved to give �, from which
the binding energy of the state is B = �2/m. The range
of nuclear interaction is set by the pion mass, and there-
fore the use of Lüscher’s method requires that m⇥L ⇧ 1
in order to strongly suppress the contributions that de-
pend exponentially on the volume, e�m⇡L. In principle,
in marginal volumes, one can use the low-energy e⇤ec-
tive field theory to remove these exponential corrections
systematically, but presently this is impractical.
The precision of our calculations is su⌅ciently high

that we can quantify the exponential volume dependence
of the single baryon masses. The results of this anal-
ysis then dictate a minimum lattice volume for which
the exponential contributions to the baryon masses do
not significantly contaminate the extraction of scatter-
ing parameters. The ⇥ mass, unlike that of the ⇧ and
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FIG. 1: Left panel: the mass of the � as a function of e�m⇡L

where L is the spatial extent of the lattice. From left-to-right,
the blue points correspond to spatial extents of L = 32, 24, 20,
and 16. The red point and uncertainty is the infinite-volume
extrapolation. Right panel: the energy-momentum relation
for the �. The blue points (along with their uncertainties) are
the results of lattice calculations and the red line correspond
to the best fit to a quadratic polynomial.

kaon, is found to have statistically significant volume-
dependence, as shown in the left panel of fig. 1. It is clear
that the ⇥mass on the 163⇥128 ensemble (m⇥L = 3.86)
is significantly higher than its infinite-volume value and,
more importantly, is shifted by an amount that is com-
parable to the energy splittings in the two-baryon sector.
The deviation found in calculations on the 203 ⇥ 128 en-
semble is much less than that of the 163 ⇥ 128 ensemble,
but we choose not use calculations performed on either
the 163⇥128 or 203⇥128 ensembles in the analysis of two-
baryon interactions. Therefore, only calculations on the
243 ⇥ 128 ensemble (m⇥L = 5.79) and on the 323 ⇥ 128
ensemble (m⇥L = 7.71) are used in this analysis. We
conclude that the lore regarding finite-volume e⇤ects, and
in particular, that m⇥L>⇤ 2⇧ ⇤ 6.3 for exponential vol-
ume e⇤ects to be negligibly small, appears to be true for
the study of multi-baryon systems.

Lüscher’s method assumes that the single-hadron
energy-momentum relation is satisfied over the range of
calculated energy eigenvalues. In order to verify that the

�E

M⇤
E⇤⇤

k2

3.0 fm 4.0 fm



Simple extrapolations
• After volume extrapolation

H bound at unphysical quark 
masses

• Quark mass extrapolation is 
uncertain and unconstrained

• Other extrapolations, see
[Shanahan, Thomas & Young PRL. 107 (2011) 092004, 
Haidenbauer & Meissner 1109.3590]

• Suggests H is weakly bound 
or just unbound

Bquad
H = +11.5± 2.8± 6.0 MeV

Blin
H = +4.9± 4.0± 8.3 MeV

-0.2 -0.1 0

1.

0.6

0.2

Hq0êmpL2

-
ic
ot
HdL

3.0 fm

4.0 fm

“ ”

* 230 MeV point preliminary (one volume)
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Deuteron

• Deuteron also 
investigated

• NPLQCD

• PACS-CS

• More work 
needed at lighter 
masses [Yamazaki et al. 1207.4277]
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Many baryon systems
• Many baryon correlator construction is somewhat messy

• Interpolating fields – minimal expression as weighted sums

• Generation of weights can be automated (symbolic c++ code) 
for given quantum numbers

• Specify final quantum numbers (spin, isospin, strangeness etc)

• Build up from states of smaller quantum numbers just by 
using rules of eg angular momentum addition

• Similar ideas by Doi and Endres [1205.0585]

• Contraction just reads in weights and can be implemented 
independent of the particular process being considered

N̄ h =
NwX

k=1

w̃
(a1,a2···anq ),k

h

X

i

✏i1,i2,···,inq q̄(ai1)q̄(ai2) · · · q̄(ainq
)

[WD, K Orginos,  1207.1452 ]

color/spin/flavour/spatial indices



Many baryon systems

• Given a complex many baryon system to perform contractions for, 
always possible to group colour singlets at one end (sink)

• Contractions can be written in terms of baryon blocks (objects that 
are contracted at sink)

• A particular set of quantum numbers b for the block is select by a 
weighted sum of components of quark propagators

• Can be generalised to multi-baryon blocks if desired although storage 
requirements  rapidly increase

Ba1,a2,a3
b (p, t;x0) =

X

x

e

ip·x
NB(b)X

k=1

w̃

(c1,c2,c3),k
b

X

i

✏

i1,i2,i3
S(ci1 , x; a1, x0)S(ci2 , x; a2, x0)S(ci3 , x; a3, x0)

Ba1,a2,a3
b (p, t;x0) =

X

x

e

ip·x
NB(b)X

k=1

w̃

(c1,c2,c3),k
b

X

i

✏

i1,i2,i3
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• Make a particular choice of correlation function (momentum projection 
at sink) and express in terms of blocks (quark-hadron level contraction)
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We can generalise these blocks to allow the quark propagators to originate from di↵erent source locations,

x

(1)
0 , x

(2)
0 , . . ., as necessary, using

Ba1,a2,a3

b (p, t; s1, s2, s3) =
X

x

e

ip·x
NB(b)X

k=1

w̃

(c1,c2,c3),k
b

X

i
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i1,i2,i3
S(ci1 ,x; a1, x

(s1)
0 )S(ci2 ,x; a2, x

(s2)
0 )S(ci3 ,x; a3, x

(s3)
0 ) ,

(10)

where the x(k)
0 label the source locations. These blocks can be further generalised to allow for non-trivial single hadron

spatial wave-function at the sink, but we will not consider this case further. It may also be advantageous to consider
more complicated multi-hadron blocks similar to those implemented in Ref. [2] although the storage requirements
grow rapidly with number of baryons in the block.

B. Quark-hadron contractions

Using the building blocks described above, we can consider correlation functions in which quark level interpolating
fields are used at the source and their hadronic counterparts are used at the sink. The contractions are performed by
iterating over all combinations of source and sink interpolating field terms and connecting the source and sink with
the appropriate sets of quark propagators. For a given pair of source and sink interpolating field terms, this amounts
to selecting the components dictated by the source quark interpolating field from the product of blocks dictated by
the hadronic sink interpolating field. The Wick contractions are implemented by performing this selection in all
possible ways. This proceeds by taking the first hadron in the hadronic wave-function at the sink, replacing it by the
appropriate hadron block and selecting the three free indices in all possible ways from the pool of indices dictated
by the source quark interpolating field, keeping track of the appropriate permutation sign. Following this, the second
baryon component in the hadronic (sink) interpolating field term is replaced with the appropriate block and the free
indices are contracted with the remaining free indices in the source quark interpolating field term in all possible ways.
These first steps are illustrated in Fig. 1 and the procedure continues until all hadrons in the sink interpolating field
term have been contracted, necessarily using all available quark indices at the source. The result is then multiplied by

(a) (b)

FIG. 1: Illustration of steps one and two of the quark–hadron contraction method. The small circles in the left hand of
the figures correspond to the quarks in the source interpolating field while the large squares and lines extending from them
correspond to the hadronic blocks.

the weights of the source and sink terms under consideration and added to the correlation function. The contraction
is complete after all combinations of source and sink interpolating field terms have been considered. The process
described here is independent of the the source and sink interpolating fields and can be applied to any correlation
function. Further reductions of the total cost of the algorithm may be possible by studying the symmetry properties
of a particular pair of source-sink interpolating fields. However, such reductions are not generic, hence we do not

...

Stage 1 Stage 2

u quarks

d quarks

s quarks

hadron blocks
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Many baryon systems
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• Or write as determinant (quark-quark level contraction)

where

• Determinant can be evaluated in polynomial number of operations 
(LU decomposition)
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Nuclei

• Recent studies at SU(3) point (physical ms)

• Isotropic clover lattices 

• Single lattice spacing: 0.145 fm

• Multiple volumes: 3.4, 4.5, 6.7 fm

• High statistics
TABLE I: Parameters of the ensembles of gauge-field configurations and of the measurements used
in this work. The lattices have dimension L3 ⇥ T , a lattice spacing b, and a bare quark mass b mq

(in lattice units) generating a pion of mass m�. Nsrc light-quark sources are used (as described in
the text) to perform measurements on Ncfg configurations in each ensemble.

Label L/b T/b � b mq b [fm] L [fm] T [fm] m� [MeV] m� L m� T Ncfg Nsrc

A 24 48 6.1 -0.2450 0.145 3.4 6.7 806.5(0.3)(0)(8.9) 14.3 28.5 3822 48

B 32 48 6.1 -0.2450 0.145 4.5 6.7 806.9(0.3)(0.5)(8.9) 19.0 28.5 3050 24

C 48 64 6.1 -0.2450 0.145 6.7 9.0 806.7(0.3)(0)(8.9) 28.5 38.0 1212 32

each configuration. The quark propagators were constructed with gauge invariant Gaussian
smeared sources with stout-smeared gauge links. These sources are distributed over a grid,
the center of which is randomly distributed within the lattice volume on each configuration,
and the quark propagators are computed using the BiCGstab algorithm with a tolerance
of 10�12 in double precision. The quark propagators, and ones that are smeared at the
sink using the same smearing parameters as used at the source, give rise to two sets of
correlation functions for each combination of source and sink interpolating field, labeled as
SS and SP, respectively. The propagators are contracted to form baryon blocks projected
to fixed momentum at the sink for use in the calculation of the correlation functions to be
described below. The blocks are defined as

Bijk
H (p, t; x0) =

�

x

eip·xS(f1),i0

i (x, t; x0)S
(f2),j0

j (x, t; x0)S
(f3),k0

k (x, t; x0)b
(H)
i0j0k0 , (1)

where S(f) is a quark propagator of flavor f and the indices are combined spin-color indices
running over i = 1, . . . , NcNs.1 The choice of the fi and the tensor b(H) depend on the
spin and flavor of the baryon, H, under consideration. For our calculations we used the
local interpolating fields constructed in [31] restricted to those that contain only upper spin
components (in the Dirac spinor basis). This choice results in the simplest interpolating
fields that also have the best overlap with the single octet baryon ground states. Blocks are
constructed for all momenta |p|2 < 4 allowing for the study of multi-baryon systems with
zero or non-zero total momentum and with non-trivial spatial wave functions.

B. Multi-Baryon Interpolating Operators and Contractions

In order to construct correlation functions for the multi-hadron systems, interpolating op-
erators with well defined quantum numbers at the source and sink are constructed. As
we intend to perform calculations away from the SU(3) flavor symmetry limit at lighter
quark masses, the quantum numbers of parity �, angular momentum J2 and Jz, strangeness
s, baryon number (atomic number) A, and isospin I2 and Iz are used to define the in-
terpolating operators. 2 These interpolating operators are first constructed recursively at

1 To be specific, for a quark spin component is = 1, . . . , Ns and color component ic = 1, . . . , Nc, the

combined index i = Nc(is � 1) + ic.
2 For calculations restricted to the SU(3) flavor symmetric limit, it would also be advantageous to work

directly with SU(3) irreducible representations.
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SU(3) symmetric world
• In flavour SU(3) symmetric case, multi-baryon states 

come in multiplets

• Unphysical symmetries manifest in spectrum
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FIG. 17: The bound-state energy levels in the J⇡ = 0+ 4

⇤⇤

He ( 4

⇤⇤

H and nn⇤⇤) sector. The
points and their associated uncertainties correspond to the energies of the states extracted from
the correlation functions with the quantum numbers of the ground state of 4

⇤⇤

He. The excited
state of the 4

⇤⇤

He , in the 28, has the same energy as the ground state of 4He. The locations of
the energy-levels associated with non-interacting ⇤-3

⇤

He, N⇤-N⇤, H-dibaryon-di-nucleon, N⇤-N-⇤,
di-nucleon-⇤-⇤, H-dibaryon-N-N, and ⇤-⇤-N-N continuum states, determined from the two-body
binding energies given in Table VII and the three-body energies given in eq. (9) and eq. (12), are
shown.

identify this as the ground state of the 4

⇤⇤

He, 4

⇤⇤

H, nn⇤⇤ isotriplet. However, it is possible
that this is an excited state of the nucleus, with irreps other than the 28 and 27 containing
a lower energy state. Further, it is also possible that this state is a continuum scattering
state associated with N+ 3

⇤⇤

H. Clearly, further calculations are required to unambiguously
distinguish the energy of the 27 ground state from that of the 28 excited state.

VII. FIVE-BODY SYSTEMS

There are a plethora of five-body systems that can be explored theoretically at the SU(3)
symmetric point, dictated, in part, by the product of five 8’s,

8⌦ 8⌦ 8⌦ 8⌦ 8 = 32 1� 145 8� 100 10� 100 10� 180 27� 20 28� 20 28

� 100 35� 100 35� 94 64� 5 80� 5 80� 36 81� 36 81

� 20 125� 4 154� 4 154� 216 . (17)

25

can be straightforwardly constructed as

8⌦ 8⌦ 8 = 64� 2 35� 2 35� 6 27� 4 10� 4 10� 8 8� 2 1 . (6)

However, the local sources constructed from only the upper-components of the quark fields
produce correlation functions containing a subset of these irreps,

8⌦ 8⌦ 8 ! 35� 35� 2 27� 10� 10� 2 8� 1 , (7)

and further decomposition into states with J⇡ = 1

2

+

and J⇡ = 3

2

+

gives

( 8⌦ 8⌦ 8 )J⇡
=1/2+ ! 35� 35� 27� 8

( 8⌦ 8⌦ 8 )J⇡
=3/2+ ! 27� 10� 10� 8� 1 . (8)

It is clear from the SU(3) irreps contributing to the three-body systems that, with our
source structure, a given correlation function contains contributions from multiple SU(3)
irreps. With a relatively small number of states identified with the present set of correlation
functions, the SU(3) classification of states is di�cult to establish from the spectra alone.
More generally, it is expected that the spectrum of states in any given correlation function
becomes increasingly complicated with increasing numbers of baryons even when constrained
by SU(3) flavor symmetry. As the focus of this work is systems containing only a small
number of strange quarks, we have chosen to use the same notation as in hypernuclear
spectroscopy. States in 3He (same as 3H by isospin symmetry), 3

⇤

He (same as 3

⇤

H and nn⇤
by isospin symmetry), the isosinglet 3

⇤

H, and the isotriplet 3

⌃

He have been identified in the
three-body sector.

Correlation functions calculated with LQCD will not only contain contributions from
ground state and excited states of the bound nuclei, but also continuum states that con-
sist of all possible sub-clusterings of the baryons. For instance, the correlation functions
used to extract the 3He nuclear states will also contain contributions from the deuteron-
proton, di-proton-neutron in addition to the proton-proton-neutron continuum states. With
su�cient precision in the calculation, one will be able to use these levels to extract, for
instance, the deuteron-proton scattering phase-shift [24]. Given that the two-body sector is
well-established, the spectrum of such continuum states can be approximately constructed.
Clearly, states of the 3He nucleus can only be cleanly identified when they are not close in
energy to the expected location of non-interacting continuum states. The generalization of
this discussion applies to other systems comprised of three or more baryons. In Appendix B,
an example of the expected finite volume scattering state spectrum is constructed for each
of the volumes that are used in this analysis, demonstrating the extent of this problem in
large volumes.

A. I = 1

2

: 3H and 3He

In nature, the I = 1

2

, J⇡ = 1

2

+

ground state of the 3He nucleus is the only bound state of two
protons and a neutron, and it is known to be dominantly composed of two protons in a 1S

0

state coupled to a s-wave neutron. Four 3He correlation functions, resulting from di↵erent
source structures defined by s = 0, I = 1

2

and J⇡ = 1

2

+

quantum numbers transforming
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to be unity in calculations performed with isotropic lattices. Fitting ⇠H to the energy of the
pion and baryon, given in Table III and Table IV, respectively, yields ⇠⇡ = 1.0120(32)(18) and
⇠B = 1.014(11)(02). Therefore, the dispersion relations are known with su�cient precision
to provide only a small uncertainty in the extraction of multi-hadron energies.

IV. TWO-BODY SYSTEMS

In general, the two-body states can be classified by isospin, strangeness, parity and angular
momentum. In the limit of SU(3) flavor symmetry, the energy eigenstates can also be
classified by SU(3) quantum numbers. The lowest-lying baryons transform as 8 under SU(3),
and therefore the two-body states have degeneracies determined by the dimensionality of
the irreps in the product,

8⌦ 8 = 27� 10� 10� 8S � 8A � 1 . (4)

As the wave-function of such systems is totally antisymmetric, the s-wave 1S
0

channels
transform under SU(3) as 27 � 8S � 1, while the 3S

1

-3D
1

coupled channels transform as
10� 10� 8A. The source structures we have employed, in which the quark-level operators
reside at one point in the spatial volume, have vanishing overlap with the 8S irrep, and
as a result, we are unable to determine the energy of this two-body irrep. Correlation
functions are not constructed directly in terms of their SU(3) transformation properties, but
the contributing SU(3) irreps can be deduced from their structure: 10 from the deuteron,
27 from the di-nucleon, 1� 27 from the H-dibaryon (the 8S is absent), 10 from n⌃� in the
3S

1

-3D
1

coupled channels, and 8A from I = 0 N⌅ in the 3S
1

-3D
1

coupled channels. EMP’s
extracted from the two-body correlation functions for systems at rest calculated with the
483 ⇥ 64 ensemble are shown in fig. 4. The energies of states that are negatively shifted
relative to two free baryons are presented in Table V, Table VI and Table VII, respectively,
and displayed in fig. 5.

The energies of the states that are presented in this work, along with their statistical
uncertainties, are determined from a single parameter correlated �2-minimization procedure
performed over a specific time interval of EMP’s and from exponential fits to the correlation
functions directly, with covariance matrices determined with either Jackknife or Bootstrap.
The systematic uncertainty that is assigned to these energies is determined by varying the
fit interval over a range of values consistent with the identified plateau region. The full
range of the central values of the extracted energies is taken to represent the 3� range of
values of the systematic uncertainty, but we quote the 1� value rather than the 3� value
in order to make combining the systematic and statistical uncertainties in quadrature more
transparent.

A number of scattering states with positive energy-shifts relative to two free baryons have
also been identified using di↵erent correlation functions, but their uncertainties are large
enough to preclude clean extraction of scattering phase-shifts using Lüschers method [35, 36],
and we defer analysis of these states to a later time when adequate statistics have been
accumulated.

In su�ciently large volumes, the binding momentum associated with a two-body bound
state at rest in the lattice volume will scale as

(L) = 
0

+
6Z2

 

L
e�0L + ... , (5)
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TABLE XII: The calculated bound state energies in J⇡ = 3

2

+

3

⌃

He. “g.s.” denotes the ground
state.

3

⌃

He 243 ⇥ 48 323 ⇥ 48 483 ⇥ 64

g.s. (MeV) 60(10)(5) 53(7)(5) 59(10)(5)

ground-state wavefunction is pn⌃, where the nucleons couple to I = 0, J = 1, as in 3

⇤

H. As
yet, the only observed ⌃ hypernucleus is 4

⌃

He (ppn⌃0) [47, 48], but at the SU(3) point it is
possible that this three-body system binds. The sources used to generate this correlation
function transform as 27 under SU(3), 7 and result in EMP’s that exhibit clear plateaus.
The ground state energies extracted from the three ensembles are given in Table XII, and
the associated EMP’s are shown in fig. 12. The ground state energy and the anticipated
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FIG. 12: The EMP’s associated with one J⇡ = 3

2

+

3

⌃

He correlation function computed with the
243 ⇥ 48 (left), 323 ⇥ 48 (center) and 483 ⇥ 64 (right) ensembles, with momentum |P| = 0. The
shaded regions corresponds to the statistical uncertainty associated with the shown fitting interval.

continuum thresholds based upon the non-interacting two-body energies are shown in fig. 13.

VI. FOUR-BODY SYSTEMS

There are a large number of four-body systems and states that could be explored theoretically
with LQCD at the SU(3) symmetric point, dictated by the product of four 8’s,

8⌦ 8⌦ 8⌦ 8 = 8 1� 32 8� 20 10� 20 10� 33 27� 2 28� 2 28� 15 35� 15 35

� 12 64� 3 81� 3 81� 125 , (13)

giving a total of 166 lowest-lying states (one per distinct irrep) with distinguishable quantum
numbers. The local sources that have been used in this work to generate correlation functions
project onto a subset of the irreps,

( 8⌦ 8⌦ 8⌦ 8 )J⇡
=0

+ ! 1� 27� 28

( 8⌦ 8⌦ 8⌦ 8 )J⇡
=1

+ ! 8� 10� 10� 35

( 8⌦ 8⌦ 8⌦ 8 )J⇡
=2

+ ! 8� 27 , (14)

7 This 27 irrep is di↵erent from that in the J⇡ = 1
2

+
channel. In principle the ground state of the system

could reside in the 64 irrep, but this is not accessible with our present operator structure.

20



Nuclei (A=2)

NPLQCD arXiv:1206.5219

Ì

ÌÌÌÌÌÌÌÌÌÌÌ
Ì

Ì

Ì

Ì

Ì

Ì

1

0 4 8 12 16 20 24
-0.1

-0.05

0.

0.05

0.1

têb

b
D
E

⇤⇤

ÌÌ

Ì
Ì
Ì
Ì
ÌÌÌÌÌ

ÌÌÌ
ÌÌ
Ì
Ì
Ì

8A

0 4 8 12 16 20 24
-0.1

-0.05

0.

0.05

0.1

têb

b
D
E

n⌅(3S1)

Ì

Ì
Ì
Ì
Ì
ÌÌÌÌÌÌ

ÌÌÌ
Ì

Ì

Ì

Ì

Ì
Ì

10

0 4 8 12 16 20 24
-0.1

-0.05

0.

0.05

0.1

têb

b
D
E

np(3S1)

Ì

Ì
Ì
Ì
Ì
ÌÌÌÌÌ

Ì
Ì
ÌÌ

Ì

Ì
Ì

Ì

Ì

10

0 4 8 12 16 20 24
-0.1

-0.05

0.

0.05

0.1

têb

b
D
E

n⌃(3S1)

Quark-hadron contraction method



Nuclei (A=2)

deuteron nn H-dib nL H1s0L nL H3s1L nS H1s0L nS H3s1L nX H3s1L pX H3s1L

10
27

1

10

8A

-100

-80

-60

-40

-20

0

D
E
HMe

V
L

L=48 , »p»=2L=48 , »p»=1L=48 , »p»=0L=32 , »p»=2L=32 , »p»=1L=32 , »p»=0L=24 , »p»=0

NPLQCD arXiv:1206.5219

Quark-hadron contraction method



Nuclei (A=2,3,4)

NPLQCD arXiv:1206.5219

Ì

ÌÌ

Ì

Ì

Ì
ÌÌ
ÌÌ
Ì
Ì
ÌÌ

Ì0 4 8 12 16 20 24
-0.2
-0.15
-0.1
-0.05

0.
0.05
0.1

têb

b
D
E

4
⇤⇤He

Ì

ÌÌ

Ì

Ì

Ì
ÌÌ
ÌÌÌ

Ì
Ì

Ì

Ì

0 4 8 12 16 20 24
-0.1

-0.05

0.

0.05

0.1

têb

b
D
E

3He

Ì

Ì

Ì
Ì

Ì

Ì
Ì
ÌÌ
ÌÌÌ

Ì

0 4 8 12 16 20 24
-0.15

-0.1

-0.05

0.

0.05

0.1

têb

b
D
E

4He

Ì

Ì
Ì
Ì
Ì
ÌÌÌ

ÌÌ
ÌÌ
Ì

Ì

0 4 8 12 16 20 24
-0.15

-0.1

-0.05

0.

0.05

0.1

têb

b
D
E

3
⇤He

Quark-hadron contraction method
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FIG. 13: The bound-state energy levels in the J⇡ = 3

2

+

3

⌃

He sector. The points and their associated
uncertainties correspond to the energies of the states extracted from the correlation functions with
the quantum numbers of the ground state of 3

⌃

He. The locations of the energy-levels associated
with non-interacting continuum states, determined from the two-body binding energies given in
Table VII, are shown.

which greatly reduces the complexity of individual correlation functions. In order to restrict
ourselves to systems that are currently of phenomenological importance, we explore systems
containing up to two strange quarks only, the isosinglet 4He, the iso-doublet 4

⇤

H and 4

⇤

He,
the isosinglet 4

⇤⇤

H and the isotriplet 4

⇤⇤

He, 4

⇤⇤

H, and nn⇤⇤.

A. I = 0 : 4He

In nature, the 4He nucleus is anomalously deeply bound when compared to nuclei nearby
in the periodic table due to its closed shell structure, with a total binding energy of B↵ ⇠
28 MeV, or a binding energy per nucleon of B/A ⇠ 7 MeV. We anticipate that at the SU(3)
symmetric point, the binding energy of 4He will be even deeper given the bindings of the
deuteron and di-neutron found in the two-body sector. Two of the 4He correlation functions,
resulting from di↵erent source structures defined by s = 0, I = 0 and J⇡ = 0+ quantum
numbers, transform as an element of the 28 irrep of SU(3), as determined by the action of
the SU(3) Casimir operators presented in Appendix A. 8 EMP’s of one of these correlation
functions are shown in fig. 14, from which the energies of the lowest lying states have been

8 The 28 is the only allowed I = 0, s = 0, A=4 irrep.
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Nuclei (A=3,4)
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FIG. 17: The bound-state energy levels in the J⇡ = 0+ 4

⇤⇤

He ( 4

⇤⇤

H and nn⇤⇤) sector. The
points and their associated uncertainties correspond to the energies of the states extracted from
the correlation functions with the quantum numbers of the ground state of 4

⇤⇤

He. The excited
state of the 4

⇤⇤

He , in the 28, has the same energy as the ground state of 4He. The locations of
the energy-levels associated with non-interacting ⇤-3

⇤

He, N⇤-N⇤, H-dibaryon-di-nucleon, N⇤-N-⇤,
di-nucleon-⇤-⇤, H-dibaryon-N-N, and ⇤-⇤-N-N continuum states, determined from the two-body
binding energies given in Table VII and the three-body energies given in eq. (9) and eq. (12), are
shown.

identify this as the ground state of the 4

⇤⇤

He, 4

⇤⇤

H, nn⇤⇤ isotriplet. However, it is possible
that this is an excited state of the nucleus, with irreps other than the 28 and 27 containing
a lower energy state. Further, it is also possible that this state is a continuum scattering
state associated with N+ 3

⇤⇤

H. Clearly, further calculations are required to unambiguously
distinguish the energy of the 27 ground state from that of the 28 excited state.

VII. FIVE-BODY SYSTEMS

There are a plethora of five-body systems that can be explored theoretically at the SU(3)
symmetric point, dictated, in part, by the product of five 8’s,

8⌦ 8⌦ 8⌦ 8⌦ 8 = 32 1� 145 8� 100 10� 100 10� 180 27� 20 28� 20 28

� 100 35� 100 35� 94 64� 5 80� 5 80� 36 81� 36 81

� 20 125� 4 154� 4 154� 216 . (17)
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d, nn, 3He, 4He

• PACS-CS: bound d,nn, 3He, 4He

• Previous quenched work

• Recent unquenched study at 
mπ=500 MeV

• HALQCD 

• Extract an NN potential

• Strong enough to bind H, 4He 
at mPS=490 MeV SU(3) pt

• d, nn not bound
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FIG. 1: Nucleon effective mass on (5.8 fm)3 box in lattice unites. Fit result with one standard

deviation error band is expressed by solid lines.
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FIG. 2: Effective energy shift ∆Eeff
L for 4He channel on (5.8 fm)3 box in lattice units. Fit result

with one standard deviation error band is expressed by solid lines.
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FIG. 5: Same as Fig. 3 for 3He channel.
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FIG. 3: Spatial volume dependence of ∆EL in GeV units for 4He channel. Outer bar denotes

the combined error of statistical and systematic ones added in quadrature. Inner bar is for the

statistical error. Extrapolated result in the infinite spatial volume limit is shown by filled square

symbol together with the fit line (dashed). Experimental value (star) and quenched result (open

diamond) are also presented.
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FIG. 4: Same as Fig. 2 for 3He channel.
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4He binding
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FIG. 6: Lattice QCD calculations of 4He, along with its value in nature.

from the physical point in order to full explore the implications of the underlying theory of
the strong interactions.

The results of the work at the lighter pion mass will be the closest to the physical light
quark masses to date, and they can be used, in conjunction with other results, to make
predictions for the binding of nuclei, and the scattering of baryons, at the physical point.
Such predictions will be truly outstanding results. As nuclear physics is finely tuned at the
physical point, it is conceivable that the binding energy extrapolation in some systems will
have uncertainties that will require future calculations to fully quantify. Further, with results
at only one lattice spacing, future calculations will be required at finer lattice spacings to
reduce discretization uncertainties. However, at this pion mass we will learn what the bound
state spectrum of s-shell nuclei and hypernuclei and will have a much clearer picture of how
bound states evolve with the light quark masses.

In Fig. 6 we show the existing results of lattice QCD calculations of 4He as a function of the
pion mass. A precise calculation of the binding of 4He at a pion mass of 300MeV, along with
a reduction in uncertainties at the heavier masses will allow for an empirical extrapolation
to the physical point, and hence the first ever prediction for the binding energy of a nucleus
from quantum chromodynamics.
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Density of states ...arrrrgh
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FIG. 15: The bound-state energy levels in the J⇡ = 0+ 4He sector. The points and their associated
uncertainties correspond to the energies of the states extracted from the correlation functions with
the quantum numbers of the ground state of 4He. The locations of the energy-levels associated with
non-interacting N-3He, d-d, di-nucleon-di-nucleon, di-nucleon-N-N, d-N-N and N-N-N-N continuum
states, determined from the two-body binding energies given in Table VII and the three-body
energies given in eq. (9), are shown.

4He, and hence the ground states have the same energy. 9 The EMP’s from these correlation
functions are the same as those shown in fig. 14, from which the energies of the lowest lying
states have been determined, and are the same as those in Table XIII. The spectrum in this
channel, and a subset of associated continuum states, are the same as those in fig. 15. There
are no continuum states from other SU(3) irreps lying lower than those associated with the
4He spectrum (assuming that we have correctly identified the ground states in the 3-body
sector). However, due to the presence of di↵erent SU(3) irreps in this channel, the spectrum
of excited states of the nucleus, and the continuum states, is expected to be di↵erent from
that in the 4He channel.

As is the case for 4He, while the lowest-lying state extracted from the correlation functions
has a central value that is lower than any of the non-interacting continuum states, the
precision of the calculation is not su�cient to exclude the possibility that it is, in fact,
a continuum state, e.g. 3He+⇤, or 3

⇤

He+N. The extrapolated binding energy is given in

9 The s = �1, I = 1
2 systems of various spin configurations have components transforming in the 81 and

125 irreps that are inaccessible to our operator construction, but that may in principle contain the ground

state of this system.
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Density of states ...arrrrgh
of the corresponding energy levels. For two body clusters, it is expected that there will be
O(1/L3) shifts in the continuum energies but for higher body clusters the form of the energy
shifts is not known. In fig. 20 we present the expected (ignoring interactions) finite volume
energy levels in the 4He sector for each of the volumes used in this work.
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FIG. 20: Expected energy levels in the J⇡ = 0+ 4He sector. The blue, green and red lines in
each column denote the location of non-interacting continuum levels in the 243⇥ 48 , 323⇥ 48 and
483⇥ 64 ensembles, respectively. The location of the states in the 243⇥ 48 and 323⇥ 48 ensembles
have been displaced slightly for demonstrative purposes.

With more accurate LQCD calculations and additional interpolating operators, we aim to
investigate these states in the future. However, this makes clear the di�culty in extracting
excited states in nuclei from this type of calculation. The continuum states rapidly accu-
mulate as the lattice volume becomes large, and isolating nuclear excited states above the
lowest-lying continuum states will be challenging with current technology and algorithms.
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Issues 

• Can we optimise noise suppression systematically

• For large A systems, how do we control the 
volume, lattice spacing, unphysical quark mass 
artefacts?

• EFT probably loses control/breaks down for A>4

• Maybe just empirically? 

• What other kinds of observables can we calculate?

• Structure of bound nuclei
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From quarks to nuclei

• QCD calculations of nuclei are possible

• More work needed to get to the 
physical quark masses

• Need big computers and good ideas

• Where is the field going?

• Strong connections to experimental programs: 
hypernuclear spectroscopy at JLab, JPARC, FAIR

• Answer questions that experiments have not and 
cannot: nnn, quark mass dependence
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