Neutron-Antineutron Oscillations on the Lattice

Michael I. Buchoff
Lawrence Livermore National Laboratory
In collaboration with Chris Schroeder and Joe Wasem

Why should we care?

* Other particle/antiparticle mixings occur

$$
\begin{aligned}
& K^{0} \leftrightarrow \overline{K^{0}} \\
& B^{0} \leftrightarrow \overline{B^{0}}
\end{aligned}
$$

* Expect baryon number number to be broken
- Baryon-antibaryon asymmetry

$$
\begin{aligned}
& \Delta B=1 \text { (Proton Decay) } \\
& \Delta B=2 \text { (N } \bar{N} \text { Oscillations) }
\end{aligned}
$$

* Natural in GUT theories with Majorana neutrinos

Mohapatra, Marshak 1980

$$
\nu=\bar{\nu} \Rightarrow \Delta L=2 \quad B-L=0 \Rightarrow \Delta B=2
$$

Basic Idea

* BSM physics leads to off-diagonal mixing

$$
\begin{gathered}
H=\left(\begin{array}{ll}
E_{n} & \delta m \\
\delta m & E_{\bar{n}}
\end{array}\right)=\left(\begin{array}{cc}
E+V & \delta m \\
\delta m & E-V
\end{array}\right) \\
V=0 \Rightarrow \text { Free System }
\end{gathered}
$$

*Transition Probability

$$
P_{n \rightarrow \bar{n}}(t)=\frac{\delta m^{2}}{\delta m^{2}+V^{2}} \sin ^{2}\left[\sqrt{\delta m^{2}+V^{2}} t\right] \quad \tau_{n \bar{n}}=\frac{1}{\delta m}
$$

Restricting GUTs

Examples:

TeV -scale seesaw mechanism
for neutrino masses in
$S U(2)_{L} \times S U(2)_{R} \times S U(4)_{c}$
$\mathrm{SO}(10)$ seesaw mechanism with adequate baryogenisis

Extra-dimensional particles above 45 TeV

Babu,
Bhupal Dev, Mohapatra (2009)

Babu, $10^{9}-10^{12} \sec$

* Estimates for ruling out large classes of GUTs

$$
\tau_{n \bar{n}}>10^{10}-10^{11} \mathrm{sec}
$$

Experimental prospects

Many
neutrons

Neutron-antineutron annihilation signals
Primary channel $n \bar{n} \rightarrow 5 \pi \quad$ ("Zero background" signal)

* Two Types of experimental searches

Experimental progress

1. Neutron-antineutron annihilation in nuclei

Straight-forward question:
Why have we not annihilated yet?
Crude Answer: Limited time neutron is "free" in nuclei

$$
P \sim \frac{1}{\tau_{N u c l}} \sim \frac{1}{\Delta t}\left(\frac{\Delta t}{\tau_{n \bar{n}}}\right)^{2}
$$

Friedman,
Gal -Nuclear suppression: 2008

Experimental progress

1. Neutron-antineutron annihilation in nuclei

Straight-forward question:
Why have we not annihilated yet?
Crude Answer: Limited time neutron is "free" in nuclei

$$
P \sim \frac{1}{\tau_{N u c l}} \sim \frac{1}{\Delta t}\left(\frac{\Delta t}{\tau_{n \bar{n}}}\right)^{2}
$$

Friedman,
Gal -Nuclear suppression: 2008

Experimental progress

2. Free, Cold neutron annihilation with target

Designed to:

1. Maximize number of neutrons
2. Minimize energy of neutrons
3. Maximize time of flight
4. Minimize External Magnetic Field

Minimize external potential

Most model-independent measurement

ILL bound (1993)

$$
\tau_{n \bar{n}}>0.86 \times 10^{8} \mathrm{sec}
$$

Experimental prospects

* Cost Estimates (Project X meeting, June 2012)

$$
\begin{array}{ll}
\tau_{n \bar{n}} \gtrsim 3 \times 10^{9} \mathrm{sec}: & \sim \$ 10 \text { million } \\
\tau_{n \bar{n}} \gtrsim 1 \times 10^{11} \mathrm{sec}: & \gtrsim \$ 200 \text { million }
\end{array}
$$

Bottom line: Lattice allows for rigorous, first-principle understanding of QCD input

Origin of Oscillations

BSM

* Running of

BSM interaction to nuclear scale

Nuclear

$$
\frac{1}{\tau_{n \bar{n}}}=\delta m=c_{B S M}(\mu) c_{Q C D}(\mu)\langle\bar{n}| \mathcal{O}|n\rangle
$$

Where Lattice Can Help

+ Is BSM running non-perturbative?
- Model-dependent (assume pert. models for now)
* Is QCD running non-perturbative?
- Should be calculated (pert. running reasonable)
* What is neutron-antineutron matrix element?
- Inherently non-perturbative question
* What is effect in nuclei?
- Very interesting, VERY hard question

Where Lattice Can Help

+ Is BSM running non-perturbative?
- Model-dependent (assume pert. models for now)
* Is QCD running non-perturbative?
- Should be calculated (pert. running reasonable)

What is neutron-antineutron matrix element?

- Inherently non-perturbative question
* What is effect in nuclei?
- Very interesting, VERY hard question

Six-quark Operators

Rao, Shrock (1982)

Three pairs of quarks:

$$
\begin{aligned}
& u^{T} C u \quad \text { or } \quad u^{T} C d \quad \text { or } \quad d^{T} C d \\
& u_{L}^{T} C d_{L} \quad \text { or } \quad u_{R}^{T} C d_{R} \\
& \Gamma_{i j k l m n}^{s}=\epsilon_{m i k} \epsilon_{n j l}+\epsilon_{n i k} \epsilon_{m j l}+\epsilon_{m j k} \epsilon_{n i l}+\epsilon_{n j k} \epsilon_{m i l} \\
& \Gamma_{i j k l m n}^{a}=\epsilon_{m i j} \epsilon_{n k l}+\epsilon_{n i j} \epsilon_{m k l}
\end{aligned}
$$

Six-quark Operators

Rao, Shrock (1982)

$$
\chi_{i}=L, R
$$

$\mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{1}=\left(u_{i \chi_{1}}^{T} C u_{j \chi_{1}}\right)\left(d_{k_{2}}^{T} C d_{l \chi_{2}}\right)\left(d_{m \chi_{3}}^{T} C d_{n \chi_{3}}\right) \Gamma_{i j k l m n}^{s}$
$\mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{2}=\left(u_{i \chi_{1}}^{T} C d_{j \chi_{1}}\right)\left(u_{k \chi_{2}}^{T} C d_{l \chi_{2}}\right)\left(d_{m \chi_{3}}^{T} C d_{n \chi_{3}}\right) \Gamma_{i j k l m n}^{s}$

$$
\mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{3}=\left(u_{i \chi_{1}}^{T} C d_{j \chi_{1}}\right)\left(u_{k \chi_{2}}^{T} C d_{l_{\chi_{2}}}\right)\left(d_{m \chi_{3}}^{T} C d_{n \chi_{3}}\right) \Gamma_{i j k l m n}^{a}
$$

$$
\begin{aligned}
\Gamma_{i j k l m n}^{s} & =\epsilon_{m i k} \epsilon_{n j l}+\epsilon_{n i k} \epsilon_{m j l}+\epsilon_{m j k} \epsilon_{n i l}+\epsilon_{n j k} \epsilon_{m i l} \\
\Gamma_{i j k l m n}^{a} & =\epsilon_{m i j} \epsilon_{n k l}+\epsilon_{n i j} \epsilon_{m k l}
\end{aligned}
$$

Six-quark Operators

Rao, Shrock (1982)

$$
\mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{1}=\left(u_{i \chi_{1}}^{T} C u_{j \chi_{1}}\right)\left(d_{k \chi_{2}}^{T} C d_{l \chi_{2}}\right)\left(d_{m \chi_{3}}^{T} C d_{n \chi_{3}}\right) \Gamma_{i j k l m n}^{s}
$$

$$
\mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{2}=\left(u_{i \chi_{1}}^{T} C d_{j \chi_{1}}\right)\left(u_{k \chi_{2}}^{T} C d_{l \chi_{2}}\right)\left(d_{m \chi_{3}}^{T} C d_{n \chi_{3}}\right) \Gamma_{i j k l m n}^{s}
$$

$$
\mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{3}=\left(u_{i \chi_{1}}^{T} C d_{j \chi_{1}}\right)\left(u_{k \chi_{2}}^{T} C d_{l \chi_{2}}\right)\left(d_{m \chi_{3}}^{T} C d_{n \chi_{3}}\right) \Gamma_{i j k l m n}^{a}
$$

$$
\begin{aligned}
\Gamma_{i j k l m n}^{s} & =\epsilon_{m i k} \epsilon_{n j l}+\epsilon_{n i k} \epsilon_{m j l}+\epsilon_{m j k} \epsilon_{n i l}+\epsilon_{n j k} \epsilon_{m i l} \\
\Gamma_{i j k l m n}^{a} & =\epsilon_{m i j} \epsilon_{n k l}+\epsilon_{n i j} \epsilon_{m k l}
\end{aligned}
$$

I8 Independent Operators

Six-quark Operators

Rao, Shrock (1982)

$$
\begin{array}{ll}
\mathcal{O}_{\chi_{1} L R}^{1}=\mathcal{O}_{\chi_{1} R L}^{1} \\
\chi_{i}=L, R & \mathcal{O}_{L R \chi_{3}}^{2,3}=\mathcal{O}_{R L \chi_{3}}^{2,3}
\end{array}
$$

(1.)

$$
\mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{1}=\left(u_{i \chi_{1}}^{T} C u_{j \chi_{1}}\right)\left(d_{k \chi_{2}}^{T} C d_{l \chi_{2}}\right)\left(d_{m \chi_{3}}^{T} C d_{n \chi_{3}}\right) \Gamma_{i j k l m n}^{s}
$$

$$
\mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{2}=\left(u_{i \chi_{1}}^{T} C d_{j \chi_{1}}\right)\left(u_{k \chi_{2}}^{T} C d_{l \chi_{2}}\right)\left(d_{m \chi_{3}}^{T} C d_{n \chi_{3}}\right) \Gamma_{i j k l m n}^{s}
$$

3.

$$
\mathcal{O}_{\chi_{1} \chi_{2} \chi_{3}}^{3}=\left(u_{i \chi_{1}}^{T} C d_{j \chi_{1}}\right)\left(u_{k \chi_{2}}^{T} C d_{l \chi_{2}}\right)\left(d_{m \chi_{3}}^{T} C d_{n \chi_{3}}\right) \Gamma_{i j k l m n}^{a}
$$

$$
\Gamma_{i j k l m n}^{s}=\epsilon_{m i k} \epsilon_{n j l}+\epsilon_{n i k} \epsilon_{m j l}+\epsilon_{m j k} \epsilon_{n i l}+\epsilon_{n j k} \epsilon_{m i l}
$$

$$
\Gamma_{i j k l m n}^{a}=\epsilon_{m i j} \epsilon_{n k l}+\epsilon_{n i j} \epsilon_{m k l} \quad \text { Caswell, Milutinovic, }
$$ Sejanovic (1983)

I8 Independent Operators $\rightarrow 14$ Indep. Operators

Six-quark Operators

Rao, Shrock (1982)
If invariant under $S U(3)_{c} \otimes S U(2)_{L} \otimes U(1)_{Y}$:
Restricts operators to:
-All combination of right-handed singlets

$$
\begin{aligned}
& \mathcal{P}_{1}=\left(u_{i R}^{T} C u_{j R}\right)\left(d_{k R}^{T} C d_{l R}\right)\left(d_{m R}^{T} C d_{n R}\right) \Gamma_{i j k l m n}^{s}=\mathcal{O}_{R R R}^{1} \\
& \mathcal{P}_{2}=\left(u_{i R}^{T} C d_{j R}\right)\left(u_{k R}^{T} C d_{l R}\right)\left(d_{m R}^{T} C d_{n R}\right) \Gamma_{i j k l m n}^{s}=\mathcal{O}_{R R R}^{2} \\
& \mathcal{P}_{3}=\left(u_{i R}^{T} C d_{j R}\right)\left(u_{k R}^{T} C d_{l R}\right)\left(d_{m R}^{T} C d_{n R}\right) \Gamma_{i j k l m n}^{a}=\mathcal{O}_{R R R}^{3}
\end{aligned}
$$

Six-quark Operators

Rao, Shrock (1982)
If invariant under $S U(3)_{c} \otimes S U(2)_{L} \otimes U(1)_{Y}$:
Restricts operators to:
-All combination of right-handed singlets
-Flavor anti-symmetric combinations of left-handed doublets

$$
\mathcal{P}_{4}=\left(\left[q_{i L}^{T}\right]^{w} C\left[q_{j L}\right]^{x}\right)\left(u_{k R}^{T} C d_{l R}\right)\left(d_{m R}^{T} C d_{n R}\right) \Gamma_{i j k l m n}^{a} \epsilon^{w x}=2 \mathcal{O}_{L R R}^{3}
$$

Six-quark Operators

Rao, Shrock (1982)

 If invariant under $S U(3)_{c} \otimes S U(2)_{L} \otimes U(1)_{Y}$:Restricts operators to:
-All combination of right-handed singlets
-Flavor anti-symmetric combinations of left-handed doublets

$$
\begin{aligned}
& \mathcal{P}_{4}=\left(\left[q_{i L}^{T}\right]^{w} C\left[q_{j L}\right]^{x}\right)\left(u_{k R}^{T} C d_{l R}\right)\left(d_{m R}^{T} C d_{n R}\right) \Gamma_{i j k l m n}^{a} \epsilon^{w x}=2 \mathcal{O}_{L R R}^{3} \\
& \left.\mathcal{P}_{5}=\left(\left[q_{i L}^{T}\right]^{w} C\left[q_{j L}\right]^{x}\right)\left(\left[q_{k L}^{T}\right]^{y} C\left[q_{l R}\right)\right]^{z}\right)\left(d_{m R}^{T} C d_{n R}\right) \Gamma_{i j k l m}^{a} \epsilon^{w x} \epsilon^{y z}=4 \mathcal{O}_{L L R}^{3}
\end{aligned}
$$

Six-quark Operators

Rao, Shrock (1982)

If invariant under $S U(3)_{c} \otimes S U(2)_{L} \otimes U(1)_{Y}$:

Restricts operators to:
-All combination of right-handed singlets
-Flavor anti-symmetric combinations of left-handed doublets

$$
\begin{aligned}
& \mathcal{P}_{4}=\left(\left[q_{i L}^{T}\right]^{w} C\left[q_{j L}\right]^{x}\right)\left(u_{k R}^{T} C d_{l R}\right)\left(d_{m R}^{T} C d_{n R}\right) \Gamma_{i j k l m n}^{a} \epsilon^{w x}=2 \mathcal{O}_{L R R}^{3} \\
& \left.\mathcal{P}_{5}=\left(\left[q_{i L}^{T}\right]^{w} C\left[q_{j L}\right]^{x}\right)\left(\left[q_{k L}^{T}\right]^{y} C\left[q_{l R}\right)\right]^{z}\right)\left(d_{m R}^{T} C d_{n R}\right) \Gamma_{i j k l m}^{a} \epsilon^{w x} \epsilon^{y z}=4 \mathcal{O}_{L L R}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{P}_{6} & \left.=\left(\left[q_{i L}^{T}\right]^{w} C\left[q_{j L}\right]^{x}\right)\left(\left[q_{k L}^{T}\right]^{y} C\left[q_{l R}\right)\right]^{z}\right)\left(d_{m R}^{T} C d_{n R}\right) \Gamma_{i j k l m n}^{s}\left(\epsilon^{w y} \epsilon^{x z}+\epsilon^{x y} \epsilon^{w z}\right) \\
& =4\left(\mathcal{O}_{L L R}^{1}-\mathcal{O}_{L L R}^{2}\right)
\end{aligned}
$$

Six-quark Operators

Rao, Shrock (1982)
If invariant under $S U(3)_{c} \otimes S U(2)_{L} \otimes U(1)_{Y}$:
(Six Operators)

$$
\begin{aligned}
& \mathcal{P}_{1}=\mathcal{O}_{R R R}^{1} \\
& \mathcal{P}_{2}=\mathcal{O}_{R R R}^{2} \\
& \mathcal{P}_{3}=\mathcal{O}_{R R R}^{3} \\
& \mathcal{P}_{4}=2 \mathcal{O}_{L R R}^{3} \\
& \mathcal{P}_{5}=4 \mathcal{O}_{L L R}^{3} \\
& \mathcal{P}_{6}=4\left(\mathcal{O}_{L L R}^{1}-\mathcal{O}_{L L R}^{2}\right)
\end{aligned}
$$

* Matrix elements cannot be calculated perturbatively

Six-quark Operators

Rao, Shrock (1982)
If invariant under $S U(3)_{c} \otimes S U(2)_{L} \otimes U(1)_{Y}$:
(Six Operators)
(Four Operators)

$$
\mathcal{P}_{1}=\mathcal{O}_{R R R}^{1}
$$

Caswell, Milutinovic,

$$
\mathcal{P}_{3}=\mathcal{O}_{R R R}^{3}
$$

Sejanovic (1983)
$\mathcal{P}_{4}=2 \mathcal{O}_{L R R}^{3}$
$\mathcal{P}_{6}=-3 \mathcal{P}_{5}$
$\mathcal{P}_{5}=4 \mathcal{O}_{L L R}^{3}$
$\mathcal{P}_{2}-\mathcal{P}_{1}=3 \mathcal{P}_{3}$
$\mathcal{P}_{6}=4\left(\mathcal{O}_{L L R}^{1}-\mathcal{O}_{L L R}^{2}\right)$

* Matrix elements cannot be calculated perturbatively

Six-quark Operators

Rao, Shrock (1982)
If invariant under $S U(3)_{c} \otimes S U(2)_{L} \otimes U(1)_{Y}:$
(Six Operators)
(Four Operators)

$$
\begin{aligned}
& \left(\mathcal{P}_{1}=\mathcal{O}_{R R R}^{1}\right. \\
& \left(\mathcal{P}_{2}\right)=\mathcal{O}_{R R R R}^{2} \\
& \mathcal{P}_{3}=\mathcal{O}_{R R}^{3}
\end{aligned}
$$

Caswell, Milutinovic,
Sejanovic (1983)

$$
\mathcal{P}_{6}=-3 \mathcal{P}_{5}
$$

$$
\begin{aligned}
& \mathcal{P}_{4}=2 \mathcal{O}_{L R R}^{3} \\
& \mathcal{P}_{5}=4 \mathcal{O}_{L L R}^{3}
\end{aligned}
$$

$$
\mathcal{P}_{2}-\mathcal{P}_{1}=3 \mathcal{P}_{3}
$$

$$
\mathcal{P}_{6}=4\left(\mathcal{O}_{L L R}^{1}-\mathcal{O}_{L L R}^{2}\right)
$$

* Matrix elements cannot be calculated perturbatively

Current Understanding of Matrix Elements

MIT bag Model: (Rao, Shrock 1982)
-Model dependent estimation
-Results roughly consistent with DA
-No QCD input
Lattice Motivation:
-Numerical QCD calculation
-Quantification of uncertainties
-Pinpoint target sensitivity for experiment
-Large enhancements/suppressions?

Lattice Calculation

Correlation Functions via path integral:

$$
C_{\mathcal{O}}=\langle\mathcal{O}\rangle=\int d[U] \mathcal{O} \operatorname{det}\left(D_{l a t}(U)\right) e^{-S_{G}(U)}
$$

$$
\begin{aligned}
& C_{N N}(t)=\langle\bar{N}(t) N(0)\rangle \rightarrow|\langle N \mid n\rangle|^{2} e^{-m_{n} t} \\
& C_{\overline{N N}}(t)=\langle N(t) \bar{N}(0)\rangle \rightarrow|\langle\bar{N} \mid \bar{n}\rangle|^{2} e^{-m_{n} t} \\
& C_{\overline{N O N}}\left(t_{1}, t_{2}\right)=\left\langle N\left(t_{1}\right) \mathcal{O}(0) \bar{N}\left(t_{2}\right)\right\rangle \rightarrow\langle\bar{N} \mid \bar{n}\rangle\langle N \mid n\rangle e^{-m_{n}\left(t_{1}+t_{2}\right)}\langle n| \mathcal{O}|\bar{n}\rangle \\
& \quad \mathcal{R}=\frac{C_{\bar{N} O N}\left(t_{1}, t_{2}\right)}{C_{\overline{N N}}\left(t_{1}+t_{2}\right)}\left[\frac{C_{N N}\left(t_{1}\right) C_{\overline{N N}}\left(t_{2}\right) C_{\overline{N N}}\left(t_{1}+t_{2}\right)}{\left.C_{\overline{N N}} t_{1}\right) C_{N N}\left(t_{2}\right) C_{N N}\left(t_{1}+t_{2}\right)}\right]^{\frac{1}{2}} \rightarrow\langle\bar{n}| \mathcal{O}|n\rangle
\end{aligned}
$$

Lattice Contractions

Propagator Contractions:

$$
\bar{q}_{i^{\prime}}^{\alpha^{\prime}}(y) q_{i}^{\alpha}(x)=S_{i^{\prime} i}^{\alpha^{\prime} \alpha}(y, x) \quad S^{\dagger}=\gamma_{5} S \gamma_{5}
$$

$C_{N N}(t)$

$C_{\overline{N N}}(t)$

Lattice Contractions

Lattice Contractions

$$
C_{\bar{N} O N}\left(t_{1}, t_{2}\right) \sim-t_{1} \quad \tau=0 \quad \tau=t_{2}
$$

1 Propagator
Two measurement ALL time insertion

$$
\tau=-t_{1} \quad \tau=0 \quad \tau=t_{2}
$$

Typical
3-point

2 Propagators
One measurements
One time insertion

Often Dis.
Diagrams

Neutron Blocks

Construct sink-contracted neutron blocks:

Project onto lattice irrep G_{1}^{+}

$12 \times 12 \times N_{t}$ Object $\longrightarrow N_{s}^{3}$ times smaller than prop

Neutron Blocks

Construct sink-contracted neutron blocks:

Project onto lattice irrep
 $$
G_{1}^{+}
$$

$12 \times 12 \times N_{t}$ Object $\longrightarrow N_{s}^{3}$ times smaller than prop

Executive Summary

* Advantages of Neutron-Antineutron calculations

For same cost:

More Statistics

All Operator Insertions

No Quark Loop or Disconnected Diagrams

* Disadvantages of Neutron-Antineutron calculations

$$
\begin{gathered}
\text { More Propagator } \\
\text { Multiplications }
\end{gathered}
$$

Lattice Details

Original Calculation Problems:

Operator Smearing
Insufficient statistics
$-32^{3} \times 256$ anisotrpoic clover-Wilson lattices
$-m_{\pi} \sim 390 \mathrm{MeV}$
$-a_{t} \sim 0.04 \mathrm{fm}, a_{s} \sim 0.125 \mathrm{fm}$
$-L \sim 4 \mathrm{fm}$

- 159 configurations (every 4th trajectory)
- 7268 propagators (Gaussian smeared sources)
$-20^{3} \times 256$ anisotrpoic clover-Wilson lattices
$-m_{\pi} \sim 390 \mathrm{MeV}$
$-a_{t} \sim 0.04 \mathrm{fm}, a_{s} \sim 0.125 \mathrm{fm}$
- $L \sim 4 \mathrm{fm}$
- 875 configurations (every 5 th trajectory) Aim:
- 62,548 propagators

Nucleon Effective Mass

Eff. Mass

$$
\frac{C_{N N}(t+1)}{C_{N N}(t)} \rightarrow m_{n}
$$

$$
a_{t} M_{N}=0.20470(\pm 0.00079)(+0.00113)(-0.00022)
$$

N-NBar Matrix Element

$$
t_{1}=15
$$

$$
t_{1}=15
$$

~10,000
Measurements

~60,000
Measurements

$$
\mathcal{R} \rightarrow\langle\bar{n}| \mathcal{O}|n\rangle
$$

N-NBar Matrix Element $t_{1}=5$
 $t_{1}=10$
 $t_{1}=15$

$$
t_{1}=20
$$

$\mathcal{R} \rightarrow\langle\bar{n}| \mathcal{O}|n\rangle$

N-NBar Matrix Element $t_{1}=30$
 $t_{1}=35$
 $t_{1}=40$

$$
\mathcal{R} \rightarrow\langle\bar{n}| \mathcal{O}|n\rangle
$$

Possible Systematics Studies

Hosts of systematics can plague nucleon three-point functions

1) Volume Effects
2) Excited State Effects
3) Renormalization
4) Signal-to-noise
5) Statistics

Renner, arXiv:1002.0925

Neutron-antineutron calculations can be a testing ground!!

Possible Systematics Studies

Hosts of systematics can plague nucleon three-point functions

1) Volume Effects
 2) Excited State Effects

3) Renormalization
4) Signal-to-noise
5) Statistics

Renner, arXiv:1002.0925

Neutron-antineutron calculations can be a testing ground!!

Variety of Three-point analyses

Examined here:

1) Single source-operator separation
2) Center-line Fit
3) 2 D Center-line Fit (source-op \& op-sink)
4) Summation Method

To be explored:

1) Three-point matrix-Prony
2) Folding
3) Other Suggestions?

One Separation Fit $t_{1}=15$

$$
\begin{gathered}
a_{s}^{6}\langle N| \mathcal{O}_{R R R}^{1}|\bar{N}\rangle=\left(3.00 \pm 1.44_{-1.24}^{+0.60}\right) \times 10^{-7} \\
\chi^{2} / \text { dof }=0.859
\end{gathered}
$$

Center-line Fit
 $$
t_{1,2}=t_{1}=t_{2}
$$

$$
\begin{gathered}
a_{s}^{6}\langle N| \mathcal{O}_{R R R}^{1}|\bar{N}\rangle=\left(7.03 \pm 5.13_{-5.00}^{+8.09}\right) \times 10^{-7} \\
\chi^{2} / \text { dof }=0.834
\end{gathered}
$$

2D Center Line Fit

$$
\begin{aligned}
& t_{1}
\end{aligned}
$$

$$
\begin{aligned}
& 30 \leq t_{1} \leq 36 \\
& 30 \leq t_{2} \leq 36 \\
& a_{s}^{6}\langle N| \mathcal{O}_{R R R}^{1}|\bar{N}\rangle=\left(4.07 \pm 6.57_{-3.13}^{+3.34}\right) \times 10^{-7} \\
& \chi^{2} / \text { dof }=1.32
\end{aligned}
$$

Summation Method

$$
S\left(t_{s}\right)=\sum_{t=0}^{t_{s}} \mathcal{R}\left(t, t_{s}-t\right) \xrightarrow{t_{s} \gg 0} c+t_{s}\langle N| \mathcal{O}|\bar{N}\rangle
$$

Capitani et al., 2012, arXiv:1205.0180

Summation Method

All results for $\mathcal{O}_{R R R}^{1}$

All results for $\mathcal{O}_{R R R}^{2}$

All results for $\mathcal{O}_{L R R}^{3}$

All results for $\mathcal{O}_{L L R}^{3}$

Preliminary Results

Lattice (Bare) MIT Bag Model

$\langle\bar{n}| \mathcal{P}_{1}|n\rangle$

$$
0.81 \pm 1.30_{-0.62}^{+0.66}
$$

$$
-6.56
$$

$\langle\bar{n}| \mathcal{P}_{2}|n\rangle$

$$
-0.21 \pm 0.32_{-0.16}^{+0.15}
$$

$$
1.64
$$

$$
\langle\bar{n}| \mathcal{P}_{4}|n\rangle
$$

$$
-0.10 \pm 0.96_{-0.28}^{+1.20}
$$

$$
-6.36
$$

$$
\langle\bar{n}| \mathcal{P}_{5}|n\rangle
$$

$$
-0.20 \pm 1.92_{-0.54}^{+2.40}
$$

$$
9.64
$$

$$
\times 10^{-5} \mathrm{GeV}^{6}
$$

$$
\times 10^{-5} \mathrm{GeV}^{6}
$$

Still multiple important lattice systematics

Systematic Effects

* Unphysical Pion Mass
- No chiral extrapolation (yet...)
- Near physical point enhancements?
$n \bar{n}:$

$$
\tau=-t_{1} \quad \tau=0 \quad \tau=t_{2}
$$

Systematic Effects

* Unphysical Pion Mass
- No chiral extrapolation (yet...)
- Near physical point enhancements?
$n \bar{n}$:

$$
\tau=-t_{1} \quad \tau=0
$$

$$
\tau=t_{2}
$$

nn scattering:

$$
\tau=t_{2} \quad \tau=0 \quad \tau=t_{2}
$$

Other Systematic Effects

* Renormalization/discretization effects
- Most violent case should not occur

No lower dimensional $\Delta B=2$ operator

- Perturbative and non-perturbative renomalization needed

Six-quark operator

Potentially larger Z-factor

Future Outlook

Currently in progress:

* Independent analysis checks
* Lattice Renormalization
+ Systematic way to separate excited states \& noise from ground state signal

Near Future:

+ More Statistics
+ Chiral Extrapolation

Future Outlook

Feasible in the next few years:

* Physical Point Calculation
+ Chiral Fermion Calculation
+ Construct Variational Basis
+ Low-mode/all-mode averaging
+ Separate wall sources?

Final word

Intriguing prospects for Neutron-antineutron oscillations!

Physically:
-Can unveil new physics or provide stringent constraints
-Proposed experiments can finally probe region of interest

Lattice:

- Can rigorously pinpoint bounds from various GUT theories
-At the same time, calculations can help address systematic effects for nucleon three-point functions

This research was supported by the LLNL LDRD "Unlocking the Universe with High Performance Computing" 10-ERD-033 and by the LLNL
Multiprogrammatic and Institutional Computing program through the Tier 1 Grand Challenge award that has provided us with the large amounts of necessary computing

