

Fluctuations from LQCD

In collaboration with: S. Borsanyi, Y. Delgado, S. Durr, Z. Fodor, S.D. Katz, T. Lippert, D. Nogradi, C. Ratti, C. Schroeder, K.K. Szabo (Wuppertal-Budapest collaboration)

28.11.2012 | Stefan Krieg

Outline

- 1. Why do we believe our results are reliable?
 - a. Emerging consensus between the collaborations
 - b. Discussion of uncertainties in simulations
 - c. Crosschecks with other actions
- 2. Results on fluctuations
 - a. Lattice setup and techniques
 - b. Error analysis
 - c. Quadratic fluctuations, correllations
 - d. kurtosis
- 3. Conclusions and outlook

Transition temperature

N _t	Budapest- Wuppertal	HotQCD	MILC
N _t =4,6			169(15)
N _t =8-16	147(4)-155(4)		
N _t =8-12		154(8)	

Collaboratio n	Reference
MILC	hep-lat/0608013
WB	arXiv:1005.3508
HotQCD	arXiv:1111.1710

hotQCD:1111.1710

hotQCD: Interpolation to physical point using O(2) or O(4) scaling

Equation of State

Equation of State

Uncertainties: distorted pion sector

Uncertainties: Scale setting: LCP

Uncertainties: scale setting

Uncertainties: finite volume effects

Uncertainties: dynamical charm

Uncertainties: dynamical charm

Uncertainties: summary

- Taste breaking: fine lattices and smearing required
- Proper scale setting procedure can help
- Finite volume effects need to be checked
- Rooting: perform crosschecks with different
- For T>300 MeV a dynamical charm becomes relevant

Crosschecks: overlap

Crosschecks: overlap

Crosschecks: overlap

Crosschecks: Domain Wall Fermions

Crosschecks: Wilson Clover (stout)

Crosschecks: summary

Crosschecks with different lattice actions are available

- Comparison to Wilson (Clover) simulations available at $M_{\pi} \approx 545 MeV$, smaller masses in production
- Comparison to Overlap simulations available at $M_{\pi} \approx 350 MeV$
 - Some systematics effects will be analyzed more closely in the future
 - How far down in M_{π} can you go? (locate 1st order phase-transition?)
 - Comparison with Domain Wall not yet at similar M_{π} (spectrum distortions aside)

- Net yields are given by $\langle N_X \rangle = -T \frac{\partial \log Z}{\partial \mu_X} \quad \langle N_X^2 \rangle \langle N_X \rangle^2 = \frac{\partial^2 \log Z}{(\partial \mu_X/T)^2}$
- Defining: $\hat{\chi}_2^X = \frac{1}{VT^3} \frac{\partial^2 \log Z}{(\partial \mu_X/T)^2} \qquad \hat{\chi}_4^X = \frac{1}{VT^3} \frac{\partial^4 \log Z}{(\partial \mu_X/T)^4}$
- Computable at finite μ through:

$$\frac{p}{T^4} \equiv \frac{1}{VT^3} \ln Z(T,\mu_q) = \sum_{n=0}^{\infty} c_n(T,m_q) \left(\frac{\mu_q}{T}\right)^n \qquad c_n(T,m_q) = \frac{1}{n!} \frac{1}{VT^3} \frac{\partial^n \ln Z(T,\mu_q)}{\partial (\mu_q/T)^n} \Big|_{\mu_q=0}$$

- χ_2 requires (finite μ_B): $\hat{\chi}_{22}^{XB} = \frac{1}{VT^3} \frac{\partial^4 \log Z}{(\partial \mu_X/T)^2 (\partial \mu_B/T)^2}$
- Lattice: large volume and equilibrium.

Challenges:

- Derivatives come with volume penalty in the statistics
- Electric charge is pion-dominated \rightarrow fine lattices and taste-improvement.
- Baryon number noisy \rightarrow large statistics.

Fluctuations of conserved charges

- signal the transition between QGP and hadronic "phase"
- from HRG may be incorrect at T_f
- can be compared directly to experiment (μ_B allowing)

$$P(N_X) = e^{-N_X^2 / (2V_f T_f^2 \chi_2^X)}$$

- (ratio B/Q) can be used to relate fluctuations in proton number (experiment) to fluctuations in baryon number
- Can be used to extract the freeze-out parameters

- Freeze-out parameters directly from QCD:
 - Ratios of baryon number cumulants (Karsch 1202.4173)

Alternative for T_f: use charge fluctuations instead

22. August 2012

MIT Lattice Club - Stefan Krieg

- Freeze-out parameters directly from QCD:
 - "Generalized" Ratios of cumulants (Bazavov et al., 1208.1220)

$$\begin{split} M_{S} &\equiv 0 \ , \ \ M_{Q} = rM_{B} \\ \hat{\mu}_{Q} &= q_{1} \ \hat{\mu}_{B} + q_{3} \ \hat{\mu}_{B}^{3} \ , \ \hat{\mu}_{S} = s_{1} \ \hat{\mu}_{B} + s_{3} \ \hat{\mu}_{B}^{3} \ , \ \ \hat{\mu}_{X} = \mu_{X}/T \\ q_{1} &= \frac{r\left(\chi_{2}^{B}\chi_{2}^{S} - \chi_{11}^{BS}\chi_{11}^{BS}\right) - \left(\chi_{11}^{BQ}\chi_{2}^{S} - \chi_{11}^{BS}\chi_{11}^{QS}\right)}{\left(\chi_{2}^{Q}\chi_{2}^{S} - \chi_{11}^{QS}\chi_{11}^{QS}\right) - r\left(\chi_{11}^{BQ}\chi_{2}^{S} - \chi_{11}^{BS}\chi_{11}^{QS}\right)} \ , \ \ s_{1} = -\frac{\chi_{11}^{BS}}{\chi_{2}^{S}} - \frac{\chi_{11}^{QS}}{\chi_{2}^{S}} \ q_{1} \\ R_{12}^{X} &\equiv \frac{M_{X}}{\sigma_{X}^{2}} = \hat{\mu}_{B}\left(R_{12}^{X,1} + R_{12}^{X,3} \ \hat{\mu}_{B}^{2} + \mathcal{O}(\hat{\mu}_{B}^{4})\right) \\ R_{12}^{X,1} &= \frac{\chi_{11}^{BX}}{\chi_{2}^{X}} + q_{1}\frac{\chi_{11}^{XQ}}{\chi_{2}^{X}} + s_{1}\frac{\chi_{11}^{XS}}{\chi_{2}^{X}} \end{split}$$

Mitglied der Helmholtz -Gemeinschaft

MIT Lattice Club - Stefan Krieg

Correlations

- show a strong temperature dependence and characteristic behavior around $T_{\rm c}$
- vanish in an ideal non-interacting QGP
- HTL corrections predict a non-zero value even at large T
- can signal bound-state survival above T_c
- check the applicability of the HRG for low temperatures

Fluctuations: quark mass basis

$$\mu_{u} = \frac{1}{3}\mu_{B} + \frac{2}{3}\mu_{Q}$$

$$\mu_{d} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q}$$

$$\mu_{s} = \frac{1}{3}\mu_{B} - \frac{1}{3}\mu_{Q} - \mu_{S}$$

- The interesting fluctuations require derivatives w.r.t. 'rotated' basis
- use above map to 'rotate' derivatives appropriately

- LQCD action is given in 'quark mass basis'
- express the chemical potentials in terms of flavor chemical potentials

$$\frac{d}{d\mu_B} = \frac{1}{3}\partial_u + \frac{1}{3}\partial_d + \frac{1}{3}\partial_s$$
$$\frac{d}{d\mu_Q} = \frac{2}{3}\partial_u - \frac{1}{3}\partial_d - \frac{1}{3}\partial_s$$
$$\frac{d}{d\mu_I} = \frac{1}{2}\partial_u - \frac{1}{2}\partial_d$$
$$\frac{d}{d\mu_S} = -\partial_s$$

Fluctuations: derivatives

$$\chi_{i,j}^{us} = \frac{T}{V} \frac{\partial^{i+j} \log Z}{(\partial \mu_u)^i (\partial \mu_s)^j}$$

$$\partial_i \log Z = \frac{1}{Z} \int \mathcal{D}U \ \partial_i e^{-S_{\text{eff}}} = \langle A_i \rangle \qquad (=0 \text{ at } \mu = 0)$$

$$\partial_j \langle X \rangle = -\langle X \rangle \left(\partial_j \log Z \right) + \left\langle X \partial_j e^{-S_{\text{eff}}} \right\rangle + \left\langle \partial_j X \right\rangle$$
$$= \langle X A_j \rangle - \langle X \rangle \left\langle A_j \right\rangle + \left\langle \partial_j X \right\rangle$$

$$\partial_{i}\partial_{j}\log Z = \langle A_{i}A_{j}\rangle - \langle A_{i}\rangle \langle A_{j}\rangle + \delta_{ij} \langle B_{i}\rangle$$
$$\partial_{i}^{4}\log Z = \langle A_{i}^{4}\rangle - 3 \langle A_{i}^{2}\rangle^{2} + 3 \left(\langle B_{i}^{2}\rangle - \langle B_{i}\rangle^{2}\right)$$
$$+ 6 \left(\langle A_{i}^{2}B_{i}\rangle - \langle A_{i}^{2}\rangle \langle B_{i}\rangle\right) + 4 \langle A_{i}C_{i}\rangle + \langle D_{i}\rangle$$

Fluctuations: lattice techniques

- Use SET to estimate traces (Gottlieb et al. PRL 59 (1987) 2247) $tr(A) \approx \frac{1}{s} \sum_{k=1}^{s} v_k^\top A v_k$
- Disconnected diagrams \rightarrow use different sets of random vectors (c4 \rightarrow 4× inversions)
- diagrams (e.g. $\langle A_i^2\rangle$ and $\langle A_i^2\cdot B\rangle)$ allow reuse of inversions \to increase statistics
- We use up to 1000 sources to estimate the trace or O(10k) inversions

Fluctuations: error estimation

Aim: reliable systematic and statistical errors

- We work at M_{π} = phys \rightarrow no chiral extrapolation
- Continuum extrapolation:
 - Use 2 sets of nodepoints for spline interpolation at fixed N_t
 - Extrapolate χ and $1/\chi$
 - Use 4 different extrapolation formulae
 - \rightarrow difference gives estimate of systematic uncertainty
- Use jacknife estimate of deviation form mean to estimate statistical uncertainty

Systematic uncertainty is dominant

Fluctuations: continuum extrapolation

Fluctuations: continuum extrapolation

Fluctuations: continuum extrapolation

Fluctuations: c_2 diagonal elements: χ_2^{Q}

Agreement with HRG visible at small T

Fluctuations: c_2 diagonal elements: χ_2^B

Agreement with HRG visible at small T

Fluctuations: crosscheck for c₂

Fluctuations: lattice vs. analytical results

Fluctuations: comparison with HRG

Fluctuations: correlators

22. August 2012

Fluctuations: correlators

Fluctuations: kurtosis c₄/c₂

Fluctuations: kurtosis c₄/c₂

Fluctuations: kurtosis c₄/c₂

Fluctuations: kurtosis c₄/c₂: zoom in

Mitglied der Helmholtz -Gemeinschaft

MIT Lattice Club - Stefan Krieg

Conclusions and outlook

- Lattice results are getting increasingly precise
 - Different collaborations agree on T_c
 - The 'gap' in the EoS is closing
 - Crosschecks
 - provide a handle on systematic uncertainties
 - Agree well with available staggered results so far
- Fluctuations computed on the lattice
 - Deviate from HRG at temperatures as low as $T\approx 130~\text{MeV}$
 - Are consistent between the collaborations

Thank you!