$\mathrm{SU}(3)$ gauge theory with 12 flavours in a twisted box

C.-J. David Lin
National Chiao-Tung University, Hsinchu, Taiwan

MIT

14/02/2014

Collaborators

- Kenji Ogawa (NCTU,Taiwan)
- Hiroshi Ohki (KMI, Nagoya U., Japan)
- Alberto Ramos (DESY Zeuthen, Germany)
- Eigo Shintani (U. of Mainz, Germany)

Outline

- Motivation.
- Step scaling.
- Two schemes on the twisted box:
\star Twisted Polyakov Loop (TPL) scheme.
Wilson flow (WF) scheme.
- Numerical (preliminary) results.
- Outlook.

Why $\mathrm{SU}(3)$ with many flavours

- Infrared conformality as an interesting fieldtheoretic problem.
- Walking technicolour model building.
- Understanding of the relation/distinction between confinement and chiral symmetry-breaking scales in QCD.

Walking technicolour

- With large mass anomalous dimension \leadsto Solve the FCNC and S-param problems.
- $\wedge_{\text {ETC }} / \wedge_{\text {TC }} \sim 10^{2} \sim 10^{3}$
\leadsto Compare to typical $L / a \sim 30$.

The beta function

- Large- N_{f} gauge theories with asymptotic freedom.
- Need a scale to generate a gap
\Rightarrow Just below the conformal window $N_{f}^{*}<N_{f}<N_{f}^{\text {af }}$

Lattice strategy for the search of IRFP

- Spectrum: Large finite-volume effects?
- Finite-size scaling a'la M. Fisher : universal curves?
- Running coupling: (slow) running within error?

Need high-precision calculations.

The step-scaling method

 The ideaM. Luscher, P. Weisz, U. Wolff, I99I.
Tune g'o to give $L=4 \quad$ the same value of $u . \quad L=6$

$$
\Sigma(u, L=4)=\bar{g}_{\text {lat }}^{2}\left(g_{0}, L=8\right) \quad \Sigma(u, L=6)=\bar{g}_{\text {lat }}^{2}\left(g_{0}^{\prime}, L=12\right)
$$

$$
\sigma(u)=\lim _{a \rightarrow 0} \Sigma, \quad r_{\sigma}=\frac{\sigma(u)}{u} \xrightarrow{\text { fixed points }} 1 .
$$

The step-scaling method The practice

O Massless unimproved staggered fermions with Wilson's plaquette gauge action.

- Compute $\bar{g}_{\text {lat }}^{2}$ at many g_{0}^{2} for each volume, and then interpolate volume by volume.

O Very challenging to pin down percentage-level effects in $r_{\sigma}=\frac{\sigma(u)}{u}$.

Bare-coupling interpolation

- Impose the non-decreasing constraint,

$$
u_{\text {latt }}=f\left(u_{0}\right)=\int d u_{0}\left(\sum_{m=0}^{N_{\text {deg }}} c_{m} u_{0}^{m}\right)^{2}=\sum_{n=0}^{N_{h}} h_{n} u_{0}^{n}, u_{0} \equiv \frac{1}{\beta}=\frac{g_{0}^{2}}{6}
$$

in order to avoid the Runge phenomenon.

- Impose the perturbation-theory constraint,

$$
h_{0}=0, h_{1}=6\left(\text { then } c_{0}=\sqrt{6}\right) .
$$

Continuum extrapolation

- Using various polynomials in $\left(\frac{a}{L}\right)^{2}$.
- Central issue in controlling the systematic error.
- Can we go IR enough before hitting any bulk phase transition?

Twisted box

 removing the zero modes- Gauge field:
G. 't Hooft, 1979

$$
U_{\mu}(x+\widehat{\nu} L)=\Omega_{\nu} U_{\mu}(x) \Omega_{\nu}^{\dagger}, \quad \nu=1,2
$$

where the twist matrices Ω_{ν} satisfy

$$
\Omega_{1} \Omega_{2}=\mathrm{e}^{2 i \pi / 3} \Omega_{2} \Omega_{1}, \quad \Omega_{\mu} \Omega_{\mu}^{\dagger}=1, \quad\left(\Omega_{\mu}\right)^{3}=1, \operatorname{Tr}\left(\Omega_{\mu}\right)=0
$$

- Fermion: If $\psi(x+\widehat{\nu} L)=\Omega_{\nu} \psi(x)$

$$
\Rightarrow \psi(x+\hat{\nu} L+\hat{\rho} L)=\Omega_{\rho} \Omega_{\nu} \psi(x) \neq \Omega_{\nu} \Omega_{\rho} \psi(x)
$$

- The fermion "smell" dof: $N_{s}=N_{c}$

$$
\psi_{\alpha}^{a}(x+\widehat{\nu} L)=\mathrm{e}^{i \pi / 3} \Omega_{\nu}^{a b} \psi_{\beta}^{b}(x)\left(\Omega_{\nu}\right)_{\beta \alpha}^{\dagger} .
$$

TPL scheme

- Polyakov loops in the twisted directions:

$$
P_{1}(y, z, t)=\operatorname{Tr}\left\langle\Pi_{j} U_{1}(j, y, z, t) \Omega_{1} \mathrm{e}^{2 i y \pi / 3 L}\right\rangle
$$

with gauge and translation invariance.

- The renormalised coupling constant:

$$
\begin{gathered}
g_{\text {TP }}^{2}(L)=\frac{1}{k} \frac{\left\langle\sum y, z P_{1}(y, z, L / 2) P_{1}^{*}(0,0,0)\right\rangle}{\left\langle\sum x, y P_{3}(x, y, L / 2) P_{3}^{*}(0,0,0)\right\rangle}, \\
\quad \text { where } k=\frac{1}{24 \pi^{2}} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{n^{2}+(1 / 3)^{2}} \sim 0.031847
\end{gathered}
$$

- Special feature:

$$
\text { At } L \rightarrow \infty, g_{T \mathrm{P}}^{2} \rightarrow \frac{1}{k} \sim 32 \text { if there is no IRFP. }
$$

Challenge in using the TPL scheme Autocorrelation of the coupling

L/a 6 , Beta 9.42

L/a 6 , Beta 5.36

O Autocorrelation time grows with physical volume.
\leadsto Very challenging to have good statistics for large volumes at low beta.

Bare-coupling interpolation TPL scheme

Continuum extrapolation TPL scheme

Result without the $\mathrm{L} / \mathrm{a}=24$ lattices

 TPL scheme

Result with the L/a=24 lattices TPL scheme

Systematic error was severely underestimated without the L/a=24 data.

The Wilson flow

- Diffusion of the gauge fields:

$$
\dot{V}_{t}(x, \mu)=-g_{0}^{2}\left\{\partial_{x, \mu} S_{\mathrm{w}}\left(V_{t}\right)\right\} V_{t}(x, \mu),\left.V_{t}(x, \mu)\right|_{t=0}=U(x, \mu) .
$$

- The radius of diffusion is $\sqrt{8 t}$.

$$
c_{\tau}=\frac{\sqrt{8 t}}{L}
$$

- Local operators are also diffused.

Figure taken from M.Luscher, Lattice 2013

The Wilson flow scheme

- The quantity, $\langle E(t)\rangle=\frac{1}{4}\left\langle G_{\mu \nu}(t) G_{\mu \nu}(t)\right\rangle$, is finite when expressed in terms of renormalised coupling at positive flow time.
- In a colour-twisted box, can define,

$$
\bar{g}_{\mathrm{GF}}^{2}(L)=\mathcal{N}^{-1} t^{2}\langle E(t)\rangle=\bar{g}_{\mathrm{MS}}^{2}+\mathcal{O}\left(\bar{g}_{\mathrm{MS}}^{4}\right),
$$

where \mathcal{N} can be computed in perturbation theory.

- Use the clover operator, to extract $\langle E(t)\rangle$.
- Autocorrelation time ~ 25 HMC trajectories for all simulations.

Bare-coupling interpolation Wilson flow scheme

NDP fit of the clover coupling

NDP fit of the clover coupling

Continuum extrapolation Wilson flow scheme

Preliminary result Wilson flow scheme

Continuum extrapolation Wilson flow scheme

Preliminary result Wilson flow scheme

Remarks and outlook

- Calculation in the TPL scheme shows no definite conclusion for IR comformality in $\mathrm{SU}(3)$ gauge theory with 12 flavours hitherto.
- It is very challenging to use the TPL scheme to study the evolution of the coupling in the IR.
- On the other hand, the Wilson flow scheme offers a very nice/promising tool.
- We are currently generating data to go further IR

Backup slides

Vacuum structure

