SU(3) gauge theory with 12 flavours in a twisted box

C.-J. David Lin

National Chiao-Tung University, Hsinchu, Taiwan

MIT

14/02/2014

Collaborators

- Kenji Ogawa (NCTU, Taiwan)
- Hiroshi Ohki (KMI, Nagoya U., Japan)
- Alberto Ramos (DESY Zeuthen, Germany)
- Eigo Shintani (U. of Mainz, Germany)

Outline

- Motivation.
- Step scaling.
- Two schemes on the twisted box:
 - ★ Twisted Polyakov Loop (TPL) scheme.
 - ★ Wilson flow (WF) scheme.
- Numerical (preliminary) results.
- Outlook.

Why SU(3) with many flavours

- Infrared conformality as an interesting fieldtheoretic problem.
- Walking technicolour model building.
- Understanding of the relation/distinction between confinement and chiral symmetry-breaking scales in QCD.

 $\alpha(\mu)$

Walking technicolour

 μ

With large mass anomalous dimension
 Solve the FCNC and S-param problems.

•
$$\Lambda_{\rm ETC}/\Lambda_{\rm TC} \sim 10^2 \sim 10^3$$

— Compare to typical $L/a \sim 30$.

- Large- N_f gauge theories with asymptotic freedom.
- Need a scale to generate a gap Just below the conformal window $N_f^* < N_f < N_f^{af}$

Lattice strategy for the search of IRFP

- Spectrum: Large finite-volume effects?
- Finite-size scaling *a'la* M. Fisher : universal curves?
- Running coupling: (slow) running within error?

Need high-precision calculations.

The step-scaling method The idea

M. Luscher, P. Weisz, U. Wolff, 1991.

The step-scaling method The practice

Massless unimproved staggered fermions with Wilson's plaquette gauge action.

• Compute \bar{g}_{lat}^2 at many g_0^2 for each volume, and then interpolate volume by volume.

• Very challenging to pin down percentage-level effects in $r_{\sigma} = \frac{\sigma(u)}{\omega}$.

Friday, February 14, 14

Bare-coupling interpolation

• Impose the non-decreasing constraint,

$$u_{\text{latt}} = f(u_0) = \int du_0 \left(\sum_{m=0}^{N_{\text{deg}}} c_m u_0^m \right)^2 = \sum_{n=0}^{N_h} h_n u_{0, \mathbf{j}}^n \ u_0 \equiv \frac{1}{\beta} = \frac{g_0^2}{6}$$

in order to avoid the Runge phenomenon.

• Impose the perturbation-theory constraint,

$$h_0 = 0, \ h_1 = 6 \ (\text{then } c_0 = \sqrt{6}).$$

Continuum extrapolation

- Using various polynomials in $\left(\frac{a}{L}\right)^2$.
- Central issue in controlling the systematic error.
- Can we go IR enough before hitting any bulk phase transition?

Twisted box removing the zero modes

• Gauge field:

G.'t Hooft, 1979

 $U_{\mu}(x+\hat{\nu}L) = \Omega_{\nu}U_{\mu}(x)\Omega_{\nu}^{\dagger}, \ \nu = 1, 2,$

where the twist matrices Ω_{ν} satisfy

 $\Omega_1 \Omega_2 = e^{2i\pi/3} \Omega_2 \Omega_1, \ \Omega_\mu \Omega_\mu^\dagger = 1, \ (\Omega_\mu)^3 = 1, \ \mathsf{Tr}(\Omega_\mu) = 0.$

- Fermion: If $\psi(x + \hat{\nu}L) = \Omega_{\nu}\psi(x)$ $\Rightarrow \psi(x + \hat{\nu}L + \hat{\rho}L) = \Omega_{\rho}\Omega_{\nu}\psi(x) \neq \Omega_{\nu}\Omega_{\rho}\psi(x)$
- The fermion "smell" dof: $N_s = N_c$ G. Parisi, 1983 $\psi^a_{\alpha}(x + \hat{\nu}L) = e^{i\pi/3}\Omega^{ab}_{\nu}\psi^b_{\beta}(x)(\Omega_{\nu})^{\dagger}_{\beta\alpha}.$

TPL scheme

- Polyakov loops in the twisted directions:
 P₁(y, z, t) = Tr(Π_jU₁(j, y, z, t)Ω₁e^{2iyπ/3L})
 with gauge and translation invariance.
- The renormalised coupling constant: $g_{\mathsf{TP}}^{2}(L) = \frac{1}{k} \frac{\langle \sum y, zP_{1}(y, z, L/2)P_{1}^{*}(0, 0, 0) \rangle}{\langle \sum x, yP_{3}(x, y, L/2)P_{3}^{*}(0, 0, 0) \rangle},$ where $k = \frac{1}{2k} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{2k} \sim 0.031847$

where
$$k = \frac{1}{24\pi^2} \sum_{n=-\infty}^{\infty} \frac{(-1)}{n^2 + (1/3)^2} \sim 0.0318$$

• Special feature:

At
$$L \to \infty$$
, $g_{\text{TP}}^2 \to \frac{1}{k} \sim 32$ if there is no IRFP.

Thursday, August 8, 13

Challenge in using the TPL scheme Autocorrelation of the coupling

• Autocorrelation time grows with physical volume.

Very challenging to have good statistics for large volumes at low beta.

Continuum extrapolation TPL scheme

Friday, February 14, 14

Result without the L/a=24 lattices TPL scheme

C-JDL, K.Ogawa, H.Ohki, E.Shintani, JHEP 1208 (2012) 096

Result with the L/a=24 lattices TPL scheme

Systematic error was severely underestimated without the L/a=24 data.

The Wilson flow

• Diffusion of the gauge fields:

 $\dot{V}_t(x,\mu) = -g_0^2 \left\{ \partial_{x,\mu} S_w(V_t) \right\} V_t(x,\mu), \ V_t(x,\mu) \big|_{t=0} = U(x,\mu).$

- The radius of diffusion is $\sqrt{8t}$.
- Local operators are also diffused.

Figure taken from M.Luscher, Lattice 2013

 \mathcal{U}_{\cap}

 $\mathcal{U} \cap$

The Wilson flow scheme

- The quantity, $\langle E(t) \rangle = \frac{1}{4} \langle G_{\mu\nu}(t) G_{\mu\nu}(t) \rangle$, is finite when expressed in terms of renormalised coupling at positive flow time.
- In a colour-twisted box, can define,

$$\overline{g}_{\rm GF}^2(L) = \mathcal{N}^{-1} t^2 \langle E(t) \rangle = \overline{g}_{\rm MS}^2 + \mathcal{O}(\overline{g}_{\rm MS}^4),$$

where \mathcal{N} can be computed in perturbation theory.

- Use the clover operator, $\downarrow \downarrow \downarrow \downarrow \downarrow$, to extract $\langle E(t) \rangle$.
- Autocorrelation time ~25 HMC trajectories for all simulations.

Bare-coupling interpolation Wilson flow scheme

Continuum extrapolation Wilson flow scheme

Friday, February 14, 14

Preliminary result Wilson flow scheme

Continuum extrapolation Wilson flow scheme

Preliminary result Wilson flow scheme

Remarks and outlook

- Calculation in the TPL scheme shows no definite conclusion for IR comformality in SU(3) gauge theory with 12 flavours hitherto.
- It is very challenging to use the TPL scheme to study the evolution of the coupling in the IR.
- On the other hand, the Wilson flow scheme offers a very nice/promising tool.
- We are currently generating data to go further IR

Backup slides

Vacuum structure

Friday, February 14, 14