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Wilson’s classical link variables

Ux ,µ = exp(Gµ(x + µ̂a
2 )) ∈ SU(N),SO(N), Sp(N)

and their behavior under gauge transformations

r r
x x + µ̂

Ωx Ωx+µ̂

Ux,µ

ΩUx ,µ = ΩxUx ,µΩ†x+µ̂

Resulting anti-Hermitean non-Abelian vector potential

Gµ(x) = igG a
µ(x)

λa

2
, a ∈ {1, 2, . . . , dG}

and its behavior under gauge transformations
ΩGµ(x) = Ω(x)(Gµ(x) + ∂µ)Ω(x)†

Non-Abelian field strength

Gµν(x) = ∂µGν(x)− ∂νGµ(x) + [Gµ(x),Gν(x)]

and its behavior under gauge transformations
ΩGµν(x) = Ω(x)Gµν(x)Ω(x)†
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�
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Gauge invariant plaquette action

S [U] = − 1

g2

∑

x ,µ<ν

Tr(Ux ,µUx+µ̂,νU
†
x+ν̂,µU

†
x ,ν + h.c.)

Classical continuum limit

S [U]→ − 1

2g2

∫
d4x Tr(GµνGµν)

Functional integral using Haar measure

Z =
∏

x ,µ

∫

G
dUx ,µ exp(−S [U])

defines a quantum field theory using continuous classical field
variables as fundamental degrees of freedom. Wilson (1974)
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U(1) quantum link model

r r
x x + µ̂

Tx,µ

Ux,µ

U = S1 + iS2 = S+, U
† = S1− iS2 = S−

Generator E of U(1) gauge transformations

[E ,U] = U, [E ,U†] = −U†, E = S3, [U,U†] = 2E

Generator of U(1) gauge transformations

Gx =
∑

µ

(Ex−µ̂,µ − Ex ,µ)

U(1)-invariant Hamiltonian “action” operator

H = −J
∑

x ,µ<ν

(Ux ,µUx+µ̂,νU
†
x+ν̂,µU

†
x ,ν + h.c.), [H,Gx ] = 0

Functional integral of a quantum link model
Z = Tr exp(−βH)

defines a gauge theory using discrete quantum variables
Chandrasekharan, UJW, Nucl. Phys. B492 (1997) 455



Spectrum of the U(1) quantum link model on a 2× 2 lattice
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Spectra for H = −J∑�(U� + U†�) + λ
∑

�(U� + U†�)2
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Ground state splitting as a function of the lattice volume
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Numerical simulation of a (2 + 1)-d U(1) quantum link model
with the first efficient cluster algorithm for a gauge theory
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The system has a second order finite-temperature phase transition in the
universality class of the 2-d Ising model, at which charge conjugation is
spontaneously broken. Classical simulations can be used to validate a
corresponding quantum simulator.

Chandrasekharan, Gerber, Pepe, Stebler, UJW



Developments related to quantum link models

• 1982: Construction of U(1) and SU(2) discrete gauge models by Horn

• 1990: Rediscovery by Orland and Rohrlich as “gauge magnets”

• 1997: Rediscovery by Chandrasekharan and UJW under the name of
“quantum link models” and relation to ordinary gauge theories via
dimensional reduction

• 1999: Construction of SU(N) quantum link models and inclusion of
quarks as domain wall fermions by Brower, Chandrasekharan, and UJW

• 2004: Construction of a large variety of field theories by dimensional
reduction of discrete variables: D-Theory

• 2003: Kitaev’s toric code which is a Z(2) quantum link model

• 2004: Rediscovery of the U(1) quantum link model by Hermele, Fisher,
and Balents in the context of spin liquids

• 2009: Design of a U(1) quantum link simulator with Rydberg ions by

Weimer, Müller, Lesanovsky, Zoller, and Büchler
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Developments related to quantum link models

• 1982: Construction of U(1) and SU(2) discrete gauge models by Horn

• 1990: Rediscovery by Orland and Rohrlich as “gauge magnets”

• 1997: Rediscovery by Chandrasekharan and UJW under the name of
“quantum link models” and relation to ordinary gauge theories via
dimensional reduction

• 1999: Construction of SU(N) quantum link models and inclusion of
quarks as domain wall fermions by Brower, Chandrasekharan, and UJW

• 2004: Construction of a large variety of field theories by dimensional
reduction of discrete variables: D-Theory

• 2003: Kitaev’s toric code which is a Z(2) quantum link model

• 2004: Rediscovery of the U(1) quantum link model by Hermele, Fisher,
and Balents in the context of spin liquids

• 2009: Design of a U(1) quantum link simulator with Rydberg ions by

Weimer, Müller, Lesanovsky, Zoller, and Büchler
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U(N) quantum link operators

U ij = S ij
1 +iS ij

2 , U
ij† = S ij

1−iS
ij
2 , i , j ∈ {1, 2, . . . ,N}, [U ij , (U†)kl ] 6= 0

SU(N)L × SU(N)R gauge transformations of a quantum link

[La, Lb] = ifabcL
c , [Ra,Rb] = ifabcR

c , a, b, c ∈ {1, 2, . . . ,N2 − 1}

[La,Rb] = [La,E ] = [Ra,E ] = 0

Infinitesimal gauge transformations of a quantum link

[La,U] = −λaU, [Ra,U] = Uλa, [E ,U] = U

Algebraic structures of different quantum link models

U(N) : U ij , La, Ra,E , 2N2+2(N2−1)+1 = 4N2−1 SU(2N) generators

SO(N) : O ij , La, Ra, N2+2
N(N − 1)

2
= N(2N−1) SO(2N) generators

Sp(N) : U ij , La, Ra, 4N2+2N(2N+1) = 2N(4N+1) Sp(2N) generators

Brower, Chandrasekharan, UJW, Phys. Rev. D60 (1999) 094502
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Consequences for non-Abelian quantum link simulators

• U(1) embedded in SU(2): minimal representation {2}

• U(2) embedded in SU(4): minimal representation {4}

• U(3) embedded in SU(6): minimal representation {6}

• SU(2) embedded in SU(4): minimal representation {6}

• SU(3) embedded in SU(6): minimal representation {20}

• Sp(1) = SU(2) embedded in Sp(2) = SO(5): minimal rep. {4}

• SO(3) = SU(2) embedded in SO(6) = SU(4): minimal rep. {4}

A non-Abelian gauge theory quantum simulator requires at least
4 states per link.



q q q

q

q

q

x x + µ̂x − µ̂

Lx,µRx−µ̂,µ- -

6

6

Generator of SU(N) gauge transformations

G a
x =

∑

µ

(Ra
x−µ̂,µ + Lax ,µ)

U(N)-invariant Hamiltonian “action” operator

H = −J
∑

x ,µ<ν

Tr(Ux ,µUx+µ̂,νU
†
x+ν̂,µU

†
x ,ν + h.c.), [H,G a

x ] = 0

Functional integral of a quantum link model

Z = Tr exp(−βH)

defines a quantum field theory using discrete variables



Low-energy effective action of a quantum link model

S [Gµ] =

∫ β

0
dx5

∫
d4x

1

2e2

(
Tr GµνGµν +

1

c2
Tr ∂5Gµ∂5Gµ

)
, G5 = 0

undergoes dimensional reduction from 4 + 1 to 4 dimensions

S [Gµ]→
∫

d4x
1

2g2
Tr GµνGµν ,

1

g2
=

β

e2
,

1

m
∼ exp

(
24π2β

11Ne2

)
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Fermionic rishons at the two ends of a link

{c ix , c j†y } = δxyδij , {c ix , c jy} = {c i†x , c j†y } = 0

Rishon representation of link algebra

r r
x y

cix cjy

Uij

U ij
xy = c ixc

j†
y , L

a
xy = c i†x λ

a
ijc

j
x , R

a
xy = c i†y λ

a
ijc

j
y , Exy =

1

2
(c i†y c iy−c i†x c ix)

Can a “rishon abacus” implemented in ultra-cold atoms or
trapped ions be used as a quantum simulator?
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Hamiltonian for staggered fermions and U(1) quantum links

H = −t
∑

x

[
ψ†xUx ,x+1ψx+1 + h.c.

]
+m

∑

x

(−1)xψ†xψx+
g2

2

∑

x

E 2
x ,x+1

Bosonic rishon representation of the quantum links

Ux ,x+1 = bxb
†
x+1, Ex ,x+1 =

1

2

(
b†x+1bx+1 − b†xbx

)

Gauge generator

G̃x = nFx + n1
x + n2

x − 2S +
1

2
[(−1)x − 1]

Microscopic Hubbard model Hamiltonian

H̃ =
∑

x

hBx ,x+1 +
∑

x

hFx ,x+1 + m
∑

x

(−1)xnFx + U
∑

x

G̃ 2
x

= −tB
∑

x odd

b1
x
†
b1
x+1 − tB

∑

x even

b2
x
†
b2
x+1 − tF

∑

x

ψ†xψx+1 + h.c.

+
∑

x ,α,β

nαxUαβn
β
x +

∑

x ,α

(−1)xUαn
α
x
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Quantum simulation of string breaking and quenched dynamics
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d-dimensional SU(N) gauge theory with staggered fermions
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Meson, constituent quark, and glueball operators

Mx = ψi†
x ψ

i
x , Qx ,±k = c i†x ,±kψ

i
x , Φx ,±k,±l = c i†x ,±kc

i
x ,±l

form a local U(2d + 1) algebra at each site x , thus providing a
formulation in terms of manifestly SU(N) gauge invariant
objects. However, the conserved rishon number gives rise to a
U(1) gauge symmetry on the links

Nxy = c i†x c ix + c i†y c iy , [Nxy ,H] = 0
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1-d SO(3) gauge theory with adjoint staggered fermions
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objects, in this case without any additional gauge symmetry
on the links.
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Spectrum in the B = 1 sector (including 4-fermion coupling)
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Restoration of chiral symmetry at baryon density nB ≥ 1
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Conclusions

• Interesting field theories emerge from the dimensional reduction of
discrete quantum systems (D-theory).

• 4-d non-Abelian gauge theories emerge from the dimensional reduction
of (4 + 1)-d quantum link models in a massless Coulomb phase.

• If quantum link models can be implemented with ultra-cold atoms or
trapped ions, such systems can be used as quantum simulators for
dynamical Abelian and non-Abelian gauge theories, which can be
validated in efficient classical cluster algorithm simulations, at least in the
Abelian case.

• Quantum simulator constructions have already been presented for the
(2 + 1)-d U(1) quantum link model as well as for a (1 + 1)-d U(1)
quantum link model with fermionic matter.

• This would allow the quantum simulation of the real-time evolution of
string breaking as well as the dynamics after a quench.

• The construction of quantum simulators for non-Abelian gauge fields

using quantum links is currently in progress.



Conclusions

• Interesting field theories emerge from the dimensional reduction of
discrete quantum systems (D-theory).

• 4-d non-Abelian gauge theories emerge from the dimensional reduction
of (4 + 1)-d quantum link models in a massless Coulomb phase.

• If quantum link models can be implemented with ultra-cold atoms or
trapped ions, such systems can be used as quantum simulators for
dynamical Abelian and non-Abelian gauge theories, which can be
validated in efficient classical cluster algorithm simulations, at least in the
Abelian case.

• Quantum simulator constructions have already been presented for the
(2 + 1)-d U(1) quantum link model as well as for a (1 + 1)-d U(1)
quantum link model with fermionic matter.

• This would allow the quantum simulation of the real-time evolution of
string breaking as well as the dynamics after a quench.

• The construction of quantum simulators for non-Abelian gauge fields

using quantum links is currently in progress.



Conclusions

• Interesting field theories emerge from the dimensional reduction of
discrete quantum systems (D-theory).

• 4-d non-Abelian gauge theories emerge from the dimensional reduction
of (4 + 1)-d quantum link models in a massless Coulomb phase.

• If quantum link models can be implemented with ultra-cold atoms or
trapped ions, such systems can be used as quantum simulators for
dynamical Abelian and non-Abelian gauge theories, which can be
validated in efficient classical cluster algorithm simulations, at least in the
Abelian case.

• Quantum simulator constructions have already been presented for the
(2 + 1)-d U(1) quantum link model as well as for a (1 + 1)-d U(1)
quantum link model with fermionic matter.

• This would allow the quantum simulation of the real-time evolution of
string breaking as well as the dynamics after a quench.

• The construction of quantum simulators for non-Abelian gauge fields

using quantum links is currently in progress.



Conclusions

• Interesting field theories emerge from the dimensional reduction of
discrete quantum systems (D-theory).

• 4-d non-Abelian gauge theories emerge from the dimensional reduction
of (4 + 1)-d quantum link models in a massless Coulomb phase.

• If quantum link models can be implemented with ultra-cold atoms or
trapped ions, such systems can be used as quantum simulators for
dynamical Abelian and non-Abelian gauge theories, which can be
validated in efficient classical cluster algorithm simulations, at least in the
Abelian case.

• Quantum simulator constructions have already been presented for the
(2 + 1)-d U(1) quantum link model as well as for a (1 + 1)-d U(1)
quantum link model with fermionic matter.

• This would allow the quantum simulation of the real-time evolution of
string breaking as well as the dynamics after a quench.

• The construction of quantum simulators for non-Abelian gauge fields

using quantum links is currently in progress.



Conclusions

• Interesting field theories emerge from the dimensional reduction of
discrete quantum systems (D-theory).

• 4-d non-Abelian gauge theories emerge from the dimensional reduction
of (4 + 1)-d quantum link models in a massless Coulomb phase.

• If quantum link models can be implemented with ultra-cold atoms or
trapped ions, such systems can be used as quantum simulators for
dynamical Abelian and non-Abelian gauge theories, which can be
validated in efficient classical cluster algorithm simulations, at least in the
Abelian case.

• Quantum simulator constructions have already been presented for the
(2 + 1)-d U(1) quantum link model as well as for a (1 + 1)-d U(1)
quantum link model with fermionic matter.

• This would allow the quantum simulation of the real-time evolution of
string breaking as well as the dynamics after a quench.

• The construction of quantum simulators for non-Abelian gauge fields

using quantum links is currently in progress.



Conclusions

• Interesting field theories emerge from the dimensional reduction of
discrete quantum systems (D-theory).

• 4-d non-Abelian gauge theories emerge from the dimensional reduction
of (4 + 1)-d quantum link models in a massless Coulomb phase.

• If quantum link models can be implemented with ultra-cold atoms or
trapped ions, such systems can be used as quantum simulators for
dynamical Abelian and non-Abelian gauge theories, which can be
validated in efficient classical cluster algorithm simulations, at least in the
Abelian case.

• Quantum simulator constructions have already been presented for the
(2 + 1)-d U(1) quantum link model as well as for a (1 + 1)-d U(1)
quantum link model with fermionic matter.

• This would allow the quantum simulation of the real-time evolution of
string breaking as well as the dynamics after a quench.

• The construction of quantum simulators for non-Abelian gauge fields

using quantum links is currently in progress.



Conclusions

• The construction of quantum simulators for non-Abelian gauge fields
using quantum links is currently in progress.

• This may allow the quantum simulation of “nuclear” physics and dense
“quark” matter, at least in qualitative toy models for QCD.

• Accessible effects may include chiral symmetry restoration, baryon
superfluidity, or color superconductivity at high baryon density.

• Real-time evolution, for example, the quantum simulation of “heavy
ion” collisions may also become accessible.

• The path towards quantum simulation of QCD will be a long one.

However, with a lot of interesting physics along the way.
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