

Introduction

The Need 4 Speed

Faster tunneling rates with lighter atoms:

$$t \approx \frac{4}{\sqrt{\pi}} E_R \left(\frac{V_0}{E_R}\right)^{3/4} \exp\left[-\left(\frac{V_0}{E_R}\right)^{1/2}\right]^{1/2}$$

where the recoil energy is $E_R = \frac{h^- \kappa^-}{2m}$

- Higher T_c for magnetically ordered states
- Suitable to study spin dynamics within experimentally relevant timescales

(a) Neighboring atoms

(b) Virtual Excitation of energy U

Second order tunneling: It allows nearest neighbor interactions with energy $J_{ex} = \frac{t^2}{T}$

Possible Experiments

Quantum Simulation

- Realization of 2-component Spin Hamiltonians
- Anisotropic Heisenberg Model (XXZ model)

$$\begin{split} H &= \sum_{\langle i,j \rangle} [\lambda_z s_i^z s_j^z - \lambda_{\perp} (s_i^x s_j^x + s_j^y s_j^y)] - B_z \sum_i \\ \lambda_z &= \frac{t_{\uparrow}^2 + t_{\downarrow}^2}{2U_{\uparrow\downarrow}} - \frac{t_{\uparrow}^2}{U_{\uparrow\uparrow}} - \frac{t_{\downarrow}^2}{U_{\downarrow\downarrow}} \qquad \lambda_{\perp} = \frac{t_{\uparrow} t_{\downarrow}}{2U_{\uparrow\downarrow}} \end{split}$$

Study its magnetic phase transitions

⁷Li Machine for Quantum Magnetism Experiments

Ivana Dimitrova, Niklas Jepsen, Jesse Amato-Grill, Graciana Puentes, David Weld, Thomas Rigaldo, Hirokazu Miyake, Georgios Siviloglou, David Pritchard, Wolfgang Ketterle MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge MA 02139

(c) Particle tunnels back

Spin Dynamics

Spin transport by superexchange interactions in a two-component system

(a) Prepare a 50-50 spin (b) Separate spins by mag- (c) Apply optical lattice netic field gradient mixture

Experimental Setup

Experimental Model

- placed in an optical lattice
- Experimental 'knobs:' what we can vary: • Energy ratio t/U by optical lattice depth
- On-site interaction energy U by external magnetic field
- Spin separation by a magnetic field gradient
- Scattering length by a Feshbach resonance
- Temperature

······

(d) Allow spins to mix (by decreasing magnetic field gradient)

Machine Table

The machine in real space

Two-components Hamiltonian realized by ⁷Li atoms in two hyperfine states

Spectroscopy

Oven, Differential Pumping, Zeeman Slower and Main Chamber

Funding Acknowledgements

