

The Need For Speed

 \Rightarrow Faster spin dynamics within experimentally relevation

Implementation

Quantum Magnetism with ⁷Li

Ivana Dimitrova, Jesse Amato-Grill, Niklas Jepsen, William Lunden, Yichao Yu, Michael Messer, Graciana Puentes, David Weld, Wolfgang Ketterle

MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics Department of Physics, Massachusetts Institute of Technology, Cambridge

nian
) +
$$U_{\uparrow\downarrow} \sum_{i} n_{\uparrow\uparrow} n_{i\downarrow}$$

 $J = t^{2}/U$
 \downarrow
 $f(E_{R})^{3/4} e^{-\sqrt{V_{0}/E_{H}}}$
 $h(E_{R})^{3/4} E_{R}$
 $h($

Quantum Simulation

- Magnetic phase diagram

Spin Dynamics

(n) Prepare a spin mixture

Spin transport by super-exchange interactions

50-50 (o) Separate spins by (p) Apply optical lattice (q) Allow spins to mix (by magnetic field gradient

decreasing magnetic field gradient)