
Compile-time Typechecking
for Custom Java Type Qualifiers

Matt Papi, Michael Ernst
Program Analysis Group

MIT CSAIL

November 28, 2007



Example:
NonNull typechecker



Benefits of custom type qualifiers for Java

Type qualifiers can:

• guarantee the absence of certain errors

• help programmers find bugs

• provide clear, checkable documentation

• eliminate assertions and run-time checks



The demo

I will demonstrate the process of finding and fixing bugs using
three typecheckers:

• NonNull/Nullable

• Interned

• Javari (reference immutability)



NonNull subject programs

The examples I am showing come from 3 real programs:

Program Lines Annotations Bugs found
Lookup 3961 83 7

NonNull checker 1031 65 5

Checkers framework 5451 308 29



Examples:
Lookup, checkers framework



Comparison with other tools: Lookup

Lookup contained 7 null-related bugs.

Tool Warnings Errors
Our typechecker 0 7

FindBugs 1 0

JLint 0 0



Interning

• Also known as canonicalization or hash-consing

• A space optimization: reuse an existing object instead of
creating a new one

• The space savings can be significant

• Built into java.lang.String: intern() method

s1 “hello”

s2 “hello”

s3 “hello”

s1 = s1.intern()

• Users can add interning for their own classes



Interning

• Also known as canonicalization or hash-consing

• A space optimization: reuse an existing object instead of
creating a new one

• The space savings can be significant

• Built into java.lang.String: intern() method

s1 “hello”

s2 “hello”

s3 “hello”

s2 = s2.intern()

• Users can add interning for their own classes



Interning

• Also known as canonicalization or hash-consing

• A space optimization: reuse an existing object instead of
creating a new one

• The space savings can be significant

• Built into java.lang.String: intern() method

s1 “hello”

s2 “hello”

s3 “hello”

s3 = s3.intern()

• Users can add interning for their own classes



Interning (2)

• Interning also saves time: can compare with ==

myString.equals(otherString)

myString == otherString // and, this is more readable

// and emphasises the interning

• Potential for error: using == on non-interned objects

new Integer(22) == new Integer(22) // yields false!

• Benefits of automatic checking:

• guarantee that no space savings were overlooked
• guarantee of no equality-checking errors



Daikon invariant detector

• Memory is the limiting factor in scaleability

• Daikon makes extensive use of space optimizations such as
interning

• 250KLOC of Java code

• 1200 lines of code/comments about interning

• 200 run-time assertions checking interning



Daikon case study

Added to Daikon:

• 127 @Interned annotations
• Most files require no annotations

• 14 @SuppressWarnings annotations

Results:

• Detected 9 correctness errors

• Detected 2 performance bugs



Examples:
Daikon



Javari: Java with reference immutability

A ReadOnly reference cannot be used to modify its referent.

@ReadOnly Date readonlyDate;

Date mutableDate;

mutableDate.getTime();

readonlyDate.getTime();

mutableDate.setTime(time);

readonlyDate.setTime(time);



Javari: Java with reference immutability

A ReadOnly reference cannot be used to modify its referent.

@ReadOnly Date readonlyDate;

Date mutableDate;

mutableDate.getTime();

readonlyDate.getTime();

mutableDate.setTime(time);

readonlyDate.setTime(time); // Error: modifies a ReadOnly object!



Examples:
Listmatcher, Javari checker



Javarifier

• The Javarifier infers Javari annotations:

• input: a set of class files
• output: a set of annotated class files (or source, if available)

• Useful when working with third-party libraries or legacy code



Writing annotations on types

• Annotations on types enabled by JSR 308

• Backward-compatibility mode so code can compile in Java 5
and 6 (annotations in comments: /*@NonNull*/)



Creating new typecheckers

We have developed a framework for writing typecheckers:

• a template for traversing a program’s source code

• an API for querying the annotations on types

• interfaces to the Java compiler (for reporting errors, querying
the parse tree, etc.)

(The Interned and NonNull typecheckers are each around 350 lines
of code.)



Summary: Custom type qualifiers for Java

We have created typecheckers for NonNull, Interned,
the Javari language, and the IGJ language.

Programmers can:

• write qualifiers anywhere that types are used

• find and prevent bugs at compile time

• obtain guarantees that programs are free of certain errors

• create custom qualifiers and typecheckers

Download:
http://pag.csail.mit.edu/jsr308

Discuss: mpapi@csail.mit.edu

http://pag.csail.mit.edu/jsr308
mpapi@csail.mit.edu

