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Tau phosphorylation and aggregation in Alzheimer’s disease pathology
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Abstract In this article I shall review how tau phosphorylation
and aggregation participates in Alzheimer’s disease (AD) and
other tauopathies. Tau, a microtubule associated protein, is the
main component, in phosphorylated form, of the aberrant paired
helical filaments found in AD. Tau is present in phosphorylated
and aggregated form not only in AD, but in other pathologies
(tauopathies). In this review, the phosphorylation of tau, its
aggregation, and the possible relation between tau phosphoryla-
tion and aggregation is, briefly, described. Also, it is discussed
the toxicity of modified tau. In addition, I propose a working
model detailing the progression of tau pathologies.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Tau protein was first discovered as a microtubule associated

protein that lowered the concentration at which tubulin poly-

merizes into microtubules in the brain [1]. Subsequently, two

additional consequences of tau binding to neural microtubules

were identified, a positive and a negative one. The positive ef-

fect of tau is to stabilize assembled microtubules permitting

neurite extension and stabilization [2,3]. The negative effect is

that tau competes with the motor protein kinesin for microtu-

bule binding [4–6], leading to a decrease in axonal transport

[4–6]. It is possible that an equilibrium between these two ef-

fects is necessary for correct axonal transport via stable micro-

tubules. Nevertheless, proteins other than tau may also be

involved in these processes since mice lacking tau do not dis-

play important differences with respect to wild type mice [7,8].

Some twenty years ago, additional interest in the tau protein

arose when it was identified as a component of the paired heli-

cal filaments (PHFs) in 1986 [9]. PHFs contribute to neurofi-

brillary tangles (NFT), protein aggregates that along with

senile plaques, are the aberrant structures found in the brains

of patients with Alzheimer’s disease (AD) [10]. At virtually the
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same time, it was further shown that tau was probably the

main component of PHFs since it alone was able to form

PHF-like structures [11]. The contribution of Tau to PHFs

was further confirmed in elegant biochemical studies [12,13],

and PHF-tau was demonstrated to exist in a hyperphosphoryl-

ated form [14]. Indeed, tau hyperphosphorylation was pro-

voked a decrease in the binding of tau to microtubules [15].

Different isoforms of the tau protein can be expressed as the

result of differential RNA splicing and each of these displays a

different degree of phosphorylation [16,17]. All the isoforms

are capable of polymerizing into fibrillar structures [18] such

as those present in AD. Significantly, tau polymers can also

be found in other neurodegenerative disorders characterized

by the presence of phosphotau aggregates, the so-called tauop-

athies [19]. Thus, the pathologies associated with tau are re-

lated to its phosphorylation and its aggregation, the two

points on which this review will be focused.
2. Tau phosphorylation

The serine/threonine phosphorylation of tau is a modifica-

tion that can affect a total of 79 residues in the longest tau iso-

form in the central nervous system of 441 residues [20], and it is

that which has been most studied. In AD, at least thirty serine/

threonine residues are phosphorylated [21,22] by two different

types of kinases: proline directed kinases, like GSK3, cdk5,

p38 or JNK; and non-proline directed kinases, like PKA,

PKC, CaMKII, MARK or CKII [22–31]. Moreover, it appears

that this phosphorylation often regulates the binding of tau to

microtubules [15]. Among the kinases identified above, GSK3

plays an important role in regulating tau phosphorylation un-

der pathological conditions. Indeed, a link between tau phos-

phorylation, by GSK3, and the formation of aberrant tau

aggregates has been established in certain mouse models

[32,33]. There is also evidence that pseudohyperphosphorylated

tau is toxic to cells and that is associated with the induction of

apoptotic cell death [34]. Indeed, since phosphorylated tau ap-

pears to be more resistant to proteolysis by different proteases

[35,36], this phosphotau could accumulate in neurons, thereby

exerting its toxic influence on the cell.
3. Tau phosphorylation by GSK3 in FAD

A particular class of AD, familiar AD (FAD), is associated

with mutations in the genes app, ps-1 and ps-2 [37], which are

responsible for the expression of the proteins APP, PS-1 and

PS-2. APP is the protein precursor for the main component
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Tau phosphorylation promoted by PS-1 mutations. PS-1 is a
protein present in the c-secretase complex that can also bind to
cadherins and to the regulatory subunit of PI3K. Mutations in PS-1
could result in an increase of c-secretase activity and may promote an
increase in the amount of beta amyloid peptide and in GSK3 activity.
As a consequence tau phosphorylation will increase. In contrast, other
PS-1 mutations, or the lack of PS-1, may diminish PI3K activity, also
resulting in an increase in GSK3 activity and in tau phosphorylation.
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of senile plaques, the beta amyloid peptide (Ab), whereas PS-1

and PS-2 are components of a protein complex that displays

proteolytic activity and that is involved in the cleavage of

APP to yield Ab. The current hypothesis, the Ab cascade

hypothesis [38], proposes that the accumulation of Ab may

be augmented by mutations in APP that facilitate its cleavage

to Ab. Alternatively, it has been suggested that gain of func-

tion mutations might increase the activity of the protease com-

plex in which PS-1 or PS-2 participates, thereby augmenting its

activity towards APP and the production of the Ab peptide.

The accumulation of Ab in turn facilitates tau phosphoryla-

tion by kinases like GSK3 [39].

However, the validity of this hypothesis has been recently

been questioned, since pathological tau isoforms (phosphory-

lated tau) can accumulate in the absence of the Ab peptide. In-

deed, there is a neurological disorder that appears to be

promoted by mutations in PS-1 [40,41], mutations that result

in tau hyperphosphorylation in the absence of Ab aggregates

[42]. Thus, different mutations in FAD associated genes, such

as PS-1, can produce either a gain or loss of function that facil-

itate tau phosphorylation (see Fig. 1), a main feature of AD

and other tauopathies. Accordingly, tau is hyperphosphoryl-

ated in other tauopathies and in some of these disorders, like

frontotemporal dementia and parkinsonism linked to chromo-

some 17 (FTDP-17), progressive supranuclear palsy (PSP) or

corticobasal dementia (CBD), mutations in the tau protein it-

self appear to facilitate its phosphorylation, aggregation, and

the onset of the disease [19].
4. How is tau phosphorylated in other tauopathies like FTDP-17

A familiar form of FTDP-17 has been related to alterations

of chromosome 17, in the q 21.2 region [43]. This is the locus of

the tau gene and mutations in this gene have been associated

with FTDP-17 in some patients [19]. These mutations proved

to be either missense, deletions, or silent mutations in exons

or introns, and they might affect tau RNA splicing [44]. One

consequence of these mutations may be a loss of the capacity
to bind PP2A, the protein phosphatase that is mainly respon-

sible for the dephosphorylation of phosphotau [45]. This

would result in the accumulation of this mutated and phos-

phorylated tau, since it will not be dephosphorylated. In other

tauopathies linked to mutations in tau like PSP or CBD, an

association has also been made between the phosphorylation

of the protein and the onset of the disease [19,44].
5. Tau aggregation

5.1. In vitro

As indicated above, the assembly of the tau protein into

fibrillar polymers resembling the PHF found in the brain of

AD patients in vitro was first described in 1986 [11]. However,

a large amount of tau was required to produce polymerization

in vitro [7,11,46,47]. Nevertheless, the minimum tau concentra-

tion needed for its assembly could be lowered in the presence

of inducers, an effect that has been attributed to sulfoglycosa-

minoglycans, like heparin, which facilitate tau polymerization

in vitro [48,49]. Similarly, fatty acids like arachidonic acid (or

its peroxidation products [50]) can induce tau polymerization

in vitro [51] and more recently, quinones such as CoQ0, have

been shown to induce tau polymerization [52]. The minimum

region required for tau self-assembly has been mapped to the

third tubulin binding motif of the tau molecule [49,53] and

within this motif, two peptides have been implicated in self-

assembly. Specifically, these involve a peptide containing resi-

dues 306–301 (peptide 1) that is able to self-assemble in the

absence of any added compound [53] and a peptide containing

residues 317–335 (peptide 2) [49]. Characterization of tau vari-

ants lacking either of these peptides indicated that while pep-

tide 1 facilitates tau assembly, it is not essential. In contrast,

the presence of peptide 2 is a requisite for tau polymerization

in the presence of quinones (Santa-Maria et al., to be pub-

lished). A model to explain the influence of both peptides in

promoting filament formation has recently been proposed

[54]. In this model, it is suggested that tau will only assemble

after these two peptides undergo a conformational change,

P1 forming a b-sheet structure and P2 an a-helix [54].

5.2. In vivo

In mice, two approaches have been followed to mimic the

AD [55] or FTDP17 (see for example [56,57]) tauopathies. In

the first case, human tau was overexpressed in a mouse lacking

the endogenous tau protein [55] while in the second model, hu-

man tau protein bearing some of the mutations found in

FTDP17 patients was expressed in mice [56,57]. In both cases,

hyperphosphorylated tau filaments were generated. In the

mouse model of the AD tauopathy, human tau expression

was driven by its own promoter, whereas in FTDP17 model,

tau was expressed under different promoters that controlled

the expression of tau (and the pathology) in neurons at differ-

ent locations [58]. It has been suggested that the onset of dis-

tinct tauopathies in different localizations could be due to

variations in environmental conditions, or related to different

tau mutations. Indeed, in some cases, the presence of different

tau variants could play a role in the formation of tau polymers

in distinct types of neurons. Hence, Goedert suggested [44] that

changes in the first tubulin binding motif of the tau molecule

could be related to the onset of Pick’s disease, whereas changes

in the C-terminal domain of the tau molecule could be related
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to the onset of AD. Similarly, changes in 4R/3R ratio could

promote the appearance of CBD or PSP.

5.3. Are tau aggregates toxic?

The discovery of mutations in the tau gene that promote

familiar FTDP-17, provided clear evidence that defects in

tau alone are sufficient to cause neurodegenerative disorders

[59–61]. As indicated above, tau pathologies can be reproduced

in specific locations of the mouse brain by expressing human

tau driven by different promoters. However, tau pathology in

AD follows a clear and specific kinetic pathway that does

not usually correspond to that found in animal models. Some

time ago, the different stages of tau pathology in AD were de-

scribed by Braak and Braak [62] and more recently, a similar

description was made by Delacourte et al. [63]. Tau pathology

starts in the entorhinal cortex (EC), from where it spreads to

neighbouring regions, like the hippocampus (Fig. 2). Neurode-

generation was found in these regions and as a consequence,

extracellular ghost tangles (eNFT) could be observed as de-

scribed in the pioneer work of Alzheimer [10]. In the hippo-

campus, an inverse relation has been found between the

number of eNFT and the number of surviving neurons [64–

66]. Thus, this data would suggest that the neurons which

degenerate previously develop tau aggregates. Recent experi-

ments done in cultured cells, expressing tau protein fragments

[67] support that view. That degeneration could be related to a

possible sequestration, by the sticky tau aggregates, of different

proteins important for cell function [68,69]. On the other hand,

it is clear that the degeneration of neurons could also result in

the appearance of extracellular unpolymerized tau, which

could finally be found in the cerebrospinal fluid of AD patients

[70]. Nevertheless, it has also been proposed that neurons bear-

ing neurofibrillary lesions could survive for long periods of

time, and it has been suggested that these aggregates may
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Fig. 2. Progress of tau pathology in AD. The scheme, first indicated by B
entorhinal cortex and its spreading to neighbouring regions from that point
not be toxic but rather that they could protect against degen-

eration in a similar way to the aggregates found in Hunting-

ton’s disease [71]. Accordingly, it has been proposed that tau

aggregates might protect against neurodegeneration by seques-

tering the toxic phosphotau that accumulates in a neuron un-

der pathological conditions [72]. More recently, it was shown

that the memory defects observed in a transgenic mouse model

in which tau filaments accumulate were unrelated to the pres-

ence of those tau polymers [73], a result that agrees well with

previous experimental data from Drosophila [74]. In contrast,

it was suggested that intermediate tau aggregates, rather than

PHF-like structures could be involved in neurodegeneration

[75]. Native tau can be found in the form of small oligomers

[76]. Furthermore, the fact that FTDP-17 patients suffer exten-

sive neurodegeneration with a high level of tau phosphoryla-

tion but with few tangles, also supports the possible

existence of toxic, modified tau in human tauopathies [77].

Our preliminary results (Gomez-Ramos et al., to be pub-

lished), suggest that some tau proteins are toxic to cultured

neuronal cells, and that such toxicity could change upon tau

aggregation.

5.4. A working model

Taking into account all the data reviewed above, I propose a

working model to explain the spreading of tau pathologies.

This model is based on the fact that tau, when is not bound

to microtubules, or is in modified form, is toxic to neuronal

cells. In AD, the tau pathology starts in the entorhinal cortex.

If the probability of neuron death in this region were similar to

that in other regions, it might be possible to explain the onset

of the tau pathology in the EC if the EC cells were to have a

lower proportion of their tau bound to microtubules, or in

modified form. Indeed, a lower affinity for tau to microtubules

in entorhinal neurons has already been proposed [78]. Through
TransTrans--
entorhinalentorhinal

regionregion

raak and Braak [62], shows the initiation of the tau pathology in the
.
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the degeneration of these neurons, the proportion of tau, not

bound to microtubules, or in modified form, that enters the

extracellular space would augment, and that could in turn

interact with and be taken up by other neurons. The ensuing

degeneration of these neurons would again release the tau,

and more extracellular tau will be available to exert a toxic ef-

fect on other neurons. This process could be repeated period-

ically, establishing a type of chain reaction that would result in

the spread of the tau pathology.

In essence, this model involves two steps: the initiation of the

pathology and its spreading. In AD, initiation may be due to the

toxic effect of the beta amyloid peptide, particularly if we take

into account the amyloid cascade hypothesis [38]. The distribu-

tion of beta amyloid aggregates varies widely across different

brain regions [62] and the presence of such aggregates in the

EC could promote local neurodegeneration in a region where

also mutations of PS-1 would further enhance neuronal loss [79].

In the case of familiar FTDP-17, it is possible that an un-

known factor could initiate the degeneration of neurons in

any brain region. Since a higher proportion of tau is expressed

in the frontotemporal region [80] and it is in a mutated (un-

bound to microtubules, or in modified form) form in familiar

FTDP-17, the probability that the pathology will progress

would be higher in that area.

In those tauopathies, a possible change in the interaction of

tau (unbound to microtubules) to internal membranes [81,82],

could not be excluded.

For the second step, the rate at which the tau pathology

spreads will depend on the neural death promoted by the pres-

ence of extracellular tau protein, toxic to neurons. Thus, while

our model suggests a pathological role for extracellular tau,

there is still much work to be carried to fully understand

how tau pathology initiates in AD.
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