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Abstract 
 

This thesis discusses the architecture of an on-line optical microscopy laboratory, or iLab, 
in which students remotely conduct and analyze polymer crystallization experiments 
using a polarized light microscope under controlled temperature conditions.  The Polymer 
Crystallization iLab involves melting a polymer sample and subsequently cooling it down 
to a temperature below its melting point in order to study isothermal crystallization 
phenomena.  By analyzing the rates of nucleation and crystallite growth, students can 
characterize the kinetics of crystallization.  As melting the polymer erases any prior 
history of the sample, the experiment can be repeated numerous times without requiring 
intervention in the laboratory.  The architecture was designed with the goal of replicating 
the real laboratory experience to the maximum extent possible.  Streaming temperature 
data and images from the microscope are sent to a Java applet, allowing the student to 
view and interact with the experimental apparatus in real time.  The Java applet client 
runs on any conventional web browser and provides considerable latitude to students 
conducting the experiment, while ensuring proper safeguards. Students can record and 
save images and related data to a server to perform analysis at a later date. The analysis 
can either be conducted remotely on the server or the images can be downloaded to the 
user's computer for local analysis 
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CHAPTER 1  

Introduction 
 

1.1 Purpose and Motivation 
 

Because students learn more effectively through experimentation and collaboration, 

laboratory experience is a key component of many science and engineering degree 

programs.  However, the high cost of equipment and personnel necessary to maintain a 

functional laboratory has introduced a cost barrier for colleges and universities which 

seek to maximize the educational experience of students.  The paradigm of Internet 

laboratories, or iLabs, offers an educational model that maximizes the utilization and 

accessibility of expensive equipment by allowing students to conduct experiments 

through a web-based interface.  By facilitating access to experimental apparatus, iLabs 

allow students to explore and engage physical phenomena.  By slightly varying the 

parameters of each experiment run, students can efficiently and inexpensively follow 

their curiosity to better understand underlying principles in their discipline.  Unlike 

conventional labs, iLabs enable students to conduct experiments around the clock with no 

need for constant lab monitoring by a professor or TA.  Internet laboratories also allow 

professors to integrate laboratory experiments into a lecture setting, offering an enhanced 

visual aid for students.  Additionally, universities can reduce costs by sharing Internet 

laboratories, thus distributing costs among universities and increasing students’ 

experimental experience.   
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This paper focuses on the development and architecture of the Polymer Crystallization 

iLab, a remote Internet laboratory for conducting polymer crystallization experiments 

using optical microscopy.  This standard experiment in undergraduate polymer science 

involves viewing the isothermal crystallization of polymers through a polarized light 

microscope.  The polymer crystallization experiment has been difficult for students from 

MIT and other universities to access because of the limited availability of polarized light 

microscopes with the requisite heating stage and photographic equipment.  The Polymer 

Crystallization iLab solves this cost barrier by multiplexing a single setup that allows 

users to remotely control a heating stage, a motorized microscope, and an image capture 

device.  With these capabilities, students conduct the experiment and acquire digital 

images using optical microscopy.  Through the use of digital image analysis, students can 

then analyze their data to derive the kinetic crystallization properties of a specific 

polymer.   

 

For her Masters of Engineering Thesis, Paola Nasser developed a Remote Microscope 

consisting of a polarized light microscope and a digital camera controlled via a Java 

Applet on the local machine [1].  The client had capabilities to display images captured 

by the digital camera with the capability to view video at a rate of one frame every six 

seconds.  Additionally, the client could adjust the light, objective, and polarizer settings 

of the microscope.  This Remote Microscope provided a base for the implementation of 

the full Polymer Crystallization iLab.  

 

This thesis expands upon Nasser’s work to enable the user to control the microscope 

remotely on any platform.  The video stream has been improved to support real-time 

streaming images at speeds of up to two frames per second.  In addition, capability has 

been added to control a heating stage, the XY position, and the focus of the polymer 

sample, and to save experimental runs on the server.  An on-line environment enables 

users to analyze images after experiments have been run and saved on the server.  

Finally, a reservation mechanism allows users to reserve the microscope for the time 

needed to complete their experiments. 
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1.2 Background 
 

1.2.1 Polymer Crystallization Experiment 
 

The polymer crystallization experiment involves heating a sample of polymer above its 

melting point and subsequently cooling it to various crystallization temperatures.  

Analysis of isothermal crystallization events yields an observable rate of nuclei formation 

and rate of growth for each crystallite.   The rate of growth vs. crystallization temperature 

allows users to experimentally determine such properties as the activation energy, the 

fold energy for the growing crystals, and the Avrami exponent of thin film crystallization.  

Students can then relate the measured crystallization properties to their study of 

theoretical polymer crystallization kinetics and behavior [2].   

 

The polymer crystallization experiment is well suited to an online environment because 

the experiment is hands-free and “memoryless.”  Once the sample is set, the experiment 

can be cycled without local intervention.  In addition, once the sample has been melted, it 

has been essentially “reset” in the sense that prior experiments will not significantly 

impact future experimental results.  Thus, students can conduct and repeat experiments 

without any major impact from each other’s prior iterations.   

 

 

Figure 1: Isothermal crystallization of PEO (a) 40°C, (b) 50°C, and (c) 60°C.[3] 

 13



 

1.2.2 Related Work 
 

There have been a number of independent projects initiated to develop a remote 

microscope for different applications.  In 1996, James Kao [4] developed the Internet 

Remote Microscope to aid in the remote fabrication of integrated circuits as part of the 

Computer Integrated Design and Manufacturing project.  This microscope took a single 

snapshot of an integrated circuit and sent it to multiple clients who could remotely inspect 

the IC and could confer with each other using an online chatting interface.  This system 

was developed further by Somsak Kittipiyakul, who completed the automation of the Kao 

microscope [5].  Although a good start, this system was characterized by high latency in 

commands to change the microscope settings and to refresh the captured image.   

 

Another project at MIT developed a remote, automated microscope for characterizing 

micro-electromechanical systems (MEMS).  The MEMS project at MIT allowed MEMS 

designers to analyze the three-dimensional motion of a MEMS device during 

development and testing.  The system, built for the MEMS group at MIT, was an 

improvement over the Internet Remote Microscope; however, it did have shortcomings 

which were noted by Daniel Seth in his Masters Thesis in 2001 and are summarized here 

[6].  The system used HTTP to pass messages from the client to the server, which 

required that the client initiate all communication.  Thus a polling mechanism was 

instituted, which continually queried the server to see if the output was ready.  This 

mechanism was far less efficient and scalable than full duplex communication.  Another 

pitfall was the inability to manipulate, crop, mark, filter, or save images on the server in 

any modified format.  The primitive video streaming simply used a single file on the 

server, which was continually refreshed by the client and overwritten by the server, 

introducing an inherent race condition.  Finally, there were no security measures in place 

to ensure that users’ data was not compromised and, moreover, that the system was not 

tampered with by unauthorized users.   

 

Outside of MIT, there has been an ongoing, open-source project by the MEMS Exchange 
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[7] which is supported by the Defense Advanced Research Projects Agency (DARPA) 

and hosted by the Corporation for National Research Initiatives (CNRI).  This project 

seeks to increase access to MEMS micro-fabrication resources and establish a distributed 

MEMS fabrication environment, organizing and connecting designers to the MEMS 

micro-fabrication resources located throughout the country.  This project uses a simple 

but well-defined protocol of asynchronous ASCII text messages between the server and 

client to set the state of the microscope and request images from the mounted camera.  

Developed by A.M. Kuchling [7], this Microscope Networking Protocol Specification 

formed the basis for Paola Nasser’s Remote Microscope.  

 

1.2.3 iCampus Framework 
 

iCampus is an alliance formed in 1999 between MIT and Microsoft to enhance university 

education through information technology.  iCampus sponsors iLabs in a number of 

disciplines including microelectronics, mechanical engineering, thermodynamics, and 

civil engineering.   A project sponsored by iCampus, the Framework Project, has 

attempted to abstract the common services used by the iLabs to prevent each iLab from 

having to implement redundant systems.  Led by two Microsoft engineers visiting MIT, 

Dave Mitchell and Eric Carlson, the Framework Project sought to provide these common 

services in a number of compact modules, such as the Identity Service and Storage 

Service.  The Identity Service and the Storage Service provided a functional abstraction 

for creating a user management system and storage management system, respectively.  

The Framework Project has since been discontinued; however, the iLab Project at MIT 

has taken over the responsibility for designing and implementing a shared architecture for 

the common services needed by iLabs. 

 

Each of the iLabs under development represents a distinct set of experimental 

requirements which must be classified and addressed by the iLab Group.  The Polymer 

Crystallization iLab serves as a prototype of an interactive experiment for the 

development of the iLab Project’s shared architecture.  During this experiment, the 

Microscope Server must supply the user with real-time status updates in the form of 
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streaming temperature readings and streaming video.  This class of experiment is 

intended to closely model real-world laboratory conditions, where the user can interact 

with the experimental apparatus in real-time.  In contrast to this paradigm, the 

Microelectronics WebLab [8] represents a “stateless” experiment where the parameters 

are batched into a command script which is used to run the experiment.  Because of the 

relatively small time scale in electronic measurements, there is no user interaction during 

a “stateless” experiment.  The user’s job is to set up the experiment and let the 

experiment run without any user involvement. 

 

1.3 Development 
 

This section provides an overview of the programming languages and integrated 

development environments (IDE) used for the implementation of the various software 

components of the Polymer Crystallization iLab.  Each language was chosen for its 

benefits to each specific module.  

 

1.3.1 Java 
 
The Microscope Client is currently implemented as a Java Applet.  Java was initially 
chosen for Nasser’s design because of its object-oriented structure, platform 
independence, and availability in most popular web browsers.  Because the system uses 
full duplex communication between the client and server, a client program must be able 
to decipher messages sent over primitive sockets.  Because Java Applets can be 
embedded into web pages, use of Java allows clients to run the applet from anywhere 
without having to download a full client application.  The Java Virtual Machine (JVM) 
required by the Polymer Crystallization iLab is Java 1.4.  Since many web-browsers do 
not come with Java 1.4, users will have to download the Java Plug-in supplied by Sun 
Microsystems.   
 
The Microscope Client was developed using the Sun Open Net Environment (Sun ONE).  

This integrated development environment contains a number of coding, compiling, and 

debugging tools as well as a graphical Form Editor, which allows the developer to easily 
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manipulate and preview visual Java components.   

 

1.3.2 Python 
 
The Microscope Server and all associated hardware controllers are implemented in 
Python.  Python is an object-oriented language that has a number of freely available 
modules to control everything from serial ports to image manipulation.  Because it is 
written entirely in C, it is very efficient at string manipulation and dictionary 
management.  Python allows communication with the hardware modules via serial ports 
and Microsoft’s Component Object Model (COM), through simple yet efficient modules 
available in the Win32 package.  Another available library, the Python Imaging Library 
(PIL), allows images to be manipulated by the Microscope Server. 
 
In addition to the abundance of available modules, Python also comes with a small but 
useful IDE called PythonWin.  PythonWin allows single line commands to be sent to the 
Python interpreter for easy testing of software components.   It also contains tools for 
managing and debugging code. 
 

1.3.3 C# 
 
The Framework Server has been implemented using C# and Microsoft’s new .NET 
Framework.  The Framework Server, named after its origin in the Framework Project, is 
used for post-experimental data analysis and user management.  C# was the language 
chosen for this component because of its seamless integration into ASP.NET web pages 
and its simple database access mechanism. Microsoft’s .NET platform is an efficient and 
highly scalable environment for web applications.  Analysis of data images requires a fast 
and efficient web server to respond to many users.  Our Framework Server will inherit 
the scalability and ease of management from C#, ASP.NET, and Microsoft’s Internet 
Information Service (IIS). 
 
For the IDE we use the highly developed Visual Studio .NET.  This environment 
simplifies the task of creating pages for a web application and for editing and managing 
the code for a large project.  In addition, VisualStudio.NET simplifies the task of creating 
and using the web services required to extend the use of the iLab beyond MIT. 
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CHAPTER 2  

Remote Microscope  
 
 
A large part of the Polymer Crystallization iLab involves the use of a Remote 
Microscope.  Based on Paola Nasser’s design, the Remote Microscope uses a two-tier 
architecture, with a Microscope Client and a Microscope Server passing messages over 
TCP/IP sockets to remotely alter the state of the microscope settings and capture digital 
images.  This thesis describes the enhancements made to the Microscope Server and the 
Microscope Client to allow users to conduct and save a complete remote polymer 
crystallization experiment.  This chapter will give a brief overview of the Remote 
Microscope.  An overview of how each of these two components fit into the Remote 
Microscope can be seen in Figure 2.  For more information on the server and client 
developed by Nasser, the reader is directed to her Masters’ of Engineering thesis [1]. 
 

2.1 Hardware Overview 
 
The Remote Microscope uses hardware purchased from two vendors: Zeiss and Linkam.  
The Zeiss hardware consists of an Axioplan 2 Imaging microscope and an AxioCam 
MRc digital camera.  The Axioplan is a motorized microscope whose component design 
allows the user the flexibility to add modules for several different applications.  Two of 
these modules which are assembled with the Axioplan for our Remote Microscope are a 
polarized light filter and the mounted AxioCam MRc.  With a resolution of up to 1300 x 
1030 pixels and color binning capabilities, the camera provides the flexibility to produce 
both high resolution images for single image capture and compressed images for rapid 
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video capture.  Both Zeiss components, the Axioplan and the AxioCam, can be 
programmatically controlled through the KS.300 software developed by Zeiss.   
 
The Linkam hardware provides the temperature control for our system.  The MDS600 
Linkam heating stage, is mounted directly to the mechanical stage carrier of the Axioplan 
microscope.  The MDS600 comes with three associated hardware controllers: the TMS94 
temperature controller, the MDS600 directional controller, and the LNP94 liquid-
nitrogen pump.  The TMS94, which acts as a proxy for all of the Linkam hardware, is the 
only Linkam module directly connected to the computer through a serial port.   
 

Microscope Client

Microscope Server

MDS600 
Controller

AxioCam 
Controller

Axioplan  
Controller 

TCP/IP Internet 

 
Figure 2: Remote Microscope System Architecture 

 
In order to provide an interface between the Python Microscope Server and the hardware, 
the Controller class has been written in Python to wrap for the appropriate hardware 
functions.  Since the Zeiss components can be controlled by vendor software, the 
Axioplan Controller and the AxioCam Controller classes both act as proxy classes to the 
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KS.300 software.  These controller classes marshal commands using a dispatched 
KS.Application Component Object Model (COM) interface.  The respective controller 
classes for the Axioplan and the AxioCam can use the KS.Application COM interface to 
change the objective, aperture, field stop, and reflector settings of the microscope and to 
capture images from the digital camera.  In contrast to this high-level communication 
scheme, the Linkam hardware must be controlled by arcane ASCII text commands sent to 
the TMS94 using a serial port connection.  Thus, the MDS600 Controller class provides a 
proxy for the Microscope Server to issue serial commands to the appropriate Linkam 
hardware. 
 

2.2  Microscope Client Overview 
 
Together, the Microscope Client and the Microscope Server comprise the Remote 
Microscope.  The roles of the Microscope Client are to provide students with a Graphical 
User Interface and to parse and process messages to and from the server.  The 
Microscope Client applet contains a number of GUI controls with which the user can 
manipulate the state of the microscope, camera, and heating apparatus by sending 
messages to the Microscope Server through TCP/IP sockets.  In turn, the Microscope 
Client receives updates through these sockets, which it must parse and display for the 
user.  The Microscope Client, described further in CHAPTER 6, must allow students to 
quickly and easily manipulate the hardware, while validating all commands, so as not to 
damage any of the hardware. 
 
The Microscope Client has four primary tasks: to display graphic controls for the user to 
manipulate hardware settings, to message-pass with the Microscope Server, to display the 
state of the hardware, and to display the image of the polymer sample.  These tasks are 
accomplished by using a Java Applet for the user’s Graphical User Interface (GUI), as 
pictured in Figure 3.  By manipulating this GUI, students create and send messages to the 
Microscope Server, where these messages are decoded and processed.  In turn, the 
Microscope Client receives updates through messages sent by the server, which the client 
parses and displays as feedback for the user.  Java Swing components are used to 
manipulate the state of the microscope, camera, and heating apparatus and to validate any 
commands the user sends.   
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Figure 3: Remote Microscope Client GUI 

 
 
The user interface is broken into four bordered sections.  The northern section, called the 
Message Panel, is used to display the status of the client-server communication and any 
errors which occur during command execution.  The west section, called the Image Panel, 
is used to display the 260 x 206 image, to subscribe to the video stream from the 
Microscope Server, to focus the image, and to navigate around the polymer sample.  In 
the east section, called the Microscope Panel, the user can manipulate the GUI tools 
provided to control the state of the various microscope and camera settings.  From this 
panel, the user can control the magnification, aperture, and reflector settings of the 
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microscope as well as the exposure time of the camera.  Finally, in the southern section of 
the applet, called the Temperature Panel, the user can view the real-time temperature of 
the sample and can submit an experiment, in which the user inputs a temperature rate, a 
target temperature, and the hold time for the target temperature.  In addition to all these 
panels, a menu provides the user with additional functionality such as the ability to save 
an experiment and all the associated images on the server.  The Microscope Client is 
discussed in more detail in CHAPTER 6. 
 

2.3 Microscope Server Overview 
 
The Microscope Server is the second software component for the Remote Microscope.  
The Microscope Server is responsible for maintaining the overall state of the system, 
accepting client connections, processing messages sent from the client to the appropriate 
hardware controller module, and saving experiments to the database and images to the 
file system.  The server, written in Python, is based on Kuchling’s Remote Microscope 
implementation for the MEMS Exchange project.   
 
The Remote Microscope’s Config and Options classes are used to set the various 
configuration options for the Microscope Server.  The most useful options for developers 
are the debug option and the timing option.  These options cause the server to display 
debugging information for the developer such as the latency of a command.  Another 
component, the Device Manager, is used as a proxy class for all the hardware controllers 
used by the microscope.  The Device Manager is in charge of deciding which hardware 
controller to use for a given input message.  The reader is directed to Chapter 6 of Paola 
Nasser’s thesis for more information on these components.   
 

2.4 Hardware Controllers 
 
The Controller class and all of its subclasses are responsible for sending commands to 
specific hardware modules, either using COM interfaces to vendor software or low-level 
serial port commands directly to the hardware. The Controller class is described in 
Chapter 7 of Nasser.  Each controller has a set of properties maintained in a local 
dictionary called settings.  Each of these properties can be easily accessed using the 
appropriate get_<control_name> method in the specific controller and can be modified 
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using the appropriate set_<control_name>.   For a complete list of the settings of the 
appropriate modules, please refer to Appendix B. 
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CHAPTER 3  

Hardware and Controller Design 
 
This chapter first describes the hardware used for the Polymer Crystallization iLab, and 
then describes the controllers used for each of the hardware components. 
 

3.1 Hardware Setup 
 
The Polymer Crystallization iLab is an extension of the Remote Microscope project 
begun by Paola Nasser[1].  Two hardware components of the Remote Microscope 
hardware purchased by Nasser are re-used in this project: the Axioplan 2 Imaging 
microscope and the AxioCam MRc digital camera.  The modifications made to their 
respective hardware controllers are described in the next section. 
 
Although Nasser’s project details the use of the Linkam LTS350 heating stage and LUDL 
motorized XY stage, the Polymer Crystallization iLab uses neither of these components.  
The small size of the viewing aperture in the LTS350 and the inability to mount the 
heating stage onto the LUDL XY stage make both hardware components unsuitable for 
this project.  Although the LTS350 stage could be mounted directly to the microscope, it 
has no motorized XY movement.  This inability to maneuver the slide in the XY direction 
would prevent students from being able to navigate the sample and experiment on 
different regions of the polymer.  Thus, we use a different Linkam heating stage, the 
MDS600, and its associated hardware, the TMS94 and the LNP, in this implementation 
of the iLab.   
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3.1.1 TMS94 Temperature Programmer 

 
The TMS94 is the temperature programmer for the MDS600 stage.  This programmer 
connects to the computer using an RS232 serial port.  From the serial port, low-level 
ASCII text commands are sent to the TMS94 to control three separate modules: the 
MDS600 stage, the MDS600 controller, and the Liquid Nitrogen Pump (LNP94).  The 
TMS94 thus serves as a proxy for the other associated Linkam hardware.  The connection 
to the MDS600 stage controls the heating block and monitors the temperature; the 
connection to the MDS600 controller directs the XY movement of the polymer sample 
carrier inside the stage; and finally, the LNP94 connection allows the TMS94 to control 
the flow of liquid nitrogen through the LNP94, thus controlling the cooling rate of the 
sample.  The TMS94 is shown in Figure 4. 
 
 

  
Figure 4: TMS94 Temperature Programmer (left) with MDS600 Heating Stage (right) 

Figure 4

 

3.1.2 MDS600 Heating Stage and Controller 
 
The MDS600 heating stage is a large area heating stage with a built-in servo for 
movement in the XY direction.  This heating stage, pictured in , can operate in a 
temperature range between -196ºC and 600ºC with heating and cooling rates from 
0.01ºC/min to 130ºC/min.  The MDS600 connects directly to the Axioplan microscope 
using a small sub-stage mounting device.  Thus, the heating stage itself cannot move in 
the XY direction; however, a slide carrier inside the stage allows the polymer sample to 
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travel inside the heating stage above the heating block in a circle with a radius of 15 mm.  
 

3.1.3 Liquid Nitrogen Pump (LNP94) 
 
In order to allow cooling at rates faster than the ambient cooling rate, the MDS600 comes 
with a LNP94 cooling system.  The LNP94 has two pumps that are automatically 
controlled by the TMS94.  These pumps regulate the flow of liquid nitrogen from a 2L 
Dewar flask to the MDS600 heating stage to cool the encased polymer sample.  The 
liquid nitrogen in the chamber allows us to lower the temperature of the sample to -
196ºC.  The LNP94 is shown in Figure 5. 
 

 
Figure 5: Liquid Nitrogen Pump (LNP94) and Dewar Flask 

 

 

3.2 Hardware Controllers 
 
The Polymer Crystallization iLab uses three hardware controller classes: Axiocam, 
Axioplan2, and MDS600.  Each of these classes is written in Python and is a subclass of 
the Controller class.   shows a module dependency diagram of each of the 
hardware controllers.  Both the Controller class and the associated Device Manager are 
discussed in detail in Nasser (Chapter 7).  Because of the inheritance of each controller, 
there is an inherent dependency on the Controller superclass.  The following subsections 
discuss the lower-level dependencies and the command flow in more detail.   

Figure 6
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Figure 6: Module Dependency Diagram of Hardware Controllers 

 

3.2.1 Axioplan2 Controller 
 
As the diagram shows, the Axiocam Controller’s dependency hierarchy includes COM, 
KS.300, and the actual microscope hardware.  This controller is responsible for setting 
and maintaining the state of all adjustable microscope settings.  To do this, the Controller 
dispatches commands to the KS.300 interpreter using the KS.Application COM interface. 
By dispatching a KS.Application object using the Python Win32 package, the functions 
available to the KS.300 interpreter are exposed to the Python controller modules.  Thus, 
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the COM interface makes all functionality of the KS.300 software available to Python.  
More information on the KS.300 interpreter can be found in the help documentation of 
the KS.300 software. 
 

3.2.2 Axiocam Controller 
 
The dependencies for the Axiocam Controller mirror those of its related Axioplan 
Controller.  The Axiocam Controller is responsible for the exposure time property and for 
capturing frames from the camera.  The Axiocam Controller issues commands to the 
camera by dispatching them to the KS.300 interpreter using the same COM interface as 
the Axioplan2.   
 
One significant difference between this controller and the previous one is that the 
Axiocam uses KS.300 configuration scripts.  These configuration scripts included in the 
application, allow an administrator to locally open the KS.300 software and create a 
configuration for the images that the Axiocam captures.   The Python controller can then 
load a configuration for the camera using the tvload command from the KS.300 
interpreter.  Previously, the Remote Microscope camera always captured images at the 
maximum resolution, and then used the Python Imaging Library (PIL) to manipulate the 
size and encoding of images before they were sent to the user.  This level of indirection 
caused an awkward latency, on the order of six seconds, between the time the user 
requested an image and the time an image was displayed in the Microscope Client.  
Video streaming was also very choppy, with a frame rate of one frame every six seconds.  
Using configurations to specify the camera’s encoding of the image instead of post-
processing the image allows the system to maintain a video stream of two frames per 
second and provides a huge reduction in latency during single-image capture. 
 

3.2.3 MDS600 Controller 
 
The MDS600 Controller shows another alternation of Paola Nasser’s implementation of 
the Remote Microscope.  Whereas Nasser’s implementation called for the use of the 
LTS350 heating stage and the LUDL XY stage, the incompatibility of the two stages 
required us to purchase the MDS600, the TMS94, and the LNP94.  The dependency 
diagram shows that the MDS600 Controller is solely dependent on the TMS94 through a 
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serial port RS232 connection.  All commands to alter the temperature of the heating stage 
and the position of the sample inside the stage are issued to the TMS94 using archaic 
single-line text commands as specified in the Linkam programmers guide, “Serial 
Communications Manual for the T92, T93, T94 Series Programmers.”   
 
The design decision was made to incorporate both the location and temperature 
capabilities of the TMS94 into the MDS600 Controller because of the primitive nature of 
communication between the computer and the TMS94.  Since serial ports can only have a 
single connection open at one time, separation of the two modules would require an 
incessant opening and closing of serial port communications, introducing an overhead in 
each command sent to the TMS94.  In addition, since multiple threads access the 
controller, a complex blocking scheme would have to be employed at high levels in the 
architecture to prevent two serial commands from being issued at the same time.  By 
combining both capabilities in one module, the system avoids the overhead and 
complexity arising from such problems. 
 
The TMS94 has limited temperature control functionality.  The TMS94 accepts the rate 
of temperature change and the target temperature as inputs.  When a user commands the 
system to take control of the heating stage, the TMS94 ramps to the target temperature 
and holds that temperature indefinitely.  More sophisticated control of the heating stage 
temperature is achieved by the Microscope Server and discussed in Section 7.2.  
 
For movement in the XY direction, the TMS94 issues differential positioning commands 
to the MDS600 (i.e. move +/-50µm).  Therefore, the MDS600 Controller class is 
responsible for tracking the absolute position of the sample in the heating stage.  Since 
the heating stage is not equipped with a reference motor, centering of the sample inside 
the stage must be done when the Microscope Server is started (see Appendix A).  At this 
time, the location of the sample holder is initialized to (0,0).  All further directional 
commands use this initial starting position as the reference position until the Microscope 
Server is restarted. 
 
The operation of the Liquid Nitrogen Pump has not yet been tested.  Although the pump 
does have its own set of commands in the Linkam programmer’s manual, the TMS94 has 
the capability to monitor and automatically adjust the flow rates for liquid nitrogen.  
Using the current temperature of the stage, the TMS94 sets the pump flow rate to achieve 
the desired rate of temperature change until it reaches the target temperature.
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CHAPTER 4  

Database Schema 
 
 
The database for the Polymer Crystallization iLab allows us to preserve data across web 
sessions and provides a clear interface between the various components of our system.  
The Microscope Server saves peripheral data about experiments to the database, for use 
by the Framework Server during post-experiment analysis.  Likewise, the Framework 
Server uses the database to save information about users, roles, reservations, and 
experiments, which is retrieved and used by the Microscope Server.  More information 
about these interfaces can be found in the next chapter.  The data model for the database 
design is shown in .  The following sections describe the details for each of the 
tables in the database. 

Figure 7

 

4.1 Users 
 
Our data model includes a Users table which holds all user information that is maintained 
by the system.  The table stores only a few fields of information, such as name, email, 
and school, to allow future versions of the Polymer Crystallization iLab to port the 
current architecture easily to a shared architecture, such as the one proposed by the iLab 
Project.  Under such a shared architecture, it is important to limit the amount of user 
information available to the system, since the underlying authentication and authorization 
mechanism may not have access to extensive user information.  A globally unique 
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identifier (GUID) is used as the primary key in the Users table.  This GUID is used by 
other database tables as a foreign key to reference a User in the system.  In addition, a 
Confirmation Code uniquely specifies a user and is sent to that user to confirm the 
registered email address.  The Registration Status describes the state of registration for a 
particular user as described in Section 8.4.   
 
 
 
 

Users

PK UserID

FirstName
LastName
email
SchoolID
ConfirmationCode
RegistrationDate
RegistrationStatus

Roles

PK RoleID

RoleName
RoleDescription

Experiments

PK ExperimentID

ExperimentName
ExperimentDescription

FK2 CreatorID
DateRegistered

ExperimentRuns

PK RunID

FK1 ExperimentID
FK2 UserID

RunName
RunDescriotion
OutputXml
DateAdded
DateExpires

User_to_Role_Map

FK1 UserID
FK2 RoleID

DateAdded

Role_to_Role_Map

RoleID
FK1 RoleID

DateAdded

Reservations

PK ReservationID

FK1 UserID
Priority
StartTime
EndTime

ExperimentRuns

PK RunID

FK1 ExperimentID
FK2 UserID

RunName
RunDescription
OutputXml
DateAdded
DateExpires

 
Figure 7: Data Model for the Database 

 

 32



4.2 Roles 
 
In order to allow a role-based authorization mechanism to be employed, the data model 
includes a Roles table.  Roles, indexed by a GUID, are linked to users through the 
User_to_Role_Map table.  Based on Philip Greenspun’s user management model in The 
Internet Application Workbook [8], this data model allows us to represent group 
membership in first-normal form: meaning data that can be derived from the joining of 
tables is not duplicated.  The Roles table includes fields for a role name and a role 
description.  Another table in the database, Role_to_Role_Map, allows us to map roles to 
other roles.  This mapping table allows us to maintain data in first-normal form, while 
allowing different group memberships to inherit multiple permissions.  This design will 
be useful when the system is deployed at several universities.  In that case, there can be a 
separate user group representing undergraduate students at University A and 
undergraduate students at University B.  Both of these groups can be linked to an 
Undergraduate role to simplify the administration of the system.  In addition to a GUID, 
the Roles table contains fields for a Role Name and a Role Description.  Neither of these 
fields is guaranteed to be unique, and both are included to simplify administration of 
roles by a lab administrator.  
 

4.3 Experiments 
 
The data model for the system includes an Experiments table used to identify the 
experiments that the microscope can conduct.  Currently, the Polymer Crystallization 
iLab uses Polyethylene Oxide (PEO) as the polymer sample.  In order to differentiate 
between experiment runs carried out using PEO and experiment runs using an alternate 
polymer sample, each experiment run is linked to a particular experiment type.  The 
Experiments table also allows a lab administrator, such as a teaching assistant or a 
professor, to filter all experiment runs of a particular type.  For example, if Class A is 
conducting Experiment X and Class B is conducting Experiment Y, the professor for 
Class A could choose to view only experiment runs of type X.  Each row in the 
Experiments table is uniquely identified by a GUID, and contains an Experiment Name, 
an Experiment Description, a Creator ID that references the Users table, and a 
Registration Date. All of this information is provided for administrative purposes and is 
used in the Framework Server. 
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4.4 Experiment Runs 
 
Each time a student performs an experiment, it is cataloged in a database table called 
Experiment Runs.  A GUID again serves as the primary key for a row in this table.  In 
addition, the Experiment ID and the User ID columns contain unique identifiers, which 
are used to reference the Experiments table and the Users table, respectively.  The Run 
Name also identifies an experiment run for a particular user and is used to locate the 
directory where all experimental files can be found.  Images for a particular run are stored 
in a public user directory with a naming convention of 
$PUBLIC_DIRECTORY/user_email/run_name, requiring the Run Name to be unique 
for a specific user. 
 
Another column in the table, the Run Description column, is supplied by the user to 
identify and document an experiment run.  The Date Added field is generated by the 
system when an experiment is created, so a user or a TA can reference experiment runs 
by a specific date or a range of dates.  The Date Expires field is included for system 
management.  A supervisor can review and delete experiment runs which have expired in 
order to free up system resources for new runs.  Finally, the Output XML field, which is 
currently null, contains the XML result that is output by the system after an experiment 
run has been completed.  This XML string contains all the information a user needs for 
the review and analysis of an experiment run.  For more information on this XML output 
string, the reader is directed to Section 5.4.1.   
 

4.5 Reservations 
 
The Reservations table stores information about when a student is authorized to use the 
Remote Microscope.  A Reservation consists of a GUID that to uniquely identify a 
Reservation and another GUID to identify the user who has reserved the microscope.  In 
addition, a Start Time and an End Time record when the Reservation becomes active and 
when it expires.  Finally, a priority for the reservation has been included in the database.  
Although this field is not currently used, a priority scheme is a useful extension for 
allowing a professor or a TA to reserve the microscope for a demonstration or for 
maintenance, even though a routine user may have already reserved the system. 
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4.6 Stored Procedures 
 
To relate the programming logic to the database model, a number of stored procedures 
have been created in the database.  Each class in the Framework Server that is 
represented by a database table has a number of static functions which it can use to load 
objects from the database.  Objects are loaded based on specific properties in the database 
columns; for example, a user with a specific GUID or email address can be loaded from 
the database.  Thus, stored procedures are named according to the following convention: 
<StaticCaller>_Get<BusinessObject>From<PropertyName(s)>.  For example, the 
ExperimentRun class has a static function, which can return a set of ExperimentRuns 
from a UserID and ExpID.  The database contains a corresponding stored procedure 
called ExperimentRun_GetRunFromUserIDAndExpID which selects the appropriate 
rows from the appropriate tables.  A list of all stored procedures can be found in 
Appendix C. 
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CHAPTER 5  

System Architecture 
 
This chapter familiarizes the reader with the software system architecture for this project.  
The Polymer Crystallization iLab consists of three largely independent software 
components: the Microscope Client, the Microscope Server, and the Framework Server.  
Each of these modules is written in a separate language to leverage the advantages of a 
particular programming language for the necessary task.  With this benefit in efficiency 
comes the necessity to design a clear interface between modules.  Figure 8 shows an 
overview of the interface mechanisms between components.  Two of these components, 
the Microscope Client and the Microscope Server, have been introduced in CHAPTER 2.  
In this chapter, the final software entity, the Framework Server, is introduced, followed 
by a detailed description of the communication mechanisms between modules.  More 
information about the Microscope Client, the Microscope Server, and the Framework 
Server can be found in CHAPTER 6, CHAPTER 7, and CHAPTER 8, respectively.  
 

5.1 Framework Server Overview 
 
The Framework Server manages the software system.  The Framework Server is built as 
a traditional three-tier system.  The first tier consists of a lightweight client viewed in any 
traditional web browser.  The middle tier consists of an ASP.NET server with C# objects 
such as Users, Roles, Experiments, and Experiment Runs, which are manipulated through 
the web interface.  Finally, the database provides the backend of the three-tier 
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architecture, allowing the user to save data across web sessions and to access data across 
modules.  
 

 

REMOTE MICROSCOPE

Framework
Server

Microscope
Server

Microscope
Client

TCP/IP
Sockets

Database
Transactions

Applet
Elements

Figure 8: System Architecture Diagram 

 
Using Microsoft’s IIS to host a number of dynamically generated web pages for the user, 
the Framework Server provides an interface for a user to login to the system, reserve the 
microscope, manage user-specific information such as user profile and experiments, 
analyze past experiments, and use the Remote Microscope.  These dynamically generated 
web pages provide the software logic used to manage the system.  The Framework Server 
extracts information from the database, which it passes to the Microscope Client through 
applet parameters.  The applet then uses these parameters to send information about the 
current User to the Microscope Server.  After experiments are saved by the Microscope 
Server, they are written to the database.  The Framework Server can then retrieve past 
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experiment runs for the user to process.  For details about the Framework Server, the 
reader is directed to CHAPTER 8. 
 

5.2 Framework Server => Microscope Client Communication 

 
The unidirectional communication from the Framework Server to the Microscope Client 
shown in Figure 8 is achieved by passing applet parameters.  As mentioned in the 
overview, the Framework Server dynamically generates a set of web pages for a specific 
user.  When a user logs in to the system, a corresponding User object is saved in the 
Framework Server’s session context.  When the user requests to use the microscope, the 
Framework Server generates a web page that includes parameter tags for the user’s 
GUID, a reservation ticket GUID, and an experiment GUID.  This web page directs the 
browser to load the Microscope Client.  These parameters are passed to the Microscope 
Server when the Microscope Client tries to authorize itself, so the Microscope Server in 
turn, knows who is using the system.  Simple HTML tags are added to the dynamically 
generated web-page to redirect the browser to a logout page after the reservation has 
expired.  These tags prevent users from logging on to the Microscope Client indefinitely.  
For more information on users, experiments, and reservations, the reader is directed to 
CHAPTER 8. 
  

5.3 Microscope Server ! Microscope Client Communication 
 
Bidirectional communication between the Microscope Server and the Microscope Client 

is achieved through two low-level TCP/IP sockets using a simple but well-defined 

message protocol based on Kuchling’s Microscope Networking Protocol Specification 

[7].   One socket is a half-duplex binary socket used by the server solely to transmit 

images to the client.  The other socket is a full duplex socket through which ASCII 

messages are passed between the server and client.  These messages consist of a single 

line of text terminated by a new line character, ‘\n’.   The first word of the line is the 

command name, followed by parameters in the form of [parameter_name=value] pairs.  

Commands can have any number of parameters, some of which may be optional.  Since 

the protocol is asynchronous, neither the client nor the server locks while waiting for a 
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response to any of the messages; thus any packet drops due to network errors are handled 

gracefully by the system.    

 

The Microscope Client acts as a messenger between the user and the server.  Users can 

pass messages to the server by altering the appropriate GUI controls in the Microscope 

Client.  Commands are then generated and sent across the network to the Microscope 

Server, where they are parsed and marshaled through a Device Manager to the 

appropriate hardware Controller class.  The hardware controller is then responsible for 

changing the state of its hardware, after which an acknowledgement message is returned 

to the client.     

 

There are a number of advantages to this messaging abstraction between the client and 

the server.  The human-readable ASCII text messages provide a clear interface between 

the two entities.  In addition, this interface does not impose any restrictions on the 

implementation of the client and server, so long as both modules can send and process 

messages.  A full description of the messaging protocol is included in the following 

subsections: 5.3.1 and 5.3.2. 

 

5.3.1 Client Commands 
 
The Microscope Client initiates communication with the Microscope Server using an 
AUTH message.  Based on the user’s GUID, the reservation GUID, and the experiment 
GUID, the Microscope Server determines whether or not to allow the user to access the 
microscope.  Each of these parameters is passed to the Microscope Client by the 
Framework Server through simple applet tags.  After authorization, the Microscope 
Client can send any combination of commands based on user manipulation of GUI 
controls. The following table shows all commands sent from the client to the server.   
 
 
COMMAND PARAMETERS AND EXPLANATION 
AUTH  userID=value   reservationID=value   experimentID=value 

 
Request to authorize this client.  The parameter values are 
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GUIDs for the user, the reservation, and the experiment.  They 
are used in database transaction by the Microscope Server in 
this client session. 

AUTOFOCUS Performs auto focusing by searching for the best z-focus 
position. 

SET  x=value y=value focusPosition=value magnification=value 
lightMode=value aperture=value fieldStop=value 
reflector=value exposureTime=value   
 
Changes the hardware settings and status.  All parameters are 
optional. Command can be sent with any number of parameters.  
A list of valid parameter values can be found in Appendix B. 

CAPTURE  
 

Config=value 
 
The parameter is the name of a predefined acquire 
configuration.  For more details on configurations, see section 
3.2.2.  Currently, the only configuration used is the “iLab” 
configuration which captures color JPEG images with a 
resolution of 260x206 pixels. 

VIDEO_START  Config=value 
 
Requests video streaming to start.  The argument is the same as 
in the CAPTURE command above.   

VIDEO_STOP Requests the video streaming to stop. 
SERVER Prints out the server information such as threads, port 

connections, and client connections.  This command is usually 
used only for debugging. 

STATE Print out the server state information.  This command is usually 
used only for debugging. 

RUN_EXPERIMENT targetTemp=value temperatureRate=value holdTime=value 
 
Commands the server to take control of the heating stage, ramp 
the temperature to the targetTemp at a rate of temperatureRate, 
and hold for targetTemp for holdTime seconds. 

STOP_EXPERIMENT Commands the server to cede control of the heating stage 
START_RECORDER archiveName=value overwrite={yes, no} 

 
Commands the recorder to start archiving images and saving 
experimental data.  The overwrite flag tells the server whether 
or not to overwrite an existing experiment run with 
archiveName 

STOP_RECORDER Commands the recorder to stop and tells the server to persist the 
experiment in the database 

QUIT Terminates the client connection.  The server removes the 
connection and close the TCP/IP socket. 

Table 1 - Client Commands to Server 
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5.3.2 Server Commands 
 

Microscope Server to Microscope Client communication exposes the consequences of 

our asynchronous messaging protocol.  Although we are using TCP/IP sockets, which are 

“guaranteed” to send all network packets in order, we would like our system not to pause 

while awaiting network transmissions.  To prevent this delay, we use asynchronous 

messages.  However, because our commands are sent asynchronously, we must also 

acknowledge client commands with an update message from the server.  For example, if 

the user submits an experiment, the RUN_EXPERIMENT message is passed to the 

Microscope Server with the appropriate parameters.  The Microscope Client does not 

assume that the message was received and does not change any values on its display.  

The Submit button remains enabled until the Microscope Server sends an EXPERIMENT 

message back to the client to acknowledge the request.  Similarly, the RECORDER 

message in the table below acknowledges a START_RECORDER message from the 

client; a SCOPE message acknowledges a SET message from the client; and an 

OCCUPIED or AVAILABLE message acknowledges an AUTH message from the client.  

The following table describes all possible commands that are sent from the server to the 

client. 

 

Command Explanation 

IMAGE  length \n binary data 
 
Transmit image to client as binary data.  The message includes the 
length of the image data, followed by a new-line, and the image data. 

SCOPE  x=value y=value focusPosition= valuemagnification=value 
lightMode=value aperture=value fieldStop=value reflector=value 
exposureTime=val 
 
Inform clients of the microscope’s current settings (current state). For 
a list of valid parameter values see the controller’s details in 
Appendix B. 

STATUS  msg 
 
Sends a message to client specifying the status of an issued command 
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ERROR  msg 
 
Sends an error message to client. 

TEMP temperature 
 
Sends a temperature update for the client to display 

EXPERIMENT {heating, cooling, holding, cancelled} 
 
Notifies the client of the progress of the experiment.  Also acts as an 
acknowledgement that a command was received 

RECORDER {overwrite?, recording, stopped} 
 
Notifies the client of the status of recording.  Also acts as an 
acknowledgement that a command was received 

OCCUPIED Message sent upon initialization to declare the availability of the 
scope. 

AVAILABLE Message sent upon initialization to declare the availability of the 
scope. 

Table 2 - Server Commands to Client 
 

 
 

5.4 Microscope Server ! Framework Server Communication 
 
The Microscope Server and the Framework Serve communicate via database 
transactions.  Reservations, Users, and Experiments are all initially created using the 
Framework Server, as described in CHAPTER 8.  When the Microscope Client starts a 
session, it passes user, reservation, and experiment GUIDs obtained from the Framework 
Server to the Microscope Server.  The Microscope Server retrieves these objects from the 
database to check their validity.  For example, the Microscope Server retrieves a 
Reservation from the database and checks to ensure that the appropriate person is using 
the microscope.  Thus, the reservation, user, and experiment which were initially created 
in the Framework Server, are communicated to the Microscope Server using database 
transactions.   
 
The Microscope Server to Framework Server communication is accomplished through a 
similar mechanism.  When a user starts the recorder using the Microscope Client and 
supplies an archive name, the Microscope Server uses this archive name to create a 
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directory inside the users’ public directory.  Subsequent images are saved to server under 
this newly created public directory.   When the user completes the experiment run and 
stops the recorder, the run is saved in the database and a Synchrnoized Media Integration 
Language (SMIL) output file is written by the server to the archive directory.  After an 
experiment run has completed, the Framework Server allows users to navigate through a 
series of web pages dynamically generated with ASP.NET.  The Framework Server uses 
the database to retrieve experiment runs for a specific user for analysis and management 
of past experiments.  Thus, by saving the experiment to the database, the Microscope 
Server communicates with the Framework Server and saves experiment runs. 
 

5.4.1 SMIL 
 
The Synchronized Media Integration Language (SMIL) [10] is a W3C Recommendation 
for combining audio, video, text, and graphics into a unified presentation.    The central 
function of the language is to time multimedia components and to schedule their display 
either in parallel or sequentially.  The language is written as an XML application, which 
allows authors or programs to create multimedia presentations by simply outputting a text 
file.  This text file contains URLs to the specific media elements which are retrieved by 
the SMIL interpreter.  Currently, Real Player and Quick Time both implement the W3C 
Recommendation and are able to read SMIL files.   
 
When an experiment run is saved to the system, a SMIL file is created allowing users to 
play back their experiments.  These files create a slide show presentation with two 
regions superimposed on a Root Pane, as shown in Figure 9.  The SMIL presentation 
contains a sequence of parallel elements.  Each parallel element contains textual data 
describing the frame number for a particular image and a JPEG image saved during an 
experiment run.   The Image Region displays the image file, while the Caption Region 
displays the frame number of each image.  As the SMIL timeline progresses, these 
parallel elements sequentially display images with their corresponding captions, allowing 
the user to replay the experiment run. 
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Figure 9:  Layout for the SMIL presentation of an experiment run. 
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CHAPTER 6  

Microscope Client 
 
The Microscope Client provides the GUI for the user to control the Remote Microscope.  
As shown below in Figure 11, this module has been largely rewritten to reflect a number 
of development improvements, interface improvements, and application enhancements.  
This chapter details each of these changes to the Microscope Client. 
 

6.1 Development Improvements 
 
The Remote Microscope Client described by Nasser (Chapter 5) consisted of a single 
Java Panel, the ScopeGUI, which performed the majority of the functionality for the 
applet.  This panel contained three subsections: the northern, eastern, and western panels 
described in Section 2.2.  Since the ScopeGUI was a Graphical Form in Sun’s Forte IDE, 
it and its constituent components could easily be manipulated using the IDE’s Form 
Editor.  This Form Editor allowed GUI components to be visually manipulated so that the 
developer could preview what the components of the ScopeGUI would look like to a 
common user.   
 
In this new version of the Polymer Crystallization iLab, the entire applet has been 
converted to a Graphical Form, so that the developer can easily preview and manipulate 
the entire applet.  The class ScopeFormApplet contains all the necessary functionality for 
the Microscope Client.  Since the entire ScopeFormApplet class is a Graphical Form in 
the new Java Sun ONE IDE, it and any of its components can easily be altered by future 
developers using the IDE’s Form Editor.  The added functionality with the development 

 47



of the Polymer Crystallization iLab has required the addition of a menu to improve user 
interface.  From this menu, users can command the Microscope Server to take control of 
the heating stage.  Users can also issue commands to save an experiment using the new 
menu.  For more details about GUI usage, please refer to the Student User Manual in 
Appendix B.   
 

6.2 Temperature Panel 
 
The largest modification to the interface of the Remote Microscope Client is the addition 
of the Temperature Panel.  The Temperature Panel, found in the southern part of the 
Microscope Client and pictured below in Figure 10, consists of five subsections.  The 
left-most subsection displays the current temperature of the heating stage.  Real-time 
update messages are sent from the Microscope Server to the Microscope Client every two 
seconds.  The messages in this real-time data stream are processed by the Microscope 
Client and displayed to the user in this section of the panel. 
 
 

 
Figure 10: Temperature Panel 

 
The middle three subsections of the Temperature Panel contain three input fields for an 
experiment run: Target Temperature, Temperature Ramp Rate, and Target Hold Time.  
Each of these fields has a validator.  When the focus of the text field is lost, the validator 
ensures that the fields contain valid parameters for an experiment submission.  The 
current valid values allow a temperature rate within 0.1-45ºC/min, a target temperature 
between 35-150ºC, and a hold time within 0-300 seconds.  If the value of a text field is 
invalid when a focus lost event is raised by the applet, a dialog box notifies the user that 
the input is invalid and the applet returns focus to the appropriate text field. 
 
The right-most subsection contains the buttons to submit and stop an experiment.  When 
the submit button is depressed, the values in the three fields are again validated.  If valid, 
the Microscope Client sends a RUN_EXPERIMENT message to the Microscope Server 
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with the appropriate parameters.  The MDS600 Controller takes take control of the 
heating stage and brings it to the specified temperature before it is released to cool to the 
ambient temperature or until another experiment is submitted. 
 
It is important that the Microscope Client not assume that the Microscope Server has 
received any messages.  Therefore, the Microscope Client must wait for an 
EXPERIMENT message from the Microscope Server before disabling the SUBMIT 
button and enabling the STOP button.  This creates an inherent race condition if two 
experiments are submitted by the client’s having depressed the submit button twice 
before the EXPERIMENT message is received by the client, but this risk is necessary 
because of the asynchronous communication used in our protocol.  More information can 
be found in Section 5.3 of this paper.  
 

 
Figure 11: Message Panel (top), Microscope Panel (right), and Image Panel (left) 
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6.3 Other Interface Modifications  
 
Apart from the addition of the Temperature Controller panel discussed in the previous 
section, a number of changes were made to the existing Remote Microscope Client in 

.  The Microscope Panel remained largely intact from Nasser’s implementation; 
however, a feature was added to update the image every time a microscope setting was 
changed.  Because of the improved speed of image updates, this change does not add 
excessive latency to the system.  All other interface modifications are discussed in the 
following subsections.  A complete student user guide can be found in Appendix B. 

Figure 11

 

6.3.1 Message Panel 
 
The original Remote Microscope had a Message Panel with a two lines of text: one for 
status updates and one for error updates.  Evaluation of that design showed that some 
messages are sent by the server but never displayed.  If two messages arrived quickly 
enough, the first message is impossible to read before it is overwritten by subsequent 
messages.  To prevent important messages from being missed by the user, a string buffer 
was included in the Microscope Client to maintain a history of the status messages 
received by the client.  The Message Panel was then altered to allow a scrolling text 
window, where users could access previous messages that were sent from the Microscope 
Server.   
 

6.3.2 Image Panel 
 
The original Image Panel had left, right, up, and down buttons which the user could use 
to change the XY positioning of the sample.  Evaluation of this design showed that at 
high magnifications, a click of a directional button would produce show an entirely 
different region of the polymer sample.  On the other hand, if pressing the button caused 
a smaller amount of change, at lower magnifications, this change would not be 
perceivable, and users would need to press the button excessively to move the sample.  
Therefore, since the resolution of XY movements depends on the magnification objective 
the users have in place, a more flexible navigation mechanism had to be implemented.  
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To solve this problem, a slider was added to the XY direction with which allows the users 
to specify the granularity of XY movement.  Users can move the slider the appropriate 
amount to modify the location of the polymer sample and the region of the image capture. 
 
Another modification to the Image Panel was the addition of focusing capability.  To 
accomplish this enhancement, a Plus button and a Minus button were added to the left of 
the image.  Since, like the XY position, the desired focus position depends on the 
magnification being used, a weighting factor is used to compute the actual Z direction 
positional change of the heating stage.  When the Plus button is pressed, the Microscope 
Client computes the new position and validates that the new position of the stage does not 
exceeds its maximum height.  This client-side validation ensures that the client does not 
issue a command which would crash the objective lens into the heating stage.  If the input 
is valid, the Microscope Client sends a message to the Microscope Server to change the 
focus position of the Microscope.  
 

6.3.3 Applet Menu 
 
With the added functionality of the fully operable Polymer Crystallization iLab, a menu 
interface was added to reduce the cluttering of the Microscope Client.  Instead of future 
developers adding more buttons to the GUI, they can add menus for the appropriate 
controls.  Users can use the appropriate menus tell the Microscope Server to start and 
stop the recorder and to take or cede control of the heating stage, although this notion of 
control is not currently implemented.  When a user starts the recorder using the Recorder 
Menu, the user is prompted to enter an experiment title.  After entering a title, a 
“START_RECORDER <title> <overwrite>” message is sent to the Microscope Server.  
The server then parses and processes the message as described in the next chapter.  A 
complete list of these messages can be found in Section 5.3. 
 

6.4 Microscope Authorization 
 
When a web page to load the Microscope Client is dynamically generated by the 
Framework Server, applet parameters are included to inform the applet of the user ID, 
reservation ID, and experiment ID used in the current session.  The Microscope Client 
then sends these parameters to the Microscope Server to ask for authorization to use the 
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microscope.  The server then attempts to verify the reservation ticket for this user against 
the information in the database and returns an authorization notification, an occupied 
notification, or an unauthorized notification.  Since users are required to reserve the 
microscope before use, this requirement ensures that only the appropriate user can access 
the server.  The GUID representing the reservation ID is a 128-bit key which gives us 
sufficient probability that malicious attackers cannot penetrate the system.  In addition, 
since the authorization message is sent to the document base of the applet, malicious 
users cannot save and run the JAR file from their local machine to try to access the 
Microscope Server. 
 

6.5 Look and Feel 
 
The Look and Feel (L&F) of the ScopeFormApplet has been modified to create a more 
sophisticated look for the Microscope Client.  Using the pluggable look and feel package 
(PLAF) from Sun Microsystems, the applet employs the Kunststoff L&F implementation.  
This modification has been made for purely aesthetic purposes.  The Kunststoff L&F 
includes a scheme to create buttons and menus with color gradients as opposed to the 
bare and unadorned appearance of the traditional Metal L&F of most java applets.  
Similarly, additional look and feel packages can be used to create an even more elaborate 
GUI for the Microscope Client. 
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CHAPTER 7  

Microscope Server 
 
Under Paola Nasser’s implementation, the Remote Microscope allowed users to control 

all the necessary hardware for microscope control and image capture.  With the addition 

of the Linkam hardware and the associated temperature controllers, the Microscope 

Server had to be enhanced to allow the real-time streaming of temperature updates.  In 

addition, with all the necessary controllers in place to remotely conduct the polymer 

crystallization experiment, software logic had to be added to allow the Microscope Server 

to accept experiment submissions, monitor the progress of experiments, and allow users 

to save experimental data to the server.  This chapter describes the enhancements made to 

the Microscope Server. 

 

7.1 Temperature Updates  
 
The TMS94 does not come with any built-in software or firmware to notify the serial port 
when the temperature of the stage has changed.  In the absence of such an event-driven 
system, a polling mechanism had to be implemented to pull information about the current 
temperature from the hardware.  On startup, the Microscope Server starts a temperature 
thread, along with the reading, writing, and listening threads of the original Remote 
Microscope to allow real-time temperature updates.  This temperature thread sends status 
queries every two seconds to the TMS94 using the MDS600 Controller.  After the 
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Microscope Server queries the hardware for the current temperature, if a client is 
connected to the server, the server sends a temperature update message to the client.  The 
two second period between temperature updates is parameterized in the Microscope 
Server.  The two second delay between updates allows for a reasonable latency while not 
burdening the system with excessive overhead.  
 
Because of the consistency of the temperature updates, the temperature thread is also 
used to check the connections to all the Microscope Clients to ensure that none of the 
connections are broken.  Every three hundred temperature updates, all of the connections 
to all Microscope Clients are checked to ensure that none of the links between the server 
and the clients have failed.  This prevents the server from locking up its resources in case 
of a network failure.  Although the system only currently allows one client, the addition 
of future clients for collaboration purposes is both a plausible and useful extension to this 
project. 
 

7.2 Running Experiments 
 
The Microscope Server has been expanded to allow students to conduct the polymer 
crystallization experiment remotely.  This experiment requires students to observe the 
isothermal crystallization of a polymer at a number of different temperatures.  As 
mentioned in the chapter on hardware controllers, the TMS94 takes a target temperature 
and target rate as inputs.  Once the target temperature is reached, the Linkam hardware 
holds that temperature indefinitely.  To enable the user to hold a certain temperature for a 
desired amount of time, the Microscope Server must start a Hold Timer thread to monitor 
the amount of time that a temperature has been held.  When the specified time has passed, 
this Hold Timer thread releases control of the heating stage.   
 
To start an experiment, the Microscope Client submits a RUN_EXPERIMENT message 
to the Microscope Server with the appropriate parameters.  Before creating and sending 
the message, the Microscope Client ensures that the parameters fall within a specified 
value range.   In addition to this client-side validation, the parameters are also checked 
server-side.  This server-side validation protects against malicious attacks on the server.  
Because of the simple protocol used to control the microscope, the Microscope server is 
vulnerable to messages sent to the appropriate socket port.  If a malicious attacker 
manages to validate himself to the system, the server-side validation ensures that all 
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incoming experiment parameters will not damage the hardware. 
 

7.3 Recording Experiments 
 
When the appropriate menu item is selected, the Microscope Client creates and sends a 
START_RECORDER message to the Microscope Server.  This message is sent with an 
aquireName parameter which is used to create a new directory under the users directory.  
At that point the Microscope Server resets the frame counter and begins to save images to 
the server under the newly created directory.  Each image is stored with a strict naming 
convention consisting of four alphanumeric character stings separated by an underscore 
character, ‘_’, and ending in the appropriate file extension.    The character strings 
represent the following: frame number, time elapsed * 10, temperature * 10, and 
magnification.  Thus, the following file name, 0035_0154_0825_10X.JPG, identifies a 
JPEG image in this experiment run.  Parsing the file name identifies this image as the 35th 
image in the experiment run taken 15.4 seconds after the recorder started when the 
polymer sample was 82.5ºC and the microscope objective was set to 10X.  This 
convenient naming convention allows us to extract all of the information about an image 
by simply parsing the file name.   
 
When a user completes an experiment run and stops the recorder, the Microscope Client 
sends a STOP_RECORDER message to the Microscope Server.  At that point, the 
Microscope Server stops saving images and writes the SMIL file used to replay the 
experiment run.  To create the file, the Microscope Server iterates through the archived 
directory and extracts the necessary information for the SMIL caption from the file name.  
Two versions of this file are written to the archive directory, output.smil contains the 
well-formed SMIL XML code and output.mov contains a Quick Time modification to the 
SMIL file.   The files can then be accessed by the user through the Framework Server as 
described in the following chapter. 
 
A key consideration for the future development of the Polymer Crystallization iLab is the 
design of an XML schema which can define a complete experiment run.  Currently, our 
system embeds meta-data about individual images in the file name.  In this case, we are 
limited by the length of the name allowed by the file system.  A separation of the 
presentation information in the SMIL file and a generalized XML schema to describe 
experiments would increase the flexibility of experiment analysis.  
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CHAPTER 8  

Framework Server 
 
The Framework Server serves as a manger of the overall software system.  The three-tier 
architecture of the Framework Server gives our system performance gains with respect to 
scalability, flexibility, and speed.  The lightweight client for the Framework Server, the 
first tier, is simply a set of HTML pages viewed in a typical browser.  The multi-layer 
middle tier consists of a web server written in ASP.NET and an application server written 
in C#.  Finally, the third tier, a SQL database, provides the backend data management to 
ensure that information is reliable and consistent throughout our distributed environment.   
 
The Framework Server provides process management for all system users.  Since only 
one user can logically control the microscope at a given time, the Remote Microscope 
necessarily has a two tier design, where a single client is in control of the server.  
However the Framework Server, with which users analyze their data and administrators 
manage the system, can benefit from the performance enhancements of a distributed, 
three-tiered architecture allowing multiple users to interact with the system 
simultaneously.  In addition, the potential for using web services to distribute user 
management of the system across many universities lends itself to the separation of the 
application logic in the top two tiers and data logic in the bottom tier.  This chapter 
describes the implementation of the Framework Server and how this module is able to 
control the process flow for the Polymer Crystallization iLab. 
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8.1 Class Summary 
 
The classes used by the Framework Server act as wrappers for the database tables.  Each 
column in the Users and Roles tables corresponds to a property of the User and Roles 
Classes, respectively.  Both classes also have an array of Roles, which is obtained by 
compiling an exhaustive mapping from the User_to_Role_Map and Roles_to_Role_Map 
tables.  User and Role objects are saved to the database using the Persist() method of 
their respective classes and can be loaded from the database using one of the static 
functions available in each class.  For example, users can be loaded from the database 
using any of the following static methods, which call the appropriate stored procedure in 
the database: getUserFromGUID(), getUserFromEmail(), getAllUsers(), and 
getUsersInRole().     
 
The Experiment and Experiment Runs classes also contain properties mirroring the 
columns in their respective tables.  The properties are loaded from and stored to the 
database using the Persist() method and other static methods included in the two 
classes.  These static methods include the functionality to load a subset of experiments 
such as all the experiments runs for a specific user or all the experiment runs of a specific 
experiment type. 
 
The Reservation Class follows the programming logic of the other classes, again acting as 
a database wrapper class.  Currently, the priority field is not used; however, it will be 
useful for enabling administrative overrides of lab user reservations.   
 

8.2 Identity Service and Lab Service 
 
Currently, the system uses one level of indirection before accessing the C# business 
objects.  Instead of explicitly calling the static methods of a given class, two library 
service classes, the Identity Service and the Lab Service, are used to manipulate objects.  
These classes are a legacy from the Framework Project, and were originally intended to 
be fine-grained web wervices that would allow multiple universities to easily collaborate 
with each other, while simplifying the development cycle for iLab implementation.  They 
have been preserved for easy integration with the iLab Project’s future design cycles.  At 
the time this thesis was put together, the iLab Project focused its efforts on designing a 
shared architecture specifically for batched experiments.  Future editions of this 
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architecture should be amenable to the implementation requirements of interactive 
experiments allowing for the integration of the Polymer Crystallization iLab into this 
infrastructure.   
 

 
Figure 12: Framework Server User Interface 

 
The Identity Service contains all functionality for user management.  Though a large API 
of available functions are exposed through the Identity Service, a usable, distributed 
architecture will likely only contain a subset of these methods because of the 
performance constraints of web services.  The current implementation of the Identity 
Service contains low-level administrative functions which work well for local calls; 
however, in a distributed environment, web service calls are more costly because of the 
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latency introduced by the network and by the conversion to and from XML.  Therefore, a 
lower granularity of functions must be exposed in a web service implementation to 
decrease the number of required function calls.   
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Figure 13: Page Flow Diagram for Framework Server Interface 

 

8.3 User Interface 
 
The user interface of the Framework Server consists of a number of dynamically 
generated web pages viewed through any web browser.  After a user logs into the system, 
he is taken to the appropriate web application.  The layout of the web pages in the web 
application consists of a Header Pane, a Left Pane, and a Content Pane, as shown in 
Figure 12.  The Header Pane contains all the header information for the website such as 
the title, the user’s name, and a link to the logout page.  The Left Pane and the Content 
Pane are determined by the Roles of the current user.  When a user logs into the system, 
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their user information is stored in the session context.  This session context is used to 
 in the Left Pane and the subsequent web controls accessible 

 the Content Pane.  The system currently recognizes two types of Roles with their 

e space, the management web controls do not show the full 
eb control flow accessible through the management links.  A typical scenario is 

provided below. 

 an administrator wishes to manage the roles in the system, he clicks the appropriate 

ab administrators are also allowed to view the experiment runs for all of the users in the 

determine the links provided
in
corresponding interfaces: Administrators and Default Users.  The links provided are 
shown in Figure 13.  The contents of the interfaces for the two roles are described in 
subsections 8.3.1 and 8.3.2. 
 

ministrative Interface 
 
The administrative interface was created to facilitate the management of users, roles, and 
experiments.  When an administrator logs into the system, the Admin Links web control 
is loaded into the Left Pane.  Using these links, the user can navigate the provided 
management pages to add, delete, and edit users, roles, and experiments in the system.  
Clicking on any of these links loads and renders the appropriate web control in the 
Content Pane.   Figure 13 shows the links administrators can click to manage users, roles, 
and experiments.  To preserv

8.3.1 Ad

w

 
If
administrative link for roles.  The Mange Roles web control, shown in Figure 14, appears 
in the content pane showing a list of all roles in the system.  From this web control, 
Administrators can follow the appropriate links to add a new role or edit an existing role.  
Following the link to edit a role causes the web control found at the bottom of Figure 14 
to appear in the Content Pane.  From here, a lab administrator can change a role name 
and description.  In addition, the administrator can associate users with a specific role to 
give them access to different parts of the system.  Management for users and experiments 
closely follows the above scenario, giving our administrative interface an intuitive feel. 
 
L
system.  To do this, they can navigate to the Filter Experiment Runs page, where they can 
select which experiment runs to display based on a combination of the t type or 
the users who created an experiment run.  This allows lab administrators such as a TA to 
view an experiment run performed by a user for grading or to help the student analyze the 
results. 

experimen
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Figure 14:  Page Flow for Role management 

 
Currently, the Polymer Crystallization iLab can only logically support one experiment at 
a given time  Since a lab administrator must change the polymer sample to change the 
type of experiment currently active, the Framework System must support the notion of 
the current experiment.  To notify the system of the active experiment, administrators can 
specify the active experiment in the Mange Experiments page.  When a student uses the 
Remote Microscope, the system embeds the active experiment GUID in the web page, 
notifying the Remote Microscope of the type of experiment being run. 
 

8.3.2 Student Interface 
 
Students will typically use the Framework Server to conduct experiment runs with the 
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Polymer Crystallization iLab, to reserve the system for future use, and to manage and 
analyze their past experiment runs.  The general interface for students follows directly 
from the administrative interface.  Students are provided a list of student links which are 
loaded into the Left Pane of the web page.  Students can use these links to navigate to the 
desired pages.  The page flow for student links is more complex than that for 
administrative links.  The control flows for the links to analyze past experiments, reserve 

e system, and use the Remote Microscope are explained in detail in the following 
sections. 

ister from the registration page or be added by a lab administrator.  Then, the 
ser must confirm his email address in order to be considered an active user.  From that 

point, a lab administrator can add the confirmed user to any of the active roles.  Note that 
ed his email address, he is not visible in the system. 

uccessfully 
uthorizing themselves.   

 
To reserve the system, lab users load the appropriate reservation web control consisting 

th

 

8.4 Registration 
 
There are two separate ways that new users can be added to the system.  The first way 
involves a lab administrator adding the user through the appropriate administrative web 
pages.  An alternate and preferred means of adding a user is by having a user register 
with the system through the registration page.  User registration follows a finite state 
machine modeled closely after the one described by Philip Greenspun in The Internet 
Application Workbook [8].  To become an active user in the system, a user must first 
either reg
u

until the user has confirm
 

8.5 Reservation System 
 
All users wishing to conduct experiments with the Remote Microscope must first make a 
reservation.  Since the Polymer Crystallization iLab requires students to interact with the 
experimental apparatus in real-time, only one user can be in control of the system at one 
time.  Therefore, a reservation system is required to mediate times that users can access 
the Remote Microscope.  In addition, the reservation requirement provides a security 
feature for our system.  Since the system only allows users with a 128-bit reservation 
ticket previously saved in the database, malicious users are prevented from s
a
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of a calendar and a list of reservations.  From this page, users can select a date on which 
 reserve the system.  After the user selects a date, the Framework Server queries the 

8.6 Using Remote Microscope 

e Microscope Server.  If the Microscope Server is in use, it sends an 
CCUPIED message to the client; otherwise, it checks the appropriate parameters, reads 

the reservation from the database, checks the user GUID against the reservation’s creator, 
roscope Client.  An AVAILABLE message 

om the server to the client begins a session with the Remote Microscope. 

to
database to retrieve all reservations for the selected date and displays these to the user.  
The user then inputs a desired start time and end time during which they would like to 
use the Remote Microscope.   The Framework Server checks to ensure that their desired 
time period does not exceed the maximum period allowed by the system and ensures that 
the reservation does not conflict with another user’s reservation.  If the request is valid, a 
new reservation is created and written to the database.  The following section describes 
how a reservation is subsequently redeemed when a user attempts to use the Remote 
Microscope. 
 

 
When a user wishes to redeem a reservation and use the Remote Microscope to conduct a 
polymer crystallization experiment, he must follow the appropriate student links to open 
the polymer lab.  When the user clicks this link, the Framework Server checks the 
database to see if this user has a valid reservation in the database.  If the user does have a 
valid reservation, the system creates a web page with applet parameters denoting the user 
GUID, reservation GUID, and active experiment GUID.  The Microscope Client is then 
loaded into the user’s browser, reads the applet parameters, and attempts to authorize 
itself with th
O

and sends an available message to the Mic
fr
 
To enforce the reservation system, the Framework Server checks the reservation table 
and sets a timeout for the web page by computing the time between when the page is 
loaded and when the user’s reservation expires.  While generating the web page to use the 
Remote Microscope, the Framework Server embeds a META tag that directs the browser 
to “refresh” the page after the specified timeout.  An example META tag is shown below: 
 
<META HTTP-EQUIV="Refresh" 
CONTENT="1500;URL=http://polymerlab.mit.edu/PolymerLab/logout.aspx"> 
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The refresh directive loads a logout page after the specified time to force the user to cede 
control of the Remote Microscope when his reservation expires. 
 
 
 

 

 
 

8.7 
 
After an expe  experiment run to 
the database, the Fram lete and 
analyze past experim nt history web control 
loaded in the Content P ent for 
analysis, a web control like the one shown in Figure 15 is loaded into the Content Pane.  

Figure 15: Analyze Experiment Web Control 

Analyzing Experiment Runs 

riment has been run and the Microscope Server saves an
ework Server provides users with the functionality to de

ent runs.  Figure 12 shows the experime
ane.  When a user clicks on the link to open an experim
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From this control, the view slide show link opens a new browser window with a SMIL 
slideshow presentation MIL presentation can 
urrently be run using either Quick Time or Real Player.  A user can alternatively select 
e desired frame number of the image they would like to preview.  This causes the 

appropriate image to appear in the Preview Pane of the web control.  The meta-data 
he frame number, time, temperature, and 

agnification, is parsed from the file name and displayed for the user.  When the page is 

 flexibility for user analysis.  
he wide variety of functions available in ImageJ allows users to explore a variety of 

ways to analyze their experimental data.  ImageJ gives users maximal functionality while 
evaluate the best possible means of analysis.  This flexibility in using 

e image analysis software is in keeping with a primary goal of the Polymer 

to replay the experiment run.  The S
c
th

associated with a specific image, such as t
m
created, the Framework Server encodes the identity of the image in the Analyze Image 
link.  By pressing this link, the user can navigate to a page where an image analysis 
applet, ImageJ, is loaded into the ith the specified frame preloaded for analysis.  
The following subsection describes ImageJ in greater detail. 
 

8.7.1 ImageJ 
 
ImageJ is a public domain image analysis tool written in Java and inspired by the 
National Institute of Health’s Image program.  ImageJ runs as an applet that is preloaded 
with a specific image for analysis.  ImageJ can edit, display, process, and analyze images 
in a number of formats.  It can calculate area and pixel value statistics for a user defined 
area, create density histograms, and perform all standard image processing functions such 
as contrast manipulation, sharpening, smoothing, edge detection, and binary threshold.   
 
ImageJ was chosen as the analysis tool to allow the greatest

browser w

T

requiring users to 
th
Crystallization iLab, to create a laboratory experience with the greatest possible 
educational value.   
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CHAPTER 9  

Evaluation of the Polymer Crystallization iLab 
 
The Polymer Crystallization iLab is ready for full deployment in the Undergraduate 
Polymer Science Laboratory class, 10.467.  The iLab has been tested by the author and a 
few selected individuals; however, the full deployment and evaluation will occur after the 
completion of this thesis.  This chapter gives the reader a preliminary evaluation of the 
educational value of the iLab as well as a scenario describing a typical use. 
 

9.1 Educational Value 
 

The primary goal of the Polymer Crystallization iLab is to deliver a rich and interactive 
educational experience in polymer crystallization.  To accomplish this goal, we have 
created an interactive Remote Microscope with real time streaming of images and data.  
This Remote Microscope closely mimics a real laboratory experience, where the user has 
full control over the experimental apparatus.  The architecture is designed to limit the 
amount of automation, while maximizing the amount of user interaction and control 
during an experiment.   

 

The educational principle at the heart of the Polymer Crystallization iLab is that students 
are more motivated and can learn better when they can conduct experiments to compare 
real world data to simulations, can collaborate with each other, and can explore following 
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their curiosity.  This iLab solves the problems of high cost of multiple setups, insufficient 
laboratory space, and continuous staffing seen in traditional laboratories.  We achieve a 
huge economy of scale by multiplexing a single setup among multiple users, by allowing 
the lab to be accessed from anywhere at any time, and by incorporating the flow of the 
experiment into the software interface and reducing the dependence on a TA. 

 

The full educational value of the Polymer Crystallization iLab will be realized after the 
ab is deployed and user feedback is received from actual students.  Great care has been 
ken to make the necessary components scalable and to make the system secure.  

 made as to the continuing integrity of the polymer sample, to 
ensure that excessive use of a single sample does not significantly alter experimental 

 

ent must first 

reserve the microscope for the desired amount of time.  After a reservation has been 

n follow the links, redeem the reservation, and begin to 

se the Remote Microscope. 

ubscribes to the video thread so he can see when the polymer 

mple has melted.  In addition, the student can optionally start the recorder if he wants to 

iL
ta
Evaluation will have to be

results.   

9.2 Usage Scenario 
 

In a typical scenario, a student begins a session by logging on to the Framework Server.  

If the student has previously set up a reservation, he can directly click the link to open the 

Remote Microscope; if no such arrangements have been made, the stud

successfully made, the student ca

u

 

Once a Remote Microscope session has been authorized and initialized, the student is free 

to use the Microscope Client within the boundaries imposed by the validated fields.  At 

that time, the user can adjust the microscope settings, scan the polymer sample for a 

suitable region for the experiment, enter the parameters for an experiment run, and 

command the temperature controller to melt the polymer.  The student then sets the 

analyzer in place and s

sa

record the melting.  If the analyzer is in place when the polymer sample melts, the user 

sees the polymer start to disappear as it forms a Maltese cross and the field of vision 

becomes blacked out.  This pattern is seen in the progression of images in Figure 16. 
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Once the sample has melted, the student can either leave the temperature controller in 

control, or can stop the current experiment and input the temperature fields for the 

desired cooling and subsequent crystallization event.  The student again commands the 

temperature controller to take control of the heating stage and watches as the temperature 

cools to the desired target temperature.  The student then starts the recorder so the 

subsequent images are saved to the server.  If the analyzer is still in place, the user sees a 

Figure 16: Maltese Cross Pattern in Melting PEO 
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number of nucleation events and the resulting crystals as each begins to grow.  A sample 

crystallization event recorded by the system can be seen below in Figure 17. 

 

  

  

  
Figure 17: Crystallization Event for PEO 

 

After the experiment has concluded, the student can repeat the experiment at different 

crystallization temperatures.  The student quits the applet after completing all 

experiments and logs in to the Framework Server to analyze the collected images. 
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CHAPTER 10  

Concluding Remarks and Future Work 

 
 
The Polymer Crystallization iLab makes possible an educational experience not 

previously available to most science and engineering undergraduates.  By creating a 

software system with a web-based interface to laboratory equipment, we have enabled 

students to remotely conduct polymer crystallization experiments using optical 

microscopy.  Such experiments allow students to characterize the crystallization 

properties of polymers by observing and analyzing polymer crystallization events.  

Students in laboratory classes and in traditional engineering classes can use this 

educational online laboratory to solidify the concepts studied in their coursework.  The 

cost barrier to equipment is solved by multiplexing a single setup and allows students to 

access the equipment at any time of day.  Staffing requirements are kept to a minimum by 

designing software logic that directs students and by embedding security and safety 

checks into the software system.   

 

The Polymer Crystalliza f an interactive online 

boratory, where students can remotely control the microscope and associated hardware 

e their 

tion iLab provides an example o

la

with minimal latency.  Students can receive real-time streaming temperature and image 

updates as if they were viewing the experiment in the laboratory.  In addition, the 

necessary software to process images has been included so students can analyz
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results after an experiment has been conducted.   

Additional capabilities can be added to the Polymer Crystallization iLab to enhance the 

educational experience.  For example, students could benefit from a collaborative 

environment if multiple clients were allowed to access the system simultaneously.  This 

added functionality would require a distinction between a lab controller and a lab 

 only one person had control of the microscope at a given time.  

This functionality could easily be added by employing a token passing scheme and using 

ect [7].   

 

he next stage of development for the Polymer Crystallization iLab could also involve an 

g them to evaluate theoretical ideas applied in a 

boratory setting.  This paradigm of online laboratories offers engineering educators the 

 

 

observer, to ensure that

the structure maintained in the Microscope Server from the MEMS proj

T

integrated simulation tool, so students can study the relationship between the theoretical 

models encountered in class and actual observations from the laboratory.  In addition, the 

ImageJ applet can be altered so that students can engage in analysis specific to the 

polymer crystallization experiment.  Currently, the entire image analysis tool is provided 

to the students; however, a tool with more limited and directed functionality would prove 

beneficial to assist students in their analysis. Finally, the Polymer Crystallization iLab 

will undergo extensive testing as it is deployed in the Fall 2003 undergraduate polymer 

laboratory at M.I.T.  Development revisions likely will be made to the system based on 

user feedback. 

 

Educational online laboratories will augment students’ understanding of scientific and 

engineering concepts by allowin

la

opportunity to provide an enhanced educational experience to their students.  Future 

technologies will further develop and expand the number of online laboratories in 

deployment and will help to broaden laboratory experiences among all science and 

engineering students. 
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Appendix A: Administrative User Manual 
 

The following Administrative User Manual assumes that the Microscope Server and the 
Framework Server are running on a machine with the hostname, PolymerLab.mit.edu, 
and that the Microscope Client and Microscope Server code can be found in the 
following directory: C:\ILab\RemoteMicroscope. 
 

A.1 Program Requirements 
 

his application requires Windows 2000 or Windows XP operation system with IIS and T

the .NET Framework installed.  To be able to run and compile the Microscope Server, the 

following packages need to be installed on the hosting machine: 

 

• Python 2.2.2 : http://www.python.org/ 

• The Python Imaging Library 1.1.4 (Windows version) : 

http://www.pythonware.com/products/pil/ 

• Python Win32 Extension Package for Python 2.2, Win32all version 152 : 

http://starship.python.net/crew/mhammond/win32/Downloads.html 

• Serial Communication Extension Package, SioModule22 : 

http://starship.python.net/crew/roger/ 

 

To edit and compile the Microscope Client applet you will need the following installed: 

• Java 2 SDK version 1.4.1_02 :  

http://java.sun.com/

 

 

• Java SunONE Studio 3 Update 1 Community Edition: 

http://java.sun.com/ 

 

To run the Microscope Client applet, users will need the following installed: 
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• Java Plug-in 1.4.0 or higher: 

http://java.sun.com/ 

• Quick Time Plug-in with SMIL interpreter (optional for viewing slide show) 

http://quicktime.apple.com 

• Real Player (optional for viewing slide show) 

http://www.real.com/ 

 

To run and compile the Framework Server, the following software must be installed:  

• .NET Framework Version 1.1 

 

http://www.microsoft.com/net/  

• VisualStudio.NET 

From VisualStuido.NET CDs 

• Internet Information Services 

efault.asp

Included in Windows XP CD 

• SQL Server 2000 with Service Pack 3 

http://www.microsoft.com/sql/downloads/d  and SQL CD 

 

 

A.2 
 

 

terpreted language that does not require compiling.  Although Python files can be 

com  is no benefit to doing so.  Therefore, the 

Microscope Server is currently used as a scripted application.  Modifications need only 

be d r of the Microscope 

Server.

Compiling Instructions 

For the Microscope Server no compilation is necessary because the Python language is an

in

piled into .pyc or .pyo files, there currently

ma e and saved to the corresponding .py to alter the behavio

 

 

To compile the client application using the command line: 
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• Go to the appropriate directory: 
scope 

• 
javac –classpath C:\ILab\RemoteMicroscope client\ScopeFormApplet.java 

• rsion of the code you need to create a jar file and move it to 

the C:\inetpub\wwwroot\PolymerLab directory, which is the directory where the 

directory C:\ILab\RemoteMicroscope called deploy.bat.  Running this batch script 

 the appropriate directory. 

To com  Server, it is suggested that Visual Studio .NET be used.  

Althou program outside of Visual Studio, this is not 

reco m ity of the project.  The Framework Server is stored 

under t PolymerLab. 

 

 

.3 Running Instructions 

sure that the sample is centered in the MDS600 

eating stage.  Since the MDS600 is not equipped with a reference motor, the initial 

startServer.py [options] 

• The available options for the script are the following: 

ce messages 
  -f, --cfg <file>      Use specified configuration file 
  -h, --help            Display this help message 

cd C:\ILab\RemoteMicro

 

To compile the code: 

 

To deploy a release ve

Framework Server resides. To do this a batch script has been included in the 

will deploy a release version in

 

pile the Framework

gh it is possible to compile the 

m ended because of the complex

he Visual Studio project called 

A
 

To run the Microscope Server, first make 

h

starting position will be used as a reference position for the center of the polymer sample: 

 

• Go to the appropriate directory: 

cd C:\ILab\RemoteMicroscope 

• Run the starting script: 

    -d, --debug           Display debugging tra
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    -t, --timing          Display timing trace messages 
    y verbose activity messages 
 

 

To run the client applet, log on to the Framework Server and follow the links to reserve 

and open the polymer lab. 

 

 

A.4 
 

The HT irectory: 

  

eous sessions supported.  In order to 

llow more simultaneous connections, the operating system will have to be upgraded wo 

indows XP Server or downgraded to Windows 2000 Server.   

irtual Directories can be added to expose any directories on the file system to the Web 

-v, --verbose         Displa

How to add more files to the HTTP server 

TP server can read files that are located in the following d

C:\inetpub\wwwroot  

 

The HTTP server is a development version of Microsoft’s IIS web server.  On Windows 

XP Professional, there are a maximum of 10 simultan

a

W

 

V

Server.  Currently, there is a virtual directory called iLab, accessible through 

http://polymerlab.mit.edu/iLab.  This virtual directory points to the local directory

C:\inetpub\wwwilab\.  Under this virtual directory, the users directory is where all 

 

xperiment run images and SMIL output files are saved to the file system.   

 

More web app  server by adding new web applications in 

Vis lS  automatically makes the necessary changes to the file 

system to allow the web application to be run remotely. 

 

e

lications can be added to the web

ua tudio.NET.  This IDE
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Appendix B: Student User Manual 
 
This user manual is intended to explain how to use the student client interface for the 

d 

icroscope Client 

Microscope Client.  It explains what each graphical component does, and how it shoul

be used.    

M
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apturing Images 

 is selected on the Video/Capture control.  Then every time the CAPTURE 

button is pressed an image is captured and it displayed on the screen. 

ideo Streaming 
 
To start video streaming select the “Video Stream” selection on the Video/Capture 

control.  The capture button is disabled, and a sequence of images is captured and 

displayed on the screen. 

 

Moving the Image 

 

To move the image around use the arrow buttons and sliders located to the right and 

bottom of the image display panel.  Whenever any of these arrow buttons are pressed the 

XY stage moves, and if “Capture Single Snapshots” is selected a new image is captured 

and displayed on the screen immediately after the stage finishes moving.   

 

Perform Autofocus 
 

The Perform Autofocus button calls the one-time autofocus function, and returns a new 

focused image that is displayed on the image panel.  The autofocus main purpose is to 

search for the right z stage position for adequate focusing.   

 

Magnification 
 

The Magnification control changes the objective lens being used.  The possible 

agnifications are: 2.5X, 5X, 10X, 20X, and 50X.   

 

 
C
  
To capture microscope images, first the user has to make sure the “Capture Single 

Snapshots”

 
V

m

 78



Aperture 

anges the condenser aperture setting. A condenser has the role of 

(0.95) the objective 

provides maximum resolution, but some glare may be present, which reduces image 

re is adjusted to about 0.70 the glare is reduced and contrast is 

proved, without significant lose of image detail. Lowering the aperture increases 

cations the field of vision is greatly reduced when lowering the 

perture.  Therefore, for optimal performance maintain the aperture above 0.70 when 

ctives. 

 on the optical 

xis.  This control is useful mainly to control the light illumination for the lower 

5X, and 5X.  For higher magnifications the field stop should be 

t to the highest value, and only use the Aperture control to adjust brightness and 

 control you are able to select between an analyzer, a DIC_RED 

flector, and no reflector at all.  A much higher exposure time is always needed when 

 

The Aperture control ch

collecting, controlling and concentrating the light from the lamp onto the specimen.  The 

aperture of the condenser serves to control the angle of the cone of light emerging from 

the top of the condenser. When the aperture is set to the maximum 

contrast. If the apertu

im

contrast but image detail will be lost.   

The aperture setting should only be lowered for magnifications greater than 10X, 

because in lower magnifi

a

using 2.5X and 5X obje

 

Field Stop 
 

The field stop allows you to control the amount of light entering the system as well as the 

field of view.  The field stop is basically a plate with a hole on it placed

a

magnifications such as 2.

se

contrast. 

 

Reflectors 
 

With the reflector

re

using the DIC_RED reflector or the analyzer, than when not using a reflector at all. 
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Exposure Time 

e bottom of the Microscope Client.  Only valid 

param

t.  In addition, the Video Stream button should be selected 

 view images at the fastest possible rate.  Once the polymer has melted, the appropriate 

target isothermal crystallization, and hold time should be entered into the 

emperature Panel and the SUBMIT button should be pressed to regain temperature 

 to the server.  NOTE: The video streaming button must be pressed to save 

ages, as the images are currently saved in the Video Stream.  When sufficient images 

orded (the number should not exceed 150), the recorder can be stopped, and 

e experiment can be accessed through the Framework Server. 

 

 

The exposure time controls the shutter speed of the camera.  The normal setting for the 

exposure time is 1 ms.  If the user is using the analyzer or the DIC_RED reflector then to 

get a clear image the exposure time has to be increased to around 20 ms.  

 

Running Experiments 
 

Experiments can be run by inputting the desired target temperature, ramp rate, and hold 

time into the Temperature Panel at th

eters will be accepted; invalid parameters will be flagged by a popup dialog 

window.  After the desired parameters have been entered, press the SUBMIT or RUN 

button at the bottom right of the Microscope Client.  The analyzer should be in place to 

view the polymer melting even

to

cooling rate, 

T

control conditions. 

 

Recording Experiments 
 

The Recorder menu allows a user to specify when experiments are recorded and images 

are saved

im

have been rec

th

 

For further client instructions, please refer to the Full Student Manual 

at http://polymerlab.mit.edu. 
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Appendix C: SQL Database Script 

 

OBJECTPROPERTY(id, N'IsForeignKey') = 1) 

exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_Add]') and OBJECTPROPERTY(id, 
N'IsProcedure') = 1) 

d] 

exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_Delete]') and OBJECTPROPERTY(id, 
N'IsProcedure') = 1) 

GO 

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_GetRunFromID]') and OBJECTPROPERTY(id, 

drop procedure [dbo].[ExperimentRun_GetRunFromID] 

 

OBJECTPROPERTY(id, N'IsProcedure') = 1) 
entRun_GetRunFromUserID] 

exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_GetRunFromUserIDAndExpID]') and 

nFromUserIDAndExpID] 
GO 

exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_IsRun]') and OBJECTPROPERTY(id, 

GO 

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_Update]') and OBJECTPROPERTY(id, 

ew]') and OBJECTPROPERTY(id, 

op procedure [dbo].[Experiment_CreateNew] 
O 

 

 
exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiment_GetExpFromID]') and OBJECTPROPERTY(id, 
IsProcedure') = 1) 

drop procedure [dbo].[Experiment_GetExpFromID] 

 

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[FK_Experiment_Runs_Experiments]') and 

ALTER TABLE [dbo].[Experiment_Runs] DROP CONSTRAINT FK_Experiment_Runs_Experiments 
GO 
 
if 

drop procedure [dbo].[ExperimentRun_Ad
GO 
 
if 

drop procedure [dbo].[ExperimentRun_Delete] 

 
if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_GetRunFromExpID]') and 
OBJECTPROPERTY(id, N'IsProcedure') = 1) 
drop procedure [dbo].[ExperimentRun_GetRunFromExpID] 
GO 
 

N'IsProcedure') = 1) 

GO 
 
if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_GetRunFromName]') and 
OBJECTPROPERTY(id, N'IsProcedure') = 1) 
drop procedure [dbo].[ExperimentRun_GetRunFromName] 
GO 

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_GetRunFromUserID]') and 

drop procedure [dbo].[Experim
GO 
 
if 
OBJECTPROPERTY(id, N'IsProcedure') = 1) 
drop procedure [dbo].[ExperimentRun_GetRu

 
if 
N'IsProcedure') = 1) 
drop procedure [dbo].[ExperimentRun_IsRun] 

 

N'IsProcedure') = 1) 
drop procedure [dbo].[ExperimentRun_Update] 
GO 
 
if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiment_CreateN
N'IsProcedure') = 1) 
dr
G

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiment_GetAllExp]') and OBJECTPROPERTY(id, 
N'IsProcedure') = 1) 
drop procedure [dbo].[Experiment_GetAllExp] 
GO 

if 
N'
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GO 

mName]') and OBJECTPROPERTY(id, 

op procedure [dbo].[Experiment_GetExpFromName] 
O 

ists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Reservations]') and OBJECTPROPERTY(id, N'IsUserTable') = 

ervations] 

ists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Role_To_Role_Map]') and OBJECTPROPERTY(id, 

sts (select * from dbo.sysobjects where id = object_id(N'[dbo].[Roles]') and OBJECTPROPERTY(id, N'IsUserTable') = 1) 

ists (select * from dbo.sysobjects where id = object_id(N'[dbo].[User_To_Role_Map]') and OBJECTPROPERTY(id, 
serTable') = 1) 

sts (select * from dbo.sysobjects where id = object_id(N'[dbo].[Users]') and OBJECTPROPERTY(id, N'IsUserTable') = 1) 
table [dbo].[Users] 

[RunID] [uniqueidentifier] NOT NULL , 
[ExperimentID] [uniqueidentifier] NOT NULL , 

on] [varchar] (500) COLLATE SQL_Latin1_General_CP1_CI_AS NULL , 
L , 

[AddDate] [datetime] NOT NULL , 
[OutputXml] [ntext] COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL , 

XTIMAGE_ON [PRIMARY] 

ATE TABLE [dbo].[Experiments] ( 

ntName] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL , 
TE SQL_Latin1_General_CP1_CI_AS NULL , 

[RegistrationDate] [datetime] NOT NULL , 
[CreatorID] [uniqueidentifier] NULL  

 
if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiment_GetExpFro
N'IsProcedure') = 1) 
dr
G
 
if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiment_IsExperiment]') and OBJECTPROPERTY(id, 
N'IsProcedure') = 1) 
drop procedure [dbo].[Experiment_IsExperiment] 
GO 
 
if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiment_Update]') and OBJECTPROPERTY(id, 
N'IsProcedure') = 1) 
drop procedure [dbo].[Experiment_Update] 
GO 
 
if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiment_Runs]') and OBJECTPROPERTY(id, 
N'IsUserTable') = 1) 
drop table [dbo].[Experiment_Runs] 
GO 
 
if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiments]') and OBJECTPROPERTY(id, N'IsUserTable') = 1) 
drop table [dbo].[Experiments] 
GO 
 
f exi

1) 
drop table [dbo].[Res
GO 
 
f exi

N'IsUserTable') = 1) 
drop table [dbo].[Role_To_Role_Map] 
GO 
 
f exii

drop table [dbo].[Roles] 
GO 
 
if ex

'IsUN
drop table [dbo].[User_To_Role_Map] 
GO 
 
if exi

rop d
GO 
 
CREATE TABLE [dbo].[Experiment_Runs] ( 
 
 
 [RunName] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL , 
 [Descripti
 [UserID] [uniqueidentifier] NOT NUL
 
 
 [expdate] [datetime] NOT NULL  
) ON [PRIMARY] TE
GO 
 

REC
 [ExperimentID] [uniqueidentifier] NOT NULL , 
 [Experime
 [Description] [varchar] (500) COLLA
 
 
) ON [PRIMARY] 
GO 
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CREATE TABLE [dbo].[Reservations] ( 
[UserID] [uniqueidentifier] NOT NULL , 

] [datetime] NOT NULL , 

 [PRIMARY] 

o].[Role_To_Role_Map] ( 
L , 

[RoleIDB] [uniqueidentifier] NOT NULL , 
[DateSubmitted] [datetime] NOT NULL  

ATE TABLE [dbo].[Roles] ( 
[RoleID] [uniqueidentifier] NOT NULL , 

ription] [varchar] (7000) COLLATE SQL_Latin1_General_CP1_CI_AS NULL  

tifier] NOT NULL , 
[RoleID] [uniqueidentifier] NOT NULL , 
[DateSubmitted] [datetime] NOT NULL  

 

ATE TABLE [dbo].[Users] ( 
[UserID] [uniqueidentifier] NOT NULL , 

 [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL , 
ATE SQL_Latin1_General_CP1_CI_AS NOT NULL , 

[Password] [varchar] (500) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL , 
[SchoolID] [int] NULL , 

Date] [datetime] NULL , 
[ConfirmationCode] [uniqueidentifier] NULL  

N [PRIMARY] 

ANSI_NULLS OFF  

ATE PROCEDURE dbo.ExperimentRun_Add  

ption,  UserID, AddDate, OutputXml) 
values 
(@RunID, @ExpID, @RunName, @Desc, @UserID, @AddDate, @OutputXML) 

ANS

QUOTED_IDENTIFIER OFF  

 
 [Priority] [tinyint] NOT NULL , 
 [StartTime
 [EndTime] [datetime] NOT NULL  
) ON
GO 
 
CREATE TABLE [db
 [RoleIDA] [uniqueidentifier] NOT NUL
 
 
) ON [PRIMARY] 
GO 
 
CRE
 
 [RoleName] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL , 
 [RoleDesc
) ON [PRIMARY] 
GO 
 
CREATE TABLE [dbo].[User_To_Role_Map] ( 
 [UserID] [uniqueiden
 
 
) ON [PRIMARY] 
GO
 
CRE
 
 [FirstName] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL , 
 [LastName]
 [Email] [varchar] (50) COLL
 
 
 [RegistrationDate] [datetime] NOT NULL , 
 [Confirmation
 
) O
GO 
 
SET QUOTED_IDENTIFIER ON  
GO 
SET 
GO 
 
 
CRE
 @RunID uniqueidentifier, 
 @ExpID uniqueidentifier, 
 @RunName varchar(50), 
 @Desc varchar(500), 
 @UserID uniqueidentifier, 
 @AddDate datetime, 
 @OutputXml ntext 
AS  
 insert into Experiment_Runs 
 (RunID, ExperimentID, RunName, Descri
 
 
 
GO 
SET QUOTED_IDENTIFIER OFF  
GO 
SET I_NULLS ON  
GO 
 
SET 
GO 
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SET ANSI_NULLS OFF  
GO 
 
CRE PROCEDURE dbo.ExperimentRun_DATE elete  
 @RunID uniqueidentifier 
 AS 
 
 delete from Experiment_Runs where RunID = @RunID 

ANSI

QUOTED_IDENTIFIER ON  

ANSI

ATE PROCEDURE dbo.ExperimentRun_GetRunFromExpID 
ExpID uniqueidentifier 

ID, AddDate, OutputXml 
om Exper der by AddDate desc 

TED_IDENTIFIER OFF  

ANSI

QUO

ANSI

URE dbo.ExperimentRun_GetRunFromID 
@RunID uniqueidentifier 

D, UserID, RunName, Description, AddDate, OutputXml 
from Experiment_Runs 

@RunID 

TED_IDENTIFIER OFF  

** O te: 9/26/2002 1:22:07 PM ******/ 
.ExperimentRun_GetRunFromName 

select RunID, ExperimentID, UserID, RunName, Description, AddDate, OutputXml 

where RunName = @RunName 

TED_IDENTIFIER OFF  

ANSI_NULLS ON  

GO 
SET QUOTED_IDENTIFIER OFF  
GO 
SET _NULLS ON  
GO 
 
SET 
GO 
SET _NULLS ON  
GO 
 
 
CRE
 @
AS 
select RunID, ExperimentID, RunName, Description, User
fr iment_Runs where ExperimentID=@ExpID or
 
 
GO 
SET QUO
GO 
SET _NULLS ON  
GO 
 
SET TED_IDENTIFIER ON  
GO 
SET _NULLS OFF  
GO 
 
 
CREATE PROCED
 
AS 
 select RunID, ExperimentI
 
 where RunID = 
 
GO 
SET QUO
GO 
SET ANSI_NULLS ON  
GO 
 
SET QUOTED_IDENTIFIER ON  
GO 
SET ANSI_NULLS OFF  
GO 
 
 
/**** bject:  Stored Procedure dbo.FW_ExperimentRun_GetRunFromName    Script Da
CREATE PROCEDURE dbo
 @RunName varchar(50) 
AS 
 
 from Experiment_Runs 
 
 
GO 
SET QUO
GO 
SET 
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GO 
 
SET QUOTED_IDENTIFIER ON  

ATE PROCEDURE dbo.ExperimentRun_GetRunFromUserID 
 

D, RunName, Description, UserID, AddDate, OutputXml 
 Experiment_Runs where UserID=@UserID order by AddDate desc 

IER OFF  

ANSI_NULLS ON  

ATE PROCEDURE dbo.ExperimentRun_GetRunFromUserIDAndExpID 
 

@ExpID uniqueidentifier 

t RunID, ExperimentID, RunName, Description, UserID, AddDate, OutputXml 
om Experiment_Runs where ExperimentID=@ExpID and UserID=@UserID  

TED_IDENTIFIER OFF  

QUO

ET ANSI

** Object:  Stored Procedure dbo.FW_ExperimentRun_IsRun    Script Date: 9/26/2002 1:22:07 PM ******/ 
bo.ExperimentRun_IsRun  

@RunID uniqueidentifier 

riment_Runs where RunID=@RunID 

QUOTED_IDENTIFIER OFF  

ANSI_NULLS ON  

ANSI

ATE PROCEDURE dbo.ExperimentRun_Update 
 

@Name varchar(50), 
(500), 

GO 
SET ANSI_NULLS ON  
GO 
 
 
CRE
 @UserID uniqueidentifier
AS 
select RunID, ExperimentI
from
 
 
GO 
SET QUOTED_IDENTIF
GO 
SET 
GO 
 
SET QUOTED_IDENTIFIER ON  
GO 
SET ANSI_NULLS ON  
GO 
 
 
CRE
 @UserID uniqueidentifier,
 
AS 
selec
fr
order by AddDate desc 
 
 
GO 
SET QUO
GO 
SET ANSI_NULLS ON  
GO 
 
SET TED_IDENTIFIER ON  
GO 
S _NULLS OFF  
GO 
 
 
/****
CREATE PROCEDURE d
 
AS 
 select count(1) from Expe
 
GO 
SET 
GO 
SET 
GO 
 
SET QUOTED_IDENTIFIER ON  
GO 
SET _NULLS OFF  
GO 
 
 
CRE
 @ExpID uniqueidentifier,
 
 @Desc varchar
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 @RunStatus varchar(50), 
rID uniqueidentifier, 

@RunID uniqueidentifier, 

Experiment_Runs 
set ExperimentID=@ExpID, RunName=@Name, Description=@Desc, 

utputXml 

ANSI_NULLS ON  

QUOTED_IDENTIFIER ON  

ANSI_NULLS ON  

ATE PROCEDURE dbo.Experiment_CreateNew 
ExpID uniqueidentifier, 
ExperimentName varchar(50), 

rID) 
ID, @ExperimentName, @Desc, @RegDate, @CreatorID) 

e, Description, RegistrationDate, CreatorID 
from Experiments order by ExperimentName 

QUOTED_IDENTIFIER OFF  

ANSI_NULLS ON  

QUOTED_IDENTIFIER ON  

ANSI_NULLS ON  

ATE PROCEDURE dbo.Experiment_GetExpFromID 

tName, Description, RegistrationDate, CreatorID 
entID=@ExpID 

 @Use
 @AddDate datetime, 
 
 @OutputXml ntext 
AS 
 update 
 
 @UserID=UserID, AddDate=@AddDate, OutputXml=@O
 where RunID = @RunID 
 
GO 
SET QUOTED_IDENTIFIER OFF  
GO 
SET 
GO 
 
SET 
GO 
SET 
GO 
 
 
 
CRE
 @
 @
 @Desc varchar(500), 
 @RegDate datetime, 
 @CreatorID uniqueidentifier 
AS 
 insert into Experiments  
 (ExperimentID, ExperimentName, Description, RegistrationDate, Creato
 values (@Exp
 
 
GO 
SET QUOTED_IDENTIFIER OFF  
GO 
SET ANSI_NULLS ON  
GO 
 
SET QUOTED_IDENTIFIER ON  
GO 
SET ANSI_NULLS ON  
GO 
 
 
CREATE PROCEDURE dbo.Experiment_GetAllExp 
AS 
 select ExperimentID, ExperimentNam
 
 
GO 
SET 
GO 
SET 
GO 
 
SET 
GO 
SET 
GO 
 
 
CRE
 @ExpID uniqueidentifier 
AS 
 select ExperimentID, Experimen
 from Experiments where Experim

 86



 
 
GO 
SET QUOTED_IDENTIFIER OFF  
GO 
SET ANSI_NULLS ON  

O 
ANSI_NULLS ON  

bo.Experiment_GetExpFromName 
@ExpName uniqueidentifier 

erimentName, Description, RegistrationDate, CreatorID 
from Experiments where ExperimentName=@ExpName  

TED_IDENTIFIER OFF  

ANSI_NULLS ON  

ATE 

select count(1) from Experiments where ExperimentID=@ExpID 

IER OFF  

ANSI_NULLS ON  

IER ON  

ANSI_NULLS ON  

ATE 

ExperimentName varchar(50), 
@Desc varchar(500), 

@CreatorID uniqueidentifier 

te Experiments set ExperimentName=@ExperimentName, 
sc, CreatorID=@CreatorID, RegistrationDate=@RegDate 

QUOTED_IDENTIFIER OFF  

ANSI_NULLS ON  

GO 
 
SET QUOTED_IDENTIFIER ON  
G
SET 
GO 
 
 
CREATE PROCEDURE d
 
AS 
 select ExperimentID, Exp
 
 
GO 
SET QUO
GO 
SET 
GO 
 
SET QUOTED_IDENTIFIER ON  
GO 
SET ANSI_NULLS ON  
GO 
 
 
CRE PROCEDURE dbo.Experiment_IsExperiment 
 @ExpID uniqueidentifier 
AS 
 
 
 
GO 
SET QUOTED_IDENTIF
GO 
SET 
GO 
 
SET QUOTED_IDENTIF
GO 
SET 
GO 
 
 
CRE PROCEDURE dbo.Experiment_Update 
 @ExpID uniqueidentifier, 
 @
 
 @RegDate datetime, 
 
AS 
upda
Description=@De
where ExperimentID=@ExpID 
 
GO 
SET 
GO 
SET 
GO 
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