
On-Line Laboratory for Remote Polymer Crystallization

Experiments Using Optical Microscopy

by

Daniel J. Talavera

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

 May 21, 2003

© Daniel J. Talavera, 2003. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author__

 Department of Electrical Engineering and Computer Science
 May 21, 2003

Certified by__

 Gregory C. Rutledge
Associate Professor of Chemical Engineering

 Thesis Supervisor

Accepted by___

 Arthur C. Smith
 Chairman, Department Committee on Graduate Theses

 2

On-Line Laboratory for Remote Polymer Crystallization

Experiments Using Optical Microscopy

by
Daniel J. Talavera

Submitted to the Department of Electrical Engineering and Computer Science

May 21, 2003

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis discusses the architecture of an on-line optical microscopy laboratory, or iLab,
in which students remotely conduct and analyze polymer crystallization experiments
using a polarized light microscope under controlled temperature conditions. The Polymer
Crystallization iLab involves melting a polymer sample and subsequently cooling it down
to a temperature below its melting point in order to study isothermal crystallization
phenomena. By analyzing the rates of nucleation and crystallite growth, students can
characterize the kinetics of crystallization. As melting the polymer erases any prior
history of the sample, the experiment can be repeated numerous times without requiring
intervention in the laboratory. The architecture was designed with the goal of replicating
the real laboratory experience to the maximum extent possible. Streaming temperature
data and images from the microscope are sent to a Java applet, allowing the student to
view and interact with the experimental apparatus in real time. The Java applet client
runs on any conventional web browser and provides considerable latitude to students
conducting the experiment, while ensuring proper safeguards. Students can record and
save images and related data to a server to perform analysis at a later date. The analysis
can either be conducted remotely on the server or the images can be downloaded to the
user's computer for local analysis

Thesis Supervisor: Gregory C. Rutledge

Title: Associate Professor of Chemical Engineering

 3

Acknowledgments

This project would not have been possible without the help and guidance of Professor

Gregory C. Rutledge. He offered me the opportunity to work on the project and allowed

considerable latitude form me to explore the various technologies used to implement the

iLab. He was always supportive of and engaged in my work. This project would not have

been possible without his direction and encouragement.

I will also like to thank my parents: Alicia M. Talavera and Miguel A. Talavera and my

brothers, Jason A. Talavera and Jonathan M. Talavera, who have supported and

encouraged me throughout all of my educational endeavors. My extended family has

also provided me with guidance and backing throughout my years at MIT. I would not

have made it through five years without their support and their love. The non-exhaustive

list includes Alicia Beteta, Maria & Jack Stone; Anna, Robert, & Stephanie Sampera;

Leticia, Alison, & Joseph Campos; Adela & Erik Delong; Aye Hnin, Vilma & Luis

Talavera.

I would also like to thank all of the groups and persons at MIT, with whom I collaborated

during this project, including Jud Harward and the iLab Group, Jesus del Alamo and the

WebLab Group, Steven Lerman and the CECI Group, the iCampus Group, and the

Rutledge Research Group.

Finally, I would like to thank all of my friends at MIT and in San Francisco who have

supported me through my endeavors. I would especially like to thank Milena B.

Yamaykina who has been supportive and invaluable during the toughest moments of this

project.

 4

Table of Contents
CHAPTER 1: INTRODUCTION ... 11

1.1 PURPOSE AND MOTIVATION.. 11
1.2 BACKGROUND... 13

1.2.1 Polymer Crystallization Experiment ... 13
1.2.2 Related Work... 14
1.2.3 iCampus Framework ... 15

1.3 DEVELOPMENT ... 16
1.3.1 Java.. 16
1.3.2 Python.. 17
1.3.3 C# .. 17

CHAPTER 2: REMOTE MICROSCOPE ... 19

2.1 HARDWARE OVERVIEW .. 19
2.2 MICROSCOPE CLIENT OVERVIEW.. 21
2.3 MICROSCOPE SERVER OVERVIEW... 23
2.4 HARDWARE CONTROLLERS... 23

CHAPTER 3: HARDWARE AND CONTROLLER DEISGN .. 25

3.1 HARDWARE SETUP.. 25
3.1.1 TMS94 Temperature Programmer... 26
3.1.2 MDS600 Heating Stage and Controller... 26
3.1.3 Liquid Nitrogen Pump (LNP94).. 27

3.2 HARDWARE CONTROLLERS... 27
3.2.1 Axioplan2 Controller... 28
3.2.2 Axiocam Controller ... 29
3.2.3 MDS600 Controller ... 29

CHAPTER 4: DATABASE SCHEMA ... 31

4.1 USERS ... 31
4.2 ROLES ... 33
4.3 EXPERIMENTS ... 33
4.4 EXPERIMENT RUNS ... 34
4.5 RESERVATIONS ... 34
4.6 STORED PROCEDURES... 35

CHAPTER 5: SYSTEM ARCHITECTURE ... 37

5.1 FRAMEWORK SERVER OVERVIEW... 37
5.2 FRAMEWORK SERVER => MICROSCOPE CLIENT COMMUNICATION .. 39
5.3 MICROSCOPE SERVER ! MICROSCOPE CLIENT COMMUNICATION... 39

5.3.1 Client Commands .. 40
5.3.2 Server Commands ... 42

5.4 MICROSCOPE SERVER ! FRAMEWORK SERVER COMMUNICATION.. 43
5.4.1 SMIL ... 44

CHAPTER 6: MICROSCOPE CLIENT.. 47

6.1 DEVELOPMENT IMPROVEMENTS ... 47
6.2 TEMPERATURE PANEL .. 48
6.3 OTHER INTERFACE MODIFICATIONS ... 50

6.3.1 Message Panel ... 50
6.3.2 Image Panel ... 50
6.3.3 Applet Menu.. 51

6.4 MICROSCOPE AUTHORIZATION ... 51
6.5 LOOK AND FEEL.. 52

CHAPTER 7: MICROSCOPE SERVER... 53

7.1 TEMPERATURE UPDATES .. 53
7.2 RUNNING EXPERIMENTS ... 54
7.3 RECORDING EXPERIMENTS ... 55

CHAPTER 8: FRAMEWORK SERVER .. 57

8.1 CLASS SUMMARY ... 58
8.2 IDENTITY SERVICE AND LAB SERVICE .. 58
8.3 USER INTERFACE .. 60

8.3.1 Administrative Interface.. 61

 6

8.3.2 Student Interface.. 62
8.4 REGISTRATION.. 63
8.5 RESERVATION SYSTEM ... 63
8.6 USING REMOTE MICROSCOPE ... 64
8.7 ANALYZING EXPERIMENT RUNS ... 65

8.7.1 ImageJ ... 66

CHAPTER 9: EVALUATION OF THE POLYMER CRYSTALLIZATION ILAB........................... 67

9.1 EDUCATIONAL VALUE .. 67
9.2 USAGE SCENARIO ... 68

CHAPTER 10: CONCLUDING REMARKS AND FUTURE WORK ... 71

APPENDIX A: ADMINISTRATIVE USER MANUAL... 73

APPENDIX B: STUDENT USER MANUAL.. 77

APPENDIX C: SQL DATABASE SCRIPT .. 81

REFERENCES ... 88

 7

List of Figures

Figure 1: Isothermal crystallization of PEO (a) 40°C, (b) 50°C, and (c) 60°C.[3]........... 13
Figure 2: Remote Microscope System Architecture... 20
Figure 3: Remote Microscope Client GUI.. 22
Figure 4: TMS94 Temperature Programmer (left) with MDS600 Heating Stage (right). 26
Figure 5: Liquid Nitrogen Pump (LNP94) and Dewar Flask ... 27
Figure 6: Module Dependency Diagram of Hardware Controllers 28
Figure 7: Data Model for the Database... 32
Figure 8: System Architecture Diagram ... 38
Figure 9: Layout for the SMIL presentation of an experiment run.................................. 45
Figure 10: Temperature Panel... 48
Figure 11: Message Panel (top), Microscope Panel (right), and Image Panel (left)......... 49
Figure 12: Framework Server User Interface ... 59
Figure 13: Page Flow Diagram for Framework Server Interface 60
Figure 14: Page Flow for Role management ... 62
Figure 15: Analyze Experiment Web Control .. 65
Figure 16: Maltese Cross Pattern in Melting PEO.. 69
Figure 17: Crystallization Event for PEO... 70

 8

List of Tables

Table 1 - Client Commands to Server... 41
Table 2 - Server Commands to Client... 43

 10

CHAPTER 1

Introduction

1.1 Purpose and Motivation

Because students learn more effectively through experimentation and collaboration,

laboratory experience is a key component of many science and engineering degree

programs. However, the high cost of equipment and personnel necessary to maintain a

functional laboratory has introduced a cost barrier for colleges and universities which

seek to maximize the educational experience of students. The paradigm of Internet

laboratories, or iLabs, offers an educational model that maximizes the utilization and

accessibility of expensive equipment by allowing students to conduct experiments

through a web-based interface. By facilitating access to experimental apparatus, iLabs

allow students to explore and engage physical phenomena. By slightly varying the

parameters of each experiment run, students can efficiently and inexpensively follow

their curiosity to better understand underlying principles in their discipline. Unlike

conventional labs, iLabs enable students to conduct experiments around the clock with no

need for constant lab monitoring by a professor or TA. Internet laboratories also allow

professors to integrate laboratory experiments into a lecture setting, offering an enhanced

visual aid for students. Additionally, universities can reduce costs by sharing Internet

laboratories, thus distributing costs among universities and increasing students’

experimental experience.

 11

This paper focuses on the development and architecture of the Polymer Crystallization

iLab, a remote Internet laboratory for conducting polymer crystallization experiments

using optical microscopy. This standard experiment in undergraduate polymer science

involves viewing the isothermal crystallization of polymers through a polarized light

microscope. The polymer crystallization experiment has been difficult for students from

MIT and other universities to access because of the limited availability of polarized light

microscopes with the requisite heating stage and photographic equipment. The Polymer

Crystallization iLab solves this cost barrier by multiplexing a single setup that allows

users to remotely control a heating stage, a motorized microscope, and an image capture

device. With these capabilities, students conduct the experiment and acquire digital

images using optical microscopy. Through the use of digital image analysis, students can

then analyze their data to derive the kinetic crystallization properties of a specific

polymer.

For her Masters of Engineering Thesis, Paola Nasser developed a Remote Microscope

consisting of a polarized light microscope and a digital camera controlled via a Java

Applet on the local machine [1]. The client had capabilities to display images captured

by the digital camera with the capability to view video at a rate of one frame every six

seconds. Additionally, the client could adjust the light, objective, and polarizer settings

of the microscope. This Remote Microscope provided a base for the implementation of

the full Polymer Crystallization iLab.

This thesis expands upon Nasser’s work to enable the user to control the microscope

remotely on any platform. The video stream has been improved to support real-time

streaming images at speeds of up to two frames per second. In addition, capability has

been added to control a heating stage, the XY position, and the focus of the polymer

sample, and to save experimental runs on the server. An on-line environment enables

users to analyze images after experiments have been run and saved on the server.

Finally, a reservation mechanism allows users to reserve the microscope for the time

needed to complete their experiments.

 12

1.2 Background

1.2.1 Polymer Crystallization Experiment

The polymer crystallization experiment involves heating a sample of polymer above its

melting point and subsequently cooling it to various crystallization temperatures.

Analysis of isothermal crystallization events yields an observable rate of nuclei formation

and rate of growth for each crystallite. The rate of growth vs. crystallization temperature

allows users to experimentally determine such properties as the activation energy, the

fold energy for the growing crystals, and the Avrami exponent of thin film crystallization.

Students can then relate the measured crystallization properties to their study of

theoretical polymer crystallization kinetics and behavior [2].

The polymer crystallization experiment is well suited to an online environment because

the experiment is hands-free and “memoryless.” Once the sample is set, the experiment

can be cycled without local intervention. In addition, once the sample has been melted, it

has been essentially “reset” in the sense that prior experiments will not significantly

impact future experimental results. Thus, students can conduct and repeat experiments

without any major impact from each other’s prior iterations.

Figure 1: Isothermal crystallization of PEO (a) 40°C, (b) 50°C, and (c) 60°C.[3]

 13

1.2.2 Related Work

There have been a number of independent projects initiated to develop a remote

microscope for different applications. In 1996, James Kao [4] developed the Internet

Remote Microscope to aid in the remote fabrication of integrated circuits as part of the

Computer Integrated Design and Manufacturing project. This microscope took a single

snapshot of an integrated circuit and sent it to multiple clients who could remotely inspect

the IC and could confer with each other using an online chatting interface. This system

was developed further by Somsak Kittipiyakul, who completed the automation of the Kao

microscope [5]. Although a good start, this system was characterized by high latency in

commands to change the microscope settings and to refresh the captured image.

Another project at MIT developed a remote, automated microscope for characterizing

micro-electromechanical systems (MEMS). The MEMS project at MIT allowed MEMS

designers to analyze the three-dimensional motion of a MEMS device during

development and testing. The system, built for the MEMS group at MIT, was an

improvement over the Internet Remote Microscope; however, it did have shortcomings

which were noted by Daniel Seth in his Masters Thesis in 2001 and are summarized here

[6]. The system used HTTP to pass messages from the client to the server, which

required that the client initiate all communication. Thus a polling mechanism was

instituted, which continually queried the server to see if the output was ready. This

mechanism was far less efficient and scalable than full duplex communication. Another

pitfall was the inability to manipulate, crop, mark, filter, or save images on the server in

any modified format. The primitive video streaming simply used a single file on the

server, which was continually refreshed by the client and overwritten by the server,

introducing an inherent race condition. Finally, there were no security measures in place

to ensure that users’ data was not compromised and, moreover, that the system was not

tampered with by unauthorized users.

Outside of MIT, there has been an ongoing, open-source project by the MEMS Exchange

 14

[7] which is supported by the Defense Advanced Research Projects Agency (DARPA)

and hosted by the Corporation for National Research Initiatives (CNRI). This project

seeks to increase access to MEMS micro-fabrication resources and establish a distributed

MEMS fabrication environment, organizing and connecting designers to the MEMS

micro-fabrication resources located throughout the country. This project uses a simple

but well-defined protocol of asynchronous ASCII text messages between the server and

client to set the state of the microscope and request images from the mounted camera.

Developed by A.M. Kuchling [7], this Microscope Networking Protocol Specification

formed the basis for Paola Nasser’s Remote Microscope.

1.2.3 iCampus Framework

iCampus is an alliance formed in 1999 between MIT and Microsoft to enhance university

education through information technology. iCampus sponsors iLabs in a number of

disciplines including microelectronics, mechanical engineering, thermodynamics, and

civil engineering. A project sponsored by iCampus, the Framework Project, has

attempted to abstract the common services used by the iLabs to prevent each iLab from

having to implement redundant systems. Led by two Microsoft engineers visiting MIT,

Dave Mitchell and Eric Carlson, the Framework Project sought to provide these common

services in a number of compact modules, such as the Identity Service and Storage

Service. The Identity Service and the Storage Service provided a functional abstraction

for creating a user management system and storage management system, respectively.

The Framework Project has since been discontinued; however, the iLab Project at MIT

has taken over the responsibility for designing and implementing a shared architecture for

the common services needed by iLabs.

Each of the iLabs under development represents a distinct set of experimental

requirements which must be classified and addressed by the iLab Group. The Polymer

Crystallization iLab serves as a prototype of an interactive experiment for the

development of the iLab Project’s shared architecture. During this experiment, the

Microscope Server must supply the user with real-time status updates in the form of

 15

streaming temperature readings and streaming video. This class of experiment is

intended to closely model real-world laboratory conditions, where the user can interact

with the experimental apparatus in real-time. In contrast to this paradigm, the

Microelectronics WebLab [8] represents a “stateless” experiment where the parameters

are batched into a command script which is used to run the experiment. Because of the

relatively small time scale in electronic measurements, there is no user interaction during

a “stateless” experiment. The user’s job is to set up the experiment and let the

experiment run without any user involvement.

1.3 Development

This section provides an overview of the programming languages and integrated

development environments (IDE) used for the implementation of the various software

components of the Polymer Crystallization iLab. Each language was chosen for its

benefits to each specific module.

1.3.1 Java

The Microscope Client is currently implemented as a Java Applet. Java was initially
chosen for Nasser’s design because of its object-oriented structure, platform
independence, and availability in most popular web browsers. Because the system uses
full duplex communication between the client and server, a client program must be able
to decipher messages sent over primitive sockets. Because Java Applets can be
embedded into web pages, use of Java allows clients to run the applet from anywhere
without having to download a full client application. The Java Virtual Machine (JVM)
required by the Polymer Crystallization iLab is Java 1.4. Since many web-browsers do
not come with Java 1.4, users will have to download the Java Plug-in supplied by Sun
Microsystems.

The Microscope Client was developed using the Sun Open Net Environment (Sun ONE).

This integrated development environment contains a number of coding, compiling, and

debugging tools as well as a graphical Form Editor, which allows the developer to easily

 16

manipulate and preview visual Java components.

1.3.2 Python

The Microscope Server and all associated hardware controllers are implemented in
Python. Python is an object-oriented language that has a number of freely available
modules to control everything from serial ports to image manipulation. Because it is
written entirely in C, it is very efficient at string manipulation and dictionary
management. Python allows communication with the hardware modules via serial ports
and Microsoft’s Component Object Model (COM), through simple yet efficient modules
available in the Win32 package. Another available library, the Python Imaging Library
(PIL), allows images to be manipulated by the Microscope Server.

In addition to the abundance of available modules, Python also comes with a small but
useful IDE called PythonWin. PythonWin allows single line commands to be sent to the
Python interpreter for easy testing of software components. It also contains tools for
managing and debugging code.

1.3.3 C#

The Framework Server has been implemented using C# and Microsoft’s new .NET
Framework. The Framework Server, named after its origin in the Framework Project, is
used for post-experimental data analysis and user management. C# was the language
chosen for this component because of its seamless integration into ASP.NET web pages
and its simple database access mechanism. Microsoft’s .NET platform is an efficient and
highly scalable environment for web applications. Analysis of data images requires a fast
and efficient web server to respond to many users. Our Framework Server will inherit
the scalability and ease of management from C#, ASP.NET, and Microsoft’s Internet
Information Service (IIS).

For the IDE we use the highly developed Visual Studio .NET. This environment
simplifies the task of creating pages for a web application and for editing and managing
the code for a large project. In addition, VisualStudio.NET simplifies the task of creating
and using the web services required to extend the use of the iLab beyond MIT.

 17

 18

CHAPTER 2

Remote Microscope

A large part of the Polymer Crystallization iLab involves the use of a Remote
Microscope. Based on Paola Nasser’s design, the Remote Microscope uses a two-tier
architecture, with a Microscope Client and a Microscope Server passing messages over
TCP/IP sockets to remotely alter the state of the microscope settings and capture digital
images. This thesis describes the enhancements made to the Microscope Server and the
Microscope Client to allow users to conduct and save a complete remote polymer
crystallization experiment. This chapter will give a brief overview of the Remote
Microscope. An overview of how each of these two components fit into the Remote
Microscope can be seen in Figure 2. For more information on the server and client
developed by Nasser, the reader is directed to her Masters’ of Engineering thesis [1].

2.1 Hardware Overview

The Remote Microscope uses hardware purchased from two vendors: Zeiss and Linkam.
The Zeiss hardware consists of an Axioplan 2 Imaging microscope and an AxioCam
MRc digital camera. The Axioplan is a motorized microscope whose component design
allows the user the flexibility to add modules for several different applications. Two of
these modules which are assembled with the Axioplan for our Remote Microscope are a
polarized light filter and the mounted AxioCam MRc. With a resolution of up to 1300 x
1030 pixels and color binning capabilities, the camera provides the flexibility to produce
both high resolution images for single image capture and compressed images for rapid

 19

video capture. Both Zeiss components, the Axioplan and the AxioCam, can be
programmatically controlled through the KS.300 software developed by Zeiss.

The Linkam hardware provides the temperature control for our system. The MDS600
Linkam heating stage, is mounted directly to the mechanical stage carrier of the Axioplan
microscope. The MDS600 comes with three associated hardware controllers: the TMS94
temperature controller, the MDS600 directional controller, and the LNP94 liquid-
nitrogen pump. The TMS94, which acts as a proxy for all of the Linkam hardware, is the
only Linkam module directly connected to the computer through a serial port.

Microscope Client

Microscope Server

MDS600
Controller

AxioCam
Controller

Axioplan
Controller

TCP/IP Internet

Figure 2: Remote Microscope System Architecture

In order to provide an interface between the Python Microscope Server and the hardware,
the Controller class has been written in Python to wrap for the appropriate hardware
functions. Since the Zeiss components can be controlled by vendor software, the
Axioplan Controller and the AxioCam Controller classes both act as proxy classes to the

 20

KS.300 software. These controller classes marshal commands using a dispatched
KS.Application Component Object Model (COM) interface. The respective controller
classes for the Axioplan and the AxioCam can use the KS.Application COM interface to
change the objective, aperture, field stop, and reflector settings of the microscope and to
capture images from the digital camera. In contrast to this high-level communication
scheme, the Linkam hardware must be controlled by arcane ASCII text commands sent to
the TMS94 using a serial port connection. Thus, the MDS600 Controller class provides a
proxy for the Microscope Server to issue serial commands to the appropriate Linkam
hardware.

2.2 Microscope Client Overview

Together, the Microscope Client and the Microscope Server comprise the Remote
Microscope. The roles of the Microscope Client are to provide students with a Graphical
User Interface and to parse and process messages to and from the server. The
Microscope Client applet contains a number of GUI controls with which the user can
manipulate the state of the microscope, camera, and heating apparatus by sending
messages to the Microscope Server through TCP/IP sockets. In turn, the Microscope
Client receives updates through these sockets, which it must parse and display for the
user. The Microscope Client, described further in CHAPTER 6, must allow students to
quickly and easily manipulate the hardware, while validating all commands, so as not to
damage any of the hardware.

The Microscope Client has four primary tasks: to display graphic controls for the user to
manipulate hardware settings, to message-pass with the Microscope Server, to display the
state of the hardware, and to display the image of the polymer sample. These tasks are
accomplished by using a Java Applet for the user’s Graphical User Interface (GUI), as
pictured in Figure 3. By manipulating this GUI, students create and send messages to the
Microscope Server, where these messages are decoded and processed. In turn, the
Microscope Client receives updates through messages sent by the server, which the client
parses and displays as feedback for the user. Java Swing components are used to
manipulate the state of the microscope, camera, and heating apparatus and to validate any
commands the user sends.

 21

Figure 3: Remote Microscope Client GUI

The user interface is broken into four bordered sections. The northern section, called the
Message Panel, is used to display the status of the client-server communication and any
errors which occur during command execution. The west section, called the Image Panel,
is used to display the 260 x 206 image, to subscribe to the video stream from the
Microscope Server, to focus the image, and to navigate around the polymer sample. In
the east section, called the Microscope Panel, the user can manipulate the GUI tools
provided to control the state of the various microscope and camera settings. From this
panel, the user can control the magnification, aperture, and reflector settings of the

 22

microscope as well as the exposure time of the camera. Finally, in the southern section of
the applet, called the Temperature Panel, the user can view the real-time temperature of
the sample and can submit an experiment, in which the user inputs a temperature rate, a
target temperature, and the hold time for the target temperature. In addition to all these
panels, a menu provides the user with additional functionality such as the ability to save
an experiment and all the associated images on the server. The Microscope Client is
discussed in more detail in CHAPTER 6.

2.3 Microscope Server Overview

The Microscope Server is the second software component for the Remote Microscope.
The Microscope Server is responsible for maintaining the overall state of the system,
accepting client connections, processing messages sent from the client to the appropriate
hardware controller module, and saving experiments to the database and images to the
file system. The server, written in Python, is based on Kuchling’s Remote Microscope
implementation for the MEMS Exchange project.

The Remote Microscope’s Config and Options classes are used to set the various
configuration options for the Microscope Server. The most useful options for developers
are the debug option and the timing option. These options cause the server to display
debugging information for the developer such as the latency of a command. Another
component, the Device Manager, is used as a proxy class for all the hardware controllers
used by the microscope. The Device Manager is in charge of deciding which hardware
controller to use for a given input message. The reader is directed to Chapter 6 of Paola
Nasser’s thesis for more information on these components.

2.4 Hardware Controllers

The Controller class and all of its subclasses are responsible for sending commands to
specific hardware modules, either using COM interfaces to vendor software or low-level
serial port commands directly to the hardware. The Controller class is described in
Chapter 7 of Nasser. Each controller has a set of properties maintained in a local
dictionary called settings. Each of these properties can be easily accessed using the
appropriate get_<control_name> method in the specific controller and can be modified

 23

using the appropriate set_<control_name>. For a complete list of the settings of the
appropriate modules, please refer to Appendix B.

 24

CHAPTER 3

Hardware and Controller Design

This chapter first describes the hardware used for the Polymer Crystallization iLab, and
then describes the controllers used for each of the hardware components.

3.1 Hardware Setup

The Polymer Crystallization iLab is an extension of the Remote Microscope project
begun by Paola Nasser[1]. Two hardware components of the Remote Microscope
hardware purchased by Nasser are re-used in this project: the Axioplan 2 Imaging
microscope and the AxioCam MRc digital camera. The modifications made to their
respective hardware controllers are described in the next section.

Although Nasser’s project details the use of the Linkam LTS350 heating stage and LUDL
motorized XY stage, the Polymer Crystallization iLab uses neither of these components.
The small size of the viewing aperture in the LTS350 and the inability to mount the
heating stage onto the LUDL XY stage make both hardware components unsuitable for
this project. Although the LTS350 stage could be mounted directly to the microscope, it
has no motorized XY movement. This inability to maneuver the slide in the XY direction
would prevent students from being able to navigate the sample and experiment on
different regions of the polymer. Thus, we use a different Linkam heating stage, the
MDS600, and its associated hardware, the TMS94 and the LNP, in this implementation
of the iLab.

 25

3.1.1 TMS94 Temperature Programmer

The TMS94 is the temperature programmer for the MDS600 stage. This programmer
connects to the computer using an RS232 serial port. From the serial port, low-level
ASCII text commands are sent to the TMS94 to control three separate modules: the
MDS600 stage, the MDS600 controller, and the Liquid Nitrogen Pump (LNP94). The
TMS94 thus serves as a proxy for the other associated Linkam hardware. The connection
to the MDS600 stage controls the heating block and monitors the temperature; the
connection to the MDS600 controller directs the XY movement of the polymer sample
carrier inside the stage; and finally, the LNP94 connection allows the TMS94 to control
the flow of liquid nitrogen through the LNP94, thus controlling the cooling rate of the
sample. The TMS94 is shown in Figure 4.

Figure 4: TMS94 Temperature Programmer (left) with MDS600 Heating Stage (right)

Figure 4

3.1.2 MDS600 Heating Stage and Controller

The MDS600 heating stage is a large area heating stage with a built-in servo for
movement in the XY direction. This heating stage, pictured in , can operate in a
temperature range between -196ºC and 600ºC with heating and cooling rates from
0.01ºC/min to 130ºC/min. The MDS600 connects directly to the Axioplan microscope
using a small sub-stage mounting device. Thus, the heating stage itself cannot move in
the XY direction; however, a slide carrier inside the stage allows the polymer sample to

 26

travel inside the heating stage above the heating block in a circle with a radius of 15 mm.

3.1.3 Liquid Nitrogen Pump (LNP94)

In order to allow cooling at rates faster than the ambient cooling rate, the MDS600 comes
with a LNP94 cooling system. The LNP94 has two pumps that are automatically
controlled by the TMS94. These pumps regulate the flow of liquid nitrogen from a 2L
Dewar flask to the MDS600 heating stage to cool the encased polymer sample. The
liquid nitrogen in the chamber allows us to lower the temperature of the sample to -
196ºC. The LNP94 is shown in Figure 5.

Figure 5: Liquid Nitrogen Pump (LNP94) and Dewar Flask

3.2 Hardware Controllers

The Polymer Crystallization iLab uses three hardware controller classes: Axiocam,
Axioplan2, and MDS600. Each of these classes is written in Python and is a subclass of
the Controller class. shows a module dependency diagram of each of the
hardware controllers. Both the Controller class and the associated Device Manager are
discussed in detail in Nasser (Chapter 7). Because of the inheritance of each controller,
there is an inherent dependency on the Controller superclass. The following subsections
discuss the lower-level dependencies and the command flow in more detail.

Figure 6

 27

Device Manager

Controller

MDS600
Controller

Axiocam
Controller

Axioplan2
Controller

Serial PortCOM

KS.300
Software

Figure 6: Module Dependency Diagram of Hardware Controllers

3.2.1 Axioplan2 Controller

As the diagram shows, the Axiocam Controller’s dependency hierarchy includes COM,
KS.300, and the actual microscope hardware. This controller is responsible for setting
and maintaining the state of all adjustable microscope settings. To do this, the Controller
dispatches commands to the KS.300 interpreter using the KS.Application COM interface.
By dispatching a KS.Application object using the Python Win32 package, the functions
available to the KS.300 interpreter are exposed to the Python controller modules. Thus,

 28

the COM interface makes all functionality of the KS.300 software available to Python.
More information on the KS.300 interpreter can be found in the help documentation of
the KS.300 software.

3.2.2 Axiocam Controller

The dependencies for the Axiocam Controller mirror those of its related Axioplan
Controller. The Axiocam Controller is responsible for the exposure time property and for
capturing frames from the camera. The Axiocam Controller issues commands to the
camera by dispatching them to the KS.300 interpreter using the same COM interface as
the Axioplan2.

One significant difference between this controller and the previous one is that the
Axiocam uses KS.300 configuration scripts. These configuration scripts included in the
application, allow an administrator to locally open the KS.300 software and create a
configuration for the images that the Axiocam captures. The Python controller can then
load a configuration for the camera using the tvload command from the KS.300
interpreter. Previously, the Remote Microscope camera always captured images at the
maximum resolution, and then used the Python Imaging Library (PIL) to manipulate the
size and encoding of images before they were sent to the user. This level of indirection
caused an awkward latency, on the order of six seconds, between the time the user
requested an image and the time an image was displayed in the Microscope Client.
Video streaming was also very choppy, with a frame rate of one frame every six seconds.
Using configurations to specify the camera’s encoding of the image instead of post-
processing the image allows the system to maintain a video stream of two frames per
second and provides a huge reduction in latency during single-image capture.

3.2.3 MDS600 Controller

The MDS600 Controller shows another alternation of Paola Nasser’s implementation of
the Remote Microscope. Whereas Nasser’s implementation called for the use of the
LTS350 heating stage and the LUDL XY stage, the incompatibility of the two stages
required us to purchase the MDS600, the TMS94, and the LNP94. The dependency
diagram shows that the MDS600 Controller is solely dependent on the TMS94 through a

 29

serial port RS232 connection. All commands to alter the temperature of the heating stage
and the position of the sample inside the stage are issued to the TMS94 using archaic
single-line text commands as specified in the Linkam programmers guide, “Serial
Communications Manual for the T92, T93, T94 Series Programmers.”

The design decision was made to incorporate both the location and temperature
capabilities of the TMS94 into the MDS600 Controller because of the primitive nature of
communication between the computer and the TMS94. Since serial ports can only have a
single connection open at one time, separation of the two modules would require an
incessant opening and closing of serial port communications, introducing an overhead in
each command sent to the TMS94. In addition, since multiple threads access the
controller, a complex blocking scheme would have to be employed at high levels in the
architecture to prevent two serial commands from being issued at the same time. By
combining both capabilities in one module, the system avoids the overhead and
complexity arising from such problems.

The TMS94 has limited temperature control functionality. The TMS94 accepts the rate
of temperature change and the target temperature as inputs. When a user commands the
system to take control of the heating stage, the TMS94 ramps to the target temperature
and holds that temperature indefinitely. More sophisticated control of the heating stage
temperature is achieved by the Microscope Server and discussed in Section 7.2.

For movement in the XY direction, the TMS94 issues differential positioning commands
to the MDS600 (i.e. move +/-50µm). Therefore, the MDS600 Controller class is
responsible for tracking the absolute position of the sample in the heating stage. Since
the heating stage is not equipped with a reference motor, centering of the sample inside
the stage must be done when the Microscope Server is started (see Appendix A). At this
time, the location of the sample holder is initialized to (0,0). All further directional
commands use this initial starting position as the reference position until the Microscope
Server is restarted.

The operation of the Liquid Nitrogen Pump has not yet been tested. Although the pump
does have its own set of commands in the Linkam programmer’s manual, the TMS94 has
the capability to monitor and automatically adjust the flow rates for liquid nitrogen.
Using the current temperature of the stage, the TMS94 sets the pump flow rate to achieve
the desired rate of temperature change until it reaches the target temperature.

 30

CHAPTER 4

Database Schema

The database for the Polymer Crystallization iLab allows us to preserve data across web
sessions and provides a clear interface between the various components of our system.
The Microscope Server saves peripheral data about experiments to the database, for use
by the Framework Server during post-experiment analysis. Likewise, the Framework
Server uses the database to save information about users, roles, reservations, and
experiments, which is retrieved and used by the Microscope Server. More information
about these interfaces can be found in the next chapter. The data model for the database
design is shown in . The following sections describe the details for each of the
tables in the database.

Figure 7

4.1 Users

Our data model includes a Users table which holds all user information that is maintained
by the system. The table stores only a few fields of information, such as name, email,
and school, to allow future versions of the Polymer Crystallization iLab to port the
current architecture easily to a shared architecture, such as the one proposed by the iLab
Project. Under such a shared architecture, it is important to limit the amount of user
information available to the system, since the underlying authentication and authorization
mechanism may not have access to extensive user information. A globally unique

 31

identifier (GUID) is used as the primary key in the Users table. This GUID is used by
other database tables as a foreign key to reference a User in the system. In addition, a
Confirmation Code uniquely specifies a user and is sent to that user to confirm the
registered email address. The Registration Status describes the state of registration for a
particular user as described in Section 8.4.

Users

PK UserID

FirstName
LastName
email
SchoolID
ConfirmationCode
RegistrationDate
RegistrationStatus

Roles

PK RoleID

RoleName
RoleDescription

Experiments

PK ExperimentID

ExperimentName
ExperimentDescription

FK2 CreatorID
DateRegistered

ExperimentRuns

PK RunID

FK1 ExperimentID
FK2 UserID

RunName
RunDescriotion
OutputXml
DateAdded
DateExpires

User_to_Role_Map

FK1 UserID
FK2 RoleID

DateAdded

Role_to_Role_Map

RoleID
FK1 RoleID

DateAdded

Reservations

PK ReservationID

FK1 UserID
Priority
StartTime
EndTime

ExperimentRuns

PK RunID

FK1 ExperimentID
FK2 UserID

RunName
RunDescription
OutputXml
DateAdded
DateExpires

Figure 7: Data Model for the Database

 32

4.2 Roles

In order to allow a role-based authorization mechanism to be employed, the data model
includes a Roles table. Roles, indexed by a GUID, are linked to users through the
User_to_Role_Map table. Based on Philip Greenspun’s user management model in The
Internet Application Workbook [8], this data model allows us to represent group
membership in first-normal form: meaning data that can be derived from the joining of
tables is not duplicated. The Roles table includes fields for a role name and a role
description. Another table in the database, Role_to_Role_Map, allows us to map roles to
other roles. This mapping table allows us to maintain data in first-normal form, while
allowing different group memberships to inherit multiple permissions. This design will
be useful when the system is deployed at several universities. In that case, there can be a
separate user group representing undergraduate students at University A and
undergraduate students at University B. Both of these groups can be linked to an
Undergraduate role to simplify the administration of the system. In addition to a GUID,
the Roles table contains fields for a Role Name and a Role Description. Neither of these
fields is guaranteed to be unique, and both are included to simplify administration of
roles by a lab administrator.

4.3 Experiments

The data model for the system includes an Experiments table used to identify the
experiments that the microscope can conduct. Currently, the Polymer Crystallization
iLab uses Polyethylene Oxide (PEO) as the polymer sample. In order to differentiate
between experiment runs carried out using PEO and experiment runs using an alternate
polymer sample, each experiment run is linked to a particular experiment type. The
Experiments table also allows a lab administrator, such as a teaching assistant or a
professor, to filter all experiment runs of a particular type. For example, if Class A is
conducting Experiment X and Class B is conducting Experiment Y, the professor for
Class A could choose to view only experiment runs of type X. Each row in the
Experiments table is uniquely identified by a GUID, and contains an Experiment Name,
an Experiment Description, a Creator ID that references the Users table, and a
Registration Date. All of this information is provided for administrative purposes and is
used in the Framework Server.

 33

4.4 Experiment Runs

Each time a student performs an experiment, it is cataloged in a database table called
Experiment Runs. A GUID again serves as the primary key for a row in this table. In
addition, the Experiment ID and the User ID columns contain unique identifiers, which
are used to reference the Experiments table and the Users table, respectively. The Run
Name also identifies an experiment run for a particular user and is used to locate the
directory where all experimental files can be found. Images for a particular run are stored
in a public user directory with a naming convention of
$PUBLIC_DIRECTORY/user_email/run_name, requiring the Run Name to be unique
for a specific user.

Another column in the table, the Run Description column, is supplied by the user to
identify and document an experiment run. The Date Added field is generated by the
system when an experiment is created, so a user or a TA can reference experiment runs
by a specific date or a range of dates. The Date Expires field is included for system
management. A supervisor can review and delete experiment runs which have expired in
order to free up system resources for new runs. Finally, the Output XML field, which is
currently null, contains the XML result that is output by the system after an experiment
run has been completed. This XML string contains all the information a user needs for
the review and analysis of an experiment run. For more information on this XML output
string, the reader is directed to Section 5.4.1.

4.5 Reservations

The Reservations table stores information about when a student is authorized to use the
Remote Microscope. A Reservation consists of a GUID that to uniquely identify a
Reservation and another GUID to identify the user who has reserved the microscope. In
addition, a Start Time and an End Time record when the Reservation becomes active and
when it expires. Finally, a priority for the reservation has been included in the database.
Although this field is not currently used, a priority scheme is a useful extension for
allowing a professor or a TA to reserve the microscope for a demonstration or for
maintenance, even though a routine user may have already reserved the system.

 34

4.6 Stored Procedures

To relate the programming logic to the database model, a number of stored procedures
have been created in the database. Each class in the Framework Server that is
represented by a database table has a number of static functions which it can use to load
objects from the database. Objects are loaded based on specific properties in the database
columns; for example, a user with a specific GUID or email address can be loaded from
the database. Thus, stored procedures are named according to the following convention:
<StaticCaller>_Get<BusinessObject>From<PropertyName(s)>. For example, the
ExperimentRun class has a static function, which can return a set of ExperimentRuns
from a UserID and ExpID. The database contains a corresponding stored procedure
called ExperimentRun_GetRunFromUserIDAndExpID which selects the appropriate
rows from the appropriate tables. A list of all stored procedures can be found in
Appendix C.

 35

 36

CHAPTER 5

System Architecture

This chapter familiarizes the reader with the software system architecture for this project.
The Polymer Crystallization iLab consists of three largely independent software
components: the Microscope Client, the Microscope Server, and the Framework Server.
Each of these modules is written in a separate language to leverage the advantages of a
particular programming language for the necessary task. With this benefit in efficiency
comes the necessity to design a clear interface between modules. Figure 8 shows an
overview of the interface mechanisms between components. Two of these components,
the Microscope Client and the Microscope Server, have been introduced in CHAPTER 2.
In this chapter, the final software entity, the Framework Server, is introduced, followed
by a detailed description of the communication mechanisms between modules. More
information about the Microscope Client, the Microscope Server, and the Framework
Server can be found in CHAPTER 6, CHAPTER 7, and CHAPTER 8, respectively.

5.1 Framework Server Overview

The Framework Server manages the software system. The Framework Server is built as
a traditional three-tier system. The first tier consists of a lightweight client viewed in any
traditional web browser. The middle tier consists of an ASP.NET server with C# objects
such as Users, Roles, Experiments, and Experiment Runs, which are manipulated through
the web interface. Finally, the database provides the backend of the three-tier

 37

architecture, allowing the user to save data across web sessions and to access data across
modules.

REMOTE MICROSCOPE

Framework
Server

Microscope
Server

Microscope
Client

TCP/IP
Sockets

Database
Transactions

Applet
Elements

Figure 8: System Architecture Diagram

Using Microsoft’s IIS to host a number of dynamically generated web pages for the user,
the Framework Server provides an interface for a user to login to the system, reserve the
microscope, manage user-specific information such as user profile and experiments,
analyze past experiments, and use the Remote Microscope. These dynamically generated
web pages provide the software logic used to manage the system. The Framework Server
extracts information from the database, which it passes to the Microscope Client through
applet parameters. The applet then uses these parameters to send information about the
current User to the Microscope Server. After experiments are saved by the Microscope
Server, they are written to the database. The Framework Server can then retrieve past

 38

experiment runs for the user to process. For details about the Framework Server, the
reader is directed to CHAPTER 8.

5.2 Framework Server => Microscope Client Communication

The unidirectional communication from the Framework Server to the Microscope Client
shown in Figure 8 is achieved by passing applet parameters. As mentioned in the
overview, the Framework Server dynamically generates a set of web pages for a specific
user. When a user logs in to the system, a corresponding User object is saved in the
Framework Server’s session context. When the user requests to use the microscope, the
Framework Server generates a web page that includes parameter tags for the user’s
GUID, a reservation ticket GUID, and an experiment GUID. This web page directs the
browser to load the Microscope Client. These parameters are passed to the Microscope
Server when the Microscope Client tries to authorize itself, so the Microscope Server in
turn, knows who is using the system. Simple HTML tags are added to the dynamically
generated web-page to redirect the browser to a logout page after the reservation has
expired. These tags prevent users from logging on to the Microscope Client indefinitely.
For more information on users, experiments, and reservations, the reader is directed to
CHAPTER 8.

5.3 Microscope Server ! Microscope Client Communication

Bidirectional communication between the Microscope Server and the Microscope Client

is achieved through two low-level TCP/IP sockets using a simple but well-defined

message protocol based on Kuchling’s Microscope Networking Protocol Specification

[7]. One socket is a half-duplex binary socket used by the server solely to transmit

images to the client. The other socket is a full duplex socket through which ASCII

messages are passed between the server and client. These messages consist of a single

line of text terminated by a new line character, ‘\n’. The first word of the line is the

command name, followed by parameters in the form of [parameter_name=value] pairs.

Commands can have any number of parameters, some of which may be optional. Since

the protocol is asynchronous, neither the client nor the server locks while waiting for a

 39

response to any of the messages; thus any packet drops due to network errors are handled

gracefully by the system.

The Microscope Client acts as a messenger between the user and the server. Users can

pass messages to the server by altering the appropriate GUI controls in the Microscope

Client. Commands are then generated and sent across the network to the Microscope

Server, where they are parsed and marshaled through a Device Manager to the

appropriate hardware Controller class. The hardware controller is then responsible for

changing the state of its hardware, after which an acknowledgement message is returned

to the client.

There are a number of advantages to this messaging abstraction between the client and

the server. The human-readable ASCII text messages provide a clear interface between

the two entities. In addition, this interface does not impose any restrictions on the

implementation of the client and server, so long as both modules can send and process

messages. A full description of the messaging protocol is included in the following

subsections: 5.3.1 and 5.3.2.

5.3.1 Client Commands

The Microscope Client initiates communication with the Microscope Server using an
AUTH message. Based on the user’s GUID, the reservation GUID, and the experiment
GUID, the Microscope Server determines whether or not to allow the user to access the
microscope. Each of these parameters is passed to the Microscope Client by the
Framework Server through simple applet tags. After authorization, the Microscope
Client can send any combination of commands based on user manipulation of GUI
controls. The following table shows all commands sent from the client to the server.

COMMAND PARAMETERS AND EXPLANATION
AUTH userID=value reservationID=value experimentID=value

Request to authorize this client. The parameter values are

 40

GUIDs for the user, the reservation, and the experiment. They
are used in database transaction by the Microscope Server in
this client session.

AUTOFOCUS Performs auto focusing by searching for the best z-focus
position.

SET x=value y=value focusPosition=value magnification=value
lightMode=value aperture=value fieldStop=value
reflector=value exposureTime=value

Changes the hardware settings and status. All parameters are
optional. Command can be sent with any number of parameters.
A list of valid parameter values can be found in Appendix B.

CAPTURE

Config=value

The parameter is the name of a predefined acquire
configuration. For more details on configurations, see section
3.2.2. Currently, the only configuration used is the “iLab”
configuration which captures color JPEG images with a
resolution of 260x206 pixels.

VIDEO_START Config=value

Requests video streaming to start. The argument is the same as
in the CAPTURE command above.

VIDEO_STOP Requests the video streaming to stop.
SERVER Prints out the server information such as threads, port

connections, and client connections. This command is usually
used only for debugging.

STATE Print out the server state information. This command is usually
used only for debugging.

RUN_EXPERIMENT targetTemp=value temperatureRate=value holdTime=value

Commands the server to take control of the heating stage, ramp
the temperature to the targetTemp at a rate of temperatureRate,
and hold for targetTemp for holdTime seconds.

STOP_EXPERIMENT Commands the server to cede control of the heating stage
START_RECORDER archiveName=value overwrite={yes, no}

Commands the recorder to start archiving images and saving
experimental data. The overwrite flag tells the server whether
or not to overwrite an existing experiment run with
archiveName

STOP_RECORDER Commands the recorder to stop and tells the server to persist the
experiment in the database

QUIT Terminates the client connection. The server removes the
connection and close the TCP/IP socket.

Table 1 - Client Commands to Server

 41

5.3.2 Server Commands

Microscope Server to Microscope Client communication exposes the consequences of

our asynchronous messaging protocol. Although we are using TCP/IP sockets, which are

“guaranteed” to send all network packets in order, we would like our system not to pause

while awaiting network transmissions. To prevent this delay, we use asynchronous

messages. However, because our commands are sent asynchronously, we must also

acknowledge client commands with an update message from the server. For example, if

the user submits an experiment, the RUN_EXPERIMENT message is passed to the

Microscope Server with the appropriate parameters. The Microscope Client does not

assume that the message was received and does not change any values on its display.

The Submit button remains enabled until the Microscope Server sends an EXPERIMENT

message back to the client to acknowledge the request. Similarly, the RECORDER

message in the table below acknowledges a START_RECORDER message from the

client; a SCOPE message acknowledges a SET message from the client; and an

OCCUPIED or AVAILABLE message acknowledges an AUTH message from the client.

The following table describes all possible commands that are sent from the server to the

client.

Command Explanation

IMAGE length \n binary data

Transmit image to client as binary data. The message includes the
length of the image data, followed by a new-line, and the image data.

SCOPE x=value y=value focusPosition= valuemagnification=value
lightMode=value aperture=value fieldStop=value reflector=value
exposureTime=val

Inform clients of the microscope’s current settings (current state). For
a list of valid parameter values see the controller’s details in
Appendix B.

STATUS msg

Sends a message to client specifying the status of an issued command

 42

ERROR msg

Sends an error message to client.

TEMP temperature

Sends a temperature update for the client to display

EXPERIMENT {heating, cooling, holding, cancelled}

Notifies the client of the progress of the experiment. Also acts as an
acknowledgement that a command was received

RECORDER {overwrite?, recording, stopped}

Notifies the client of the status of recording. Also acts as an
acknowledgement that a command was received

OCCUPIED Message sent upon initialization to declare the availability of the
scope.

AVAILABLE Message sent upon initialization to declare the availability of the
scope.

Table 2 - Server Commands to Client

5.4 Microscope Server ! Framework Server Communication

The Microscope Server and the Framework Serve communicate via database
transactions. Reservations, Users, and Experiments are all initially created using the
Framework Server, as described in CHAPTER 8. When the Microscope Client starts a
session, it passes user, reservation, and experiment GUIDs obtained from the Framework
Server to the Microscope Server. The Microscope Server retrieves these objects from the
database to check their validity. For example, the Microscope Server retrieves a
Reservation from the database and checks to ensure that the appropriate person is using
the microscope. Thus, the reservation, user, and experiment which were initially created
in the Framework Server, are communicated to the Microscope Server using database
transactions.

The Microscope Server to Framework Server communication is accomplished through a
similar mechanism. When a user starts the recorder using the Microscope Client and
supplies an archive name, the Microscope Server uses this archive name to create a

 43

directory inside the users’ public directory. Subsequent images are saved to server under
this newly created public directory. When the user completes the experiment run and
stops the recorder, the run is saved in the database and a Synchrnoized Media Integration
Language (SMIL) output file is written by the server to the archive directory. After an
experiment run has completed, the Framework Server allows users to navigate through a
series of web pages dynamically generated with ASP.NET. The Framework Server uses
the database to retrieve experiment runs for a specific user for analysis and management
of past experiments. Thus, by saving the experiment to the database, the Microscope
Server communicates with the Framework Server and saves experiment runs.

5.4.1 SMIL

The Synchronized Media Integration Language (SMIL) [10] is a W3C Recommendation
for combining audio, video, text, and graphics into a unified presentation. The central
function of the language is to time multimedia components and to schedule their display
either in parallel or sequentially. The language is written as an XML application, which
allows authors or programs to create multimedia presentations by simply outputting a text
file. This text file contains URLs to the specific media elements which are retrieved by
the SMIL interpreter. Currently, Real Player and Quick Time both implement the W3C
Recommendation and are able to read SMIL files.

When an experiment run is saved to the system, a SMIL file is created allowing users to
play back their experiments. These files create a slide show presentation with two
regions superimposed on a Root Pane, as shown in Figure 9. The SMIL presentation
contains a sequence of parallel elements. Each parallel element contains textual data
describing the frame number for a particular image and a JPEG image saved during an
experiment run. The Image Region displays the image file, while the Caption Region
displays the frame number of each image. As the SMIL timeline progresses, these
parallel elements sequentially display images with their corresponding captions, allowing
the user to replay the experiment run.

 44

Root Pane

Caption Region

Image Region

Root Pane

Figure 9: Layout for the SMIL presentation of an experiment run.

 45

 46

CHAPTER 6

Microscope Client

The Microscope Client provides the GUI for the user to control the Remote Microscope.
As shown below in Figure 11, this module has been largely rewritten to reflect a number
of development improvements, interface improvements, and application enhancements.
This chapter details each of these changes to the Microscope Client.

6.1 Development Improvements

The Remote Microscope Client described by Nasser (Chapter 5) consisted of a single
Java Panel, the ScopeGUI, which performed the majority of the functionality for the
applet. This panel contained three subsections: the northern, eastern, and western panels
described in Section 2.2. Since the ScopeGUI was a Graphical Form in Sun’s Forte IDE,
it and its constituent components could easily be manipulated using the IDE’s Form
Editor. This Form Editor allowed GUI components to be visually manipulated so that the
developer could preview what the components of the ScopeGUI would look like to a
common user.

In this new version of the Polymer Crystallization iLab, the entire applet has been
converted to a Graphical Form, so that the developer can easily preview and manipulate
the entire applet. The class ScopeFormApplet contains all the necessary functionality for
the Microscope Client. Since the entire ScopeFormApplet class is a Graphical Form in
the new Java Sun ONE IDE, it and any of its components can easily be altered by future
developers using the IDE’s Form Editor. The added functionality with the development

 47

of the Polymer Crystallization iLab has required the addition of a menu to improve user
interface. From this menu, users can command the Microscope Server to take control of
the heating stage. Users can also issue commands to save an experiment using the new
menu. For more details about GUI usage, please refer to the Student User Manual in
Appendix B.

6.2 Temperature Panel

The largest modification to the interface of the Remote Microscope Client is the addition
of the Temperature Panel. The Temperature Panel, found in the southern part of the
Microscope Client and pictured below in Figure 10, consists of five subsections. The
left-most subsection displays the current temperature of the heating stage. Real-time
update messages are sent from the Microscope Server to the Microscope Client every two
seconds. The messages in this real-time data stream are processed by the Microscope
Client and displayed to the user in this section of the panel.

Figure 10: Temperature Panel

The middle three subsections of the Temperature Panel contain three input fields for an
experiment run: Target Temperature, Temperature Ramp Rate, and Target Hold Time.
Each of these fields has a validator. When the focus of the text field is lost, the validator
ensures that the fields contain valid parameters for an experiment submission. The
current valid values allow a temperature rate within 0.1-45ºC/min, a target temperature
between 35-150ºC, and a hold time within 0-300 seconds. If the value of a text field is
invalid when a focus lost event is raised by the applet, a dialog box notifies the user that
the input is invalid and the applet returns focus to the appropriate text field.

The right-most subsection contains the buttons to submit and stop an experiment. When
the submit button is depressed, the values in the three fields are again validated. If valid,
the Microscope Client sends a RUN_EXPERIMENT message to the Microscope Server

 48

with the appropriate parameters. The MDS600 Controller takes take control of the
heating stage and brings it to the specified temperature before it is released to cool to the
ambient temperature or until another experiment is submitted.

It is important that the Microscope Client not assume that the Microscope Server has
received any messages. Therefore, the Microscope Client must wait for an
EXPERIMENT message from the Microscope Server before disabling the SUBMIT
button and enabling the STOP button. This creates an inherent race condition if two
experiments are submitted by the client’s having depressed the submit button twice
before the EXPERIMENT message is received by the client, but this risk is necessary
because of the asynchronous communication used in our protocol. More information can
be found in Section 5.3 of this paper.

Figure 11: Message Panel (top), Microscope Panel (right), and Image Panel (left)

 49

6.3 Other Interface Modifications

Apart from the addition of the Temperature Controller panel discussed in the previous
section, a number of changes were made to the existing Remote Microscope Client in

. The Microscope Panel remained largely intact from Nasser’s implementation;
however, a feature was added to update the image every time a microscope setting was
changed. Because of the improved speed of image updates, this change does not add
excessive latency to the system. All other interface modifications are discussed in the
following subsections. A complete student user guide can be found in Appendix B.

Figure 11

6.3.1 Message Panel

The original Remote Microscope had a Message Panel with a two lines of text: one for
status updates and one for error updates. Evaluation of that design showed that some
messages are sent by the server but never displayed. If two messages arrived quickly
enough, the first message is impossible to read before it is overwritten by subsequent
messages. To prevent important messages from being missed by the user, a string buffer
was included in the Microscope Client to maintain a history of the status messages
received by the client. The Message Panel was then altered to allow a scrolling text
window, where users could access previous messages that were sent from the Microscope
Server.

6.3.2 Image Panel

The original Image Panel had left, right, up, and down buttons which the user could use
to change the XY positioning of the sample. Evaluation of this design showed that at
high magnifications, a click of a directional button would produce show an entirely
different region of the polymer sample. On the other hand, if pressing the button caused
a smaller amount of change, at lower magnifications, this change would not be
perceivable, and users would need to press the button excessively to move the sample.
Therefore, since the resolution of XY movements depends on the magnification objective
the users have in place, a more flexible navigation mechanism had to be implemented.

 50

To solve this problem, a slider was added to the XY direction with which allows the users
to specify the granularity of XY movement. Users can move the slider the appropriate
amount to modify the location of the polymer sample and the region of the image capture.

Another modification to the Image Panel was the addition of focusing capability. To
accomplish this enhancement, a Plus button and a Minus button were added to the left of
the image. Since, like the XY position, the desired focus position depends on the
magnification being used, a weighting factor is used to compute the actual Z direction
positional change of the heating stage. When the Plus button is pressed, the Microscope
Client computes the new position and validates that the new position of the stage does not
exceeds its maximum height. This client-side validation ensures that the client does not
issue a command which would crash the objective lens into the heating stage. If the input
is valid, the Microscope Client sends a message to the Microscope Server to change the
focus position of the Microscope.

6.3.3 Applet Menu

With the added functionality of the fully operable Polymer Crystallization iLab, a menu
interface was added to reduce the cluttering of the Microscope Client. Instead of future
developers adding more buttons to the GUI, they can add menus for the appropriate
controls. Users can use the appropriate menus tell the Microscope Server to start and
stop the recorder and to take or cede control of the heating stage, although this notion of
control is not currently implemented. When a user starts the recorder using the Recorder
Menu, the user is prompted to enter an experiment title. After entering a title, a
“START_RECORDER <title> <overwrite>” message is sent to the Microscope Server.
The server then parses and processes the message as described in the next chapter. A
complete list of these messages can be found in Section 5.3.

6.4 Microscope Authorization

When a web page to load the Microscope Client is dynamically generated by the
Framework Server, applet parameters are included to inform the applet of the user ID,
reservation ID, and experiment ID used in the current session. The Microscope Client
then sends these parameters to the Microscope Server to ask for authorization to use the

 51

microscope. The server then attempts to verify the reservation ticket for this user against
the information in the database and returns an authorization notification, an occupied
notification, or an unauthorized notification. Since users are required to reserve the
microscope before use, this requirement ensures that only the appropriate user can access
the server. The GUID representing the reservation ID is a 128-bit key which gives us
sufficient probability that malicious attackers cannot penetrate the system. In addition,
since the authorization message is sent to the document base of the applet, malicious
users cannot save and run the JAR file from their local machine to try to access the
Microscope Server.

6.5 Look and Feel

The Look and Feel (L&F) of the ScopeFormApplet has been modified to create a more
sophisticated look for the Microscope Client. Using the pluggable look and feel package
(PLAF) from Sun Microsystems, the applet employs the Kunststoff L&F implementation.
This modification has been made for purely aesthetic purposes. The Kunststoff L&F
includes a scheme to create buttons and menus with color gradients as opposed to the
bare and unadorned appearance of the traditional Metal L&F of most java applets.
Similarly, additional look and feel packages can be used to create an even more elaborate
GUI for the Microscope Client.

 52

CHAPTER 7

Microscope Server

Under Paola Nasser’s implementation, the Remote Microscope allowed users to control

all the necessary hardware for microscope control and image capture. With the addition

of the Linkam hardware and the associated temperature controllers, the Microscope

Server had to be enhanced to allow the real-time streaming of temperature updates. In

addition, with all the necessary controllers in place to remotely conduct the polymer

crystallization experiment, software logic had to be added to allow the Microscope Server

to accept experiment submissions, monitor the progress of experiments, and allow users

to save experimental data to the server. This chapter describes the enhancements made to

the Microscope Server.

7.1 Temperature Updates

The TMS94 does not come with any built-in software or firmware to notify the serial port
when the temperature of the stage has changed. In the absence of such an event-driven
system, a polling mechanism had to be implemented to pull information about the current
temperature from the hardware. On startup, the Microscope Server starts a temperature
thread, along with the reading, writing, and listening threads of the original Remote
Microscope to allow real-time temperature updates. This temperature thread sends status
queries every two seconds to the TMS94 using the MDS600 Controller. After the

 53

Microscope Server queries the hardware for the current temperature, if a client is
connected to the server, the server sends a temperature update message to the client. The
two second period between temperature updates is parameterized in the Microscope
Server. The two second delay between updates allows for a reasonable latency while not
burdening the system with excessive overhead.

Because of the consistency of the temperature updates, the temperature thread is also
used to check the connections to all the Microscope Clients to ensure that none of the
connections are broken. Every three hundred temperature updates, all of the connections
to all Microscope Clients are checked to ensure that none of the links between the server
and the clients have failed. This prevents the server from locking up its resources in case
of a network failure. Although the system only currently allows one client, the addition
of future clients for collaboration purposes is both a plausible and useful extension to this
project.

7.2 Running Experiments

The Microscope Server has been expanded to allow students to conduct the polymer
crystallization experiment remotely. This experiment requires students to observe the
isothermal crystallization of a polymer at a number of different temperatures. As
mentioned in the chapter on hardware controllers, the TMS94 takes a target temperature
and target rate as inputs. Once the target temperature is reached, the Linkam hardware
holds that temperature indefinitely. To enable the user to hold a certain temperature for a
desired amount of time, the Microscope Server must start a Hold Timer thread to monitor
the amount of time that a temperature has been held. When the specified time has passed,
this Hold Timer thread releases control of the heating stage.

To start an experiment, the Microscope Client submits a RUN_EXPERIMENT message
to the Microscope Server with the appropriate parameters. Before creating and sending
the message, the Microscope Client ensures that the parameters fall within a specified
value range. In addition to this client-side validation, the parameters are also checked
server-side. This server-side validation protects against malicious attacks on the server.
Because of the simple protocol used to control the microscope, the Microscope server is
vulnerable to messages sent to the appropriate socket port. If a malicious attacker
manages to validate himself to the system, the server-side validation ensures that all

 54

incoming experiment parameters will not damage the hardware.

7.3 Recording Experiments

When the appropriate menu item is selected, the Microscope Client creates and sends a
START_RECORDER message to the Microscope Server. This message is sent with an
aquireName parameter which is used to create a new directory under the users directory.
At that point the Microscope Server resets the frame counter and begins to save images to
the server under the newly created directory. Each image is stored with a strict naming
convention consisting of four alphanumeric character stings separated by an underscore
character, ‘_’, and ending in the appropriate file extension. The character strings
represent the following: frame number, time elapsed * 10, temperature * 10, and
magnification. Thus, the following file name, 0035_0154_0825_10X.JPG, identifies a
JPEG image in this experiment run. Parsing the file name identifies this image as the 35th
image in the experiment run taken 15.4 seconds after the recorder started when the
polymer sample was 82.5ºC and the microscope objective was set to 10X. This
convenient naming convention allows us to extract all of the information about an image
by simply parsing the file name.

When a user completes an experiment run and stops the recorder, the Microscope Client
sends a STOP_RECORDER message to the Microscope Server. At that point, the
Microscope Server stops saving images and writes the SMIL file used to replay the
experiment run. To create the file, the Microscope Server iterates through the archived
directory and extracts the necessary information for the SMIL caption from the file name.
Two versions of this file are written to the archive directory, output.smil contains the
well-formed SMIL XML code and output.mov contains a Quick Time modification to the
SMIL file. The files can then be accessed by the user through the Framework Server as
described in the following chapter.

A key consideration for the future development of the Polymer Crystallization iLab is the
design of an XML schema which can define a complete experiment run. Currently, our
system embeds meta-data about individual images in the file name. In this case, we are
limited by the length of the name allowed by the file system. A separation of the
presentation information in the SMIL file and a generalized XML schema to describe
experiments would increase the flexibility of experiment analysis.

 55

 56

CHAPTER 8

Framework Server

The Framework Server serves as a manger of the overall software system. The three-tier
architecture of the Framework Server gives our system performance gains with respect to
scalability, flexibility, and speed. The lightweight client for the Framework Server, the
first tier, is simply a set of HTML pages viewed in a typical browser. The multi-layer
middle tier consists of a web server written in ASP.NET and an application server written
in C#. Finally, the third tier, a SQL database, provides the backend data management to
ensure that information is reliable and consistent throughout our distributed environment.

The Framework Server provides process management for all system users. Since only
one user can logically control the microscope at a given time, the Remote Microscope
necessarily has a two tier design, where a single client is in control of the server.
However the Framework Server, with which users analyze their data and administrators
manage the system, can benefit from the performance enhancements of a distributed,
three-tiered architecture allowing multiple users to interact with the system
simultaneously. In addition, the potential for using web services to distribute user
management of the system across many universities lends itself to the separation of the
application logic in the top two tiers and data logic in the bottom tier. This chapter
describes the implementation of the Framework Server and how this module is able to
control the process flow for the Polymer Crystallization iLab.

 57

8.1 Class Summary

The classes used by the Framework Server act as wrappers for the database tables. Each
column in the Users and Roles tables corresponds to a property of the User and Roles
Classes, respectively. Both classes also have an array of Roles, which is obtained by
compiling an exhaustive mapping from the User_to_Role_Map and Roles_to_Role_Map
tables. User and Role objects are saved to the database using the Persist() method of
their respective classes and can be loaded from the database using one of the static
functions available in each class. For example, users can be loaded from the database
using any of the following static methods, which call the appropriate stored procedure in
the database: getUserFromGUID(), getUserFromEmail(), getAllUsers(), and
getUsersInRole().

The Experiment and Experiment Runs classes also contain properties mirroring the
columns in their respective tables. The properties are loaded from and stored to the
database using the Persist() method and other static methods included in the two
classes. These static methods include the functionality to load a subset of experiments
such as all the experiments runs for a specific user or all the experiment runs of a specific
experiment type.

The Reservation Class follows the programming logic of the other classes, again acting as
a database wrapper class. Currently, the priority field is not used; however, it will be
useful for enabling administrative overrides of lab user reservations.

8.2 Identity Service and Lab Service

Currently, the system uses one level of indirection before accessing the C# business
objects. Instead of explicitly calling the static methods of a given class, two library
service classes, the Identity Service and the Lab Service, are used to manipulate objects.
These classes are a legacy from the Framework Project, and were originally intended to
be fine-grained web wervices that would allow multiple universities to easily collaborate
with each other, while simplifying the development cycle for iLab implementation. They
have been preserved for easy integration with the iLab Project’s future design cycles. At
the time this thesis was put together, the iLab Project focused its efforts on designing a
shared architecture specifically for batched experiments. Future editions of this

 58

architecture should be amenable to the implementation requirements of interactive
experiments allowing for the integration of the Polymer Crystallization iLab into this
infrastructure.

Figure 12: Framework Server User Interface

The Identity Service contains all functionality for user management. Though a large API
of available functions are exposed through the Identity Service, a usable, distributed
architecture will likely only contain a subset of these methods because of the
performance constraints of web services. The current implementation of the Identity
Service contains low-level administrative functions which work well for local calls;
however, in a distributed environment, web service calls are more costly because of the

 59

latency introduced by the network and by the conversion to and from XML. Therefore, a
lower granularity of functions must be exposed in a web service implementation to
decrease the number of required function calls.

Create
Experiment

Manage
Roles

Manage
Users

Lab Admin
Links

Analyze
Image with

ImageJ

Registrer

Login

Manage
Experiment

Delete
Experiment

Filter All
Experiment

Runs

Reserve
Microscope

Lab User
Links

Experiment
Runs

History

Review
Expeirment

Run
&

Select
Image

Delete
Experiment

Run

Play SMIL
Slide Show

Use
Remote

Microscope

Legend

Execution Control

Navigation Control

Web Page

Figure 13: Page Flow Diagram for Framework Server Interface

8.3 User Interface

The user interface of the Framework Server consists of a number of dynamically
generated web pages viewed through any web browser. After a user logs into the system,
he is taken to the appropriate web application. The layout of the web pages in the web
application consists of a Header Pane, a Left Pane, and a Content Pane, as shown in
Figure 12. The Header Pane contains all the header information for the website such as
the title, the user’s name, and a link to the logout page. The Left Pane and the Content
Pane are determined by the Roles of the current user. When a user logs into the system,

 60

their user information is stored in the session context. This session context is used to
 in the Left Pane and the subsequent web controls accessible

 the Content Pane. The system currently recognizes two types of Roles with their

e space, the management web controls do not show the full
eb control flow accessible through the management links. A typical scenario is

provided below.

 an administrator wishes to manage the roles in the system, he clicks the appropriate

ab administrators are also allowed to view the experiment runs for all of the users in the

determine the links provided
in
corresponding interfaces: Administrators and Default Users. The links provided are
shown in Figure 13. The contents of the interfaces for the two roles are described in
subsections 8.3.1 and 8.3.2.

ministrative Interface

The administrative interface was created to facilitate the management of users, roles, and
experiments. When an administrator logs into the system, the Admin Links web control
is loaded into the Left Pane. Using these links, the user can navigate the provided
management pages to add, delete, and edit users, roles, and experiments in the system.
Clicking on any of these links loads and renders the appropriate web control in the
Content Pane. Figure 13 shows the links administrators can click to manage users, roles,
and experiments. To preserv

8.3.1 Ad

w

If
administrative link for roles. The Mange Roles web control, shown in Figure 14, appears
in the content pane showing a list of all roles in the system. From this web control,
Administrators can follow the appropriate links to add a new role or edit an existing role.
Following the link to edit a role causes the web control found at the bottom of Figure 14
to appear in the Content Pane. From here, a lab administrator can change a role name
and description. In addition, the administrator can associate users with a specific role to
give them access to different parts of the system. Management for users and experiments
closely follows the above scenario, giving our administrative interface an intuitive feel.

L
system. To do this, they can navigate to the Filter Experiment Runs page, where they can
select which experiment runs to display based on a combination of the t type or
the users who created an experiment run. This allows lab administrators such as a TA to
view an experiment run performed by a user for grading or to help the student analyze the
results.

experimen

 61

Figure 14: Page Flow for Role management

Currently, the Polymer Crystallization iLab can only logically support one experiment at
a given time Since a lab administrator must change the polymer sample to change the
type of experiment currently active, the Framework System must support the notion of
the current experiment. To notify the system of the active experiment, administrators can
specify the active experiment in the Mange Experiments page. When a student uses the
Remote Microscope, the system embeds the active experiment GUID in the web page,
notifying the Remote Microscope of the type of experiment being run.

8.3.2 Student Interface

Students will typically use the Framework Server to conduct experiment runs with the

 62

Polymer Crystallization iLab, to reserve the system for future use, and to manage and
analyze their past experiment runs. The general interface for students follows directly
from the administrative interface. Students are provided a list of student links which are
loaded into the Left Pane of the web page. Students can use these links to navigate to the
desired pages. The page flow for student links is more complex than that for
administrative links. The control flows for the links to analyze past experiments, reserve

e system, and use the Remote Microscope are explained in detail in the following
sections.

ister from the registration page or be added by a lab administrator. Then, the
ser must confirm his email address in order to be considered an active user. From that

point, a lab administrator can add the confirmed user to any of the active roles. Note that
ed his email address, he is not visible in the system.

uccessfully
uthorizing themselves.

To reserve the system, lab users load the appropriate reservation web control consisting

th

8.4 Registration

There are two separate ways that new users can be added to the system. The first way
involves a lab administrator adding the user through the appropriate administrative web
pages. An alternate and preferred means of adding a user is by having a user register
with the system through the registration page. User registration follows a finite state
machine modeled closely after the one described by Philip Greenspun in The Internet
Application Workbook [8]. To become an active user in the system, a user must first
either reg
u

until the user has confirm

8.5 Reservation System

All users wishing to conduct experiments with the Remote Microscope must first make a
reservation. Since the Polymer Crystallization iLab requires students to interact with the
experimental apparatus in real-time, only one user can be in control of the system at one
time. Therefore, a reservation system is required to mediate times that users can access
the Remote Microscope. In addition, the reservation requirement provides a security
feature for our system. Since the system only allows users with a 128-bit reservation
ticket previously saved in the database, malicious users are prevented from s
a

 63

of a calendar and a list of reservations. From this page, users can select a date on which
 reserve the system. After the user selects a date, the Framework Server queries the

8.6 Using Remote Microscope

e Microscope Server. If the Microscope Server is in use, it sends an
CCUPIED message to the client; otherwise, it checks the appropriate parameters, reads

the reservation from the database, checks the user GUID against the reservation’s creator,
roscope Client. An AVAILABLE message

om the server to the client begins a session with the Remote Microscope.

to
database to retrieve all reservations for the selected date and displays these to the user.
The user then inputs a desired start time and end time during which they would like to
use the Remote Microscope. The Framework Server checks to ensure that their desired
time period does not exceed the maximum period allowed by the system and ensures that
the reservation does not conflict with another user’s reservation. If the request is valid, a
new reservation is created and written to the database. The following section describes
how a reservation is subsequently redeemed when a user attempts to use the Remote
Microscope.

When a user wishes to redeem a reservation and use the Remote Microscope to conduct a
polymer crystallization experiment, he must follow the appropriate student links to open
the polymer lab. When the user clicks this link, the Framework Server checks the
database to see if this user has a valid reservation in the database. If the user does have a
valid reservation, the system creates a web page with applet parameters denoting the user
GUID, reservation GUID, and active experiment GUID. The Microscope Client is then
loaded into the user’s browser, reads the applet parameters, and attempts to authorize
itself with th
O

and sends an available message to the Mic
fr

To enforce the reservation system, the Framework Server checks the reservation table
and sets a timeout for the web page by computing the time between when the page is
loaded and when the user’s reservation expires. While generating the web page to use the
Remote Microscope, the Framework Server embeds a META tag that directs the browser
to “refresh” the page after the specified timeout. An example META tag is shown below:

<META HTTP-EQUIV="Refresh"
CONTENT="1500;URL=http://polymerlab.mit.edu/PolymerLab/logout.aspx">

 64

The refresh directive loads a logout page after the specified time to force the user to cede
control of the Remote Microscope when his reservation expires.

8.7

After an expe experiment run to
the database, the Fram lete and
analyze past experim nt history web control
loaded in the Content P ent for
analysis, a web control like the one shown in Figure 15 is loaded into the Content Pane.

Figure 15: Analyze Experiment Web Control

Analyzing Experiment Runs

riment has been run and the Microscope Server saves an
ework Server provides users with the functionality to de

ent runs. Figure 12 shows the experime
ane. When a user clicks on the link to open an experim

 65

From this control, the view slide show link opens a new browser window with a SMIL
slideshow presentation MIL presentation can
urrently be run using either Quick Time or Real Player. A user can alternatively select
e desired frame number of the image they would like to preview. This causes the

appropriate image to appear in the Preview Pane of the web control. The meta-data
he frame number, time, temperature, and

agnification, is parsed from the file name and displayed for the user. When the page is

 flexibility for user analysis.
he wide variety of functions available in ImageJ allows users to explore a variety of

ways to analyze their experimental data. ImageJ gives users maximal functionality while
evaluate the best possible means of analysis. This flexibility in using

e image analysis software is in keeping with a primary goal of the Polymer

to replay the experiment run. The S
c
th

associated with a specific image, such as t
m
created, the Framework Server encodes the identity of the image in the Analyze Image
link. By pressing this link, the user can navigate to a page where an image analysis
applet, ImageJ, is loaded into the ith the specified frame preloaded for analysis.
The following subsection describes ImageJ in greater detail.

8.7.1 ImageJ

ImageJ is a public domain image analysis tool written in Java and inspired by the
National Institute of Health’s Image program. ImageJ runs as an applet that is preloaded
with a specific image for analysis. ImageJ can edit, display, process, and analyze images
in a number of formats. It can calculate area and pixel value statistics for a user defined
area, create density histograms, and perform all standard image processing functions such
as contrast manipulation, sharpening, smoothing, edge detection, and binary threshold.

ImageJ was chosen as the analysis tool to allow the greatest

browser w

T

requiring users to
th
Crystallization iLab, to create a laboratory experience with the greatest possible
educational value.

 66

CHAPTER 9

Evaluation of the Polymer Crystallization iLab

The Polymer Crystallization iLab is ready for full deployment in the Undergraduate
Polymer Science Laboratory class, 10.467. The iLab has been tested by the author and a
few selected individuals; however, the full deployment and evaluation will occur after the
completion of this thesis. This chapter gives the reader a preliminary evaluation of the
educational value of the iLab as well as a scenario describing a typical use.

9.1 Educational Value

The primary goal of the Polymer Crystallization iLab is to deliver a rich and interactive
educational experience in polymer crystallization. To accomplish this goal, we have
created an interactive Remote Microscope with real time streaming of images and data.
This Remote Microscope closely mimics a real laboratory experience, where the user has
full control over the experimental apparatus. The architecture is designed to limit the
amount of automation, while maximizing the amount of user interaction and control
during an experiment.

The educational principle at the heart of the Polymer Crystallization iLab is that students
are more motivated and can learn better when they can conduct experiments to compare
real world data to simulations, can collaborate with each other, and can explore following

 67

their curiosity. This iLab solves the problems of high cost of multiple setups, insufficient
laboratory space, and continuous staffing seen in traditional laboratories. We achieve a
huge economy of scale by multiplexing a single setup among multiple users, by allowing
the lab to be accessed from anywhere at any time, and by incorporating the flow of the
experiment into the software interface and reducing the dependence on a TA.

The full educational value of the Polymer Crystallization iLab will be realized after the
ab is deployed and user feedback is received from actual students. Great care has been
ken to make the necessary components scalable and to make the system secure.

 made as to the continuing integrity of the polymer sample, to
ensure that excessive use of a single sample does not significantly alter experimental

ent must first

reserve the microscope for the desired amount of time. After a reservation has been

n follow the links, redeem the reservation, and begin to

se the Remote Microscope.

ubscribes to the video thread so he can see when the polymer

mple has melted. In addition, the student can optionally start the recorder if he wants to

iL
ta
Evaluation will have to be

results.

9.2 Usage Scenario

In a typical scenario, a student begins a session by logging on to the Framework Server.

If the student has previously set up a reservation, he can directly click the link to open the

Remote Microscope; if no such arrangements have been made, the stud

successfully made, the student ca

u

Once a Remote Microscope session has been authorized and initialized, the student is free

to use the Microscope Client within the boundaries imposed by the validated fields. At

that time, the user can adjust the microscope settings, scan the polymer sample for a

suitable region for the experiment, enter the parameters for an experiment run, and

command the temperature controller to melt the polymer. The student then sets the

analyzer in place and s

sa

record the melting. If the analyzer is in place when the polymer sample melts, the user

sees the polymer start to disappear as it forms a Maltese cross and the field of vision

becomes blacked out. This pattern is seen in the progression of images in Figure 16.

 68

Once the sample has melted, the student can either leave the temperature controller in

control, or can stop the current experiment and input the temperature fields for the

desired cooling and subsequent crystallization event. The student again commands the

temperature controller to take control of the heating stage and watches as the temperature

cools to the desired target temperature. The student then starts the recorder so the

subsequent images are saved to the server. If the analyzer is still in place, the user sees a

Figure 16: Maltese Cross Pattern in Melting PEO

 69

number of nucleation events and the resulting crystals as each begins to grow. A sample

crystallization event recorded by the system can be seen below in Figure 17.

Figure 17: Crystallization Event for PEO

After the experiment has concluded, the student can repeat the experiment at different

crystallization temperatures. The student quits the applet after completing all

experiments and logs in to the Framework Server to analyze the collected images.

 70

CHAPTER 10

Concluding Remarks and Future Work

The Polymer Crystallization iLab makes possible an educational experience not

previously available to most science and engineering undergraduates. By creating a

software system with a web-based interface to laboratory equipment, we have enabled

students to remotely conduct polymer crystallization experiments using optical

microscopy. Such experiments allow students to characterize the crystallization

properties of polymers by observing and analyzing polymer crystallization events.

Students in laboratory classes and in traditional engineering classes can use this

educational online laboratory to solidify the concepts studied in their coursework. The

cost barrier to equipment is solved by multiplexing a single setup and allows students to

access the equipment at any time of day. Staffing requirements are kept to a minimum by

designing software logic that directs students and by embedding security and safety

checks into the software system.

The Polymer Crystalliza f an interactive online

boratory, where students can remotely control the microscope and associated hardware

e their

tion iLab provides an example o

la

with minimal latency. Students can receive real-time streaming temperature and image

updates as if they were viewing the experiment in the laboratory. In addition, the

necessary software to process images has been included so students can analyz

 71

results after an experiment has been conducted.

Additional capabilities can be added to the Polymer Crystallization iLab to enhance the

educational experience. For example, students could benefit from a collaborative

environment if multiple clients were allowed to access the system simultaneously. This

added functionality would require a distinction between a lab controller and a lab

 only one person had control of the microscope at a given time.

This functionality could easily be added by employing a token passing scheme and using

ect [7].

he next stage of development for the Polymer Crystallization iLab could also involve an

g them to evaluate theoretical ideas applied in a

boratory setting. This paradigm of online laboratories offers engineering educators the

observer, to ensure that

the structure maintained in the Microscope Server from the MEMS proj

T

integrated simulation tool, so students can study the relationship between the theoretical

models encountered in class and actual observations from the laboratory. In addition, the

ImageJ applet can be altered so that students can engage in analysis specific to the

polymer crystallization experiment. Currently, the entire image analysis tool is provided

to the students; however, a tool with more limited and directed functionality would prove

beneficial to assist students in their analysis. Finally, the Polymer Crystallization iLab

will undergo extensive testing as it is deployed in the Fall 2003 undergraduate polymer

laboratory at M.I.T. Development revisions likely will be made to the system based on

user feedback.

Educational online laboratories will augment students’ understanding of scientific and

engineering concepts by allowin

la

opportunity to provide an enhanced educational experience to their students. Future

technologies will further develop and expand the number of online laboratories in

deployment and will help to broaden laboratory experiences among all science and

engineering students.

 72

Appendix A: Administrative User Manual

The following Administrative User Manual assumes that the Microscope Server and the
Framework Server are running on a machine with the hostname, PolymerLab.mit.edu,
and that the Microscope Client and Microscope Server code can be found in the
following directory: C:\ILab\RemoteMicroscope.

A.1 Program Requirements

his application requires Windows 2000 or Windows XP operation system with IIS and T

the .NET Framework installed. To be able to run and compile the Microscope Server, the

following packages need to be installed on the hosting machine:

• Python 2.2.2 : http://www.python.org/

• The Python Imaging Library 1.1.4 (Windows version) :

http://www.pythonware.com/products/pil/

• Python Win32 Extension Package for Python 2.2, Win32all version 152 :

http://starship.python.net/crew/mhammond/win32/Downloads.html

• Serial Communication Extension Package, SioModule22 :

http://starship.python.net/crew/roger/

To edit and compile the Microscope Client applet you will need the following installed:

• Java 2 SDK version 1.4.1_02 :

http://java.sun.com/

• Java SunONE Studio 3 Update 1 Community Edition:

http://java.sun.com/

To run the Microscope Client applet, users will need the following installed:

 73

• Java Plug-in 1.4.0 or higher:

http://java.sun.com/

• Quick Time Plug-in with SMIL interpreter (optional for viewing slide show)

http://quicktime.apple.com

• Real Player (optional for viewing slide show)

http://www.real.com/

To run and compile the Framework Server, the following software must be installed:

• .NET Framework Version 1.1

http://www.microsoft.com/net/

• VisualStudio.NET

From VisualStuido.NET CDs

• Internet Information Services

efault.asp

Included in Windows XP CD

• SQL Server 2000 with Service Pack 3

http://www.microsoft.com/sql/downloads/d and SQL CD

A.2

terpreted language that does not require compiling. Although Python files can be

com is no benefit to doing so. Therefore, the

Microscope Server is currently used as a scripted application. Modifications need only

be d r of the Microscope

Server.

Compiling Instructions

For the Microscope Server no compilation is necessary because the Python language is an

in

piled into .pyc or .pyo files, there currently

ma e and saved to the corresponding .py to alter the behavio

To compile the client application using the command line:

 74

http://www.python.org/
http://www.pythonware.com/products/pil/

• Go to the appropriate directory:
scope

•
javac –classpath C:\ILab\RemoteMicroscope client\ScopeFormApplet.java

• rsion of the code you need to create a jar file and move it to

the C:\inetpub\wwwroot\PolymerLab directory, which is the directory where the

directory C:\ILab\RemoteMicroscope called deploy.bat. Running this batch script

 the appropriate directory.

To com Server, it is suggested that Visual Studio .NET be used.

Althou program outside of Visual Studio, this is not

reco m ity of the project. The Framework Server is stored

under t PolymerLab.

.3 Running Instructions

sure that the sample is centered in the MDS600

eating stage. Since the MDS600 is not equipped with a reference motor, the initial

startServer.py [options]

• The available options for the script are the following:

ce messages
 -f, --cfg <file> Use specified configuration file
 -h, --help Display this help message

cd C:\ILab\RemoteMicro

To compile the code:

To deploy a release ve

Framework Server resides. To do this a batch script has been included in the

will deploy a release version in

pile the Framework

gh it is possible to compile the

m ended because of the complex

he Visual Studio project called

A

To run the Microscope Server, first make

h

starting position will be used as a reference position for the center of the polymer sample:

• Go to the appropriate directory:

cd C:\ILab\RemoteMicroscope

• Run the starting script:

 -d, --debug Display debugging tra

 75

http://java.sun.com/
http://www.real.com/

 -t, --timing Display timing trace messages
 y verbose activity messages

To run the client applet, log on to the Framework Server and follow the links to reserve

and open the polymer lab.

A.4

The HT irectory:

eous sessions supported. In order to

llow more simultaneous connections, the operating system will have to be upgraded wo

indows XP Server or downgraded to Windows 2000 Server.

irtual Directories can be added to expose any directories on the file system to the Web

-v, --verbose Displa

How to add more files to the HTTP server

TP server can read files that are located in the following d

C:\inetpub\wwwroot

The HTTP server is a development version of Microsoft’s IIS web server. On Windows

XP Professional, there are a maximum of 10 simultan

a

W

V

Server. Currently, there is a virtual directory called iLab, accessible through

http://polymerlab.mit.edu/iLab. This virtual directory points to the local directory

C:\inetpub\wwwilab\. Under this virtual directory, the users directory is where all

xperiment run images and SMIL output files are saved to the file system.

More web app server by adding new web applications in

Vis lS automatically makes the necessary changes to the file

system to allow the web application to be run remotely.

e

lications can be added to the web

ua tudio.NET. This IDE

 76

Appendix B: Student User Manual

This user manual is intended to explain how to use the student client interface for the

d

icroscope Client

Microscope Client. It explains what each graphical component does, and how it shoul

be used.

M

 77

apturing Images

 is selected on the Video/Capture control. Then every time the CAPTURE

button is pressed an image is captured and it displayed on the screen.

ideo Streaming

To start video streaming select the “Video Stream” selection on the Video/Capture

control. The capture button is disabled, and a sequence of images is captured and

displayed on the screen.

Moving the Image

To move the image around use the arrow buttons and sliders located to the right and

bottom of the image display panel. Whenever any of these arrow buttons are pressed the

XY stage moves, and if “Capture Single Snapshots” is selected a new image is captured

and displayed on the screen immediately after the stage finishes moving.

Perform Autofocus

The Perform Autofocus button calls the one-time autofocus function, and returns a new

focused image that is displayed on the image panel. The autofocus main purpose is to

search for the right z stage position for adequate focusing.

Magnification

The Magnification control changes the objective lens being used. The possible

agnifications are: 2.5X, 5X, 10X, 20X, and 50X.

C

To capture microscope images, first the user has to make sure the “Capture Single

Snapshots”

V

m

 78

Aperture

anges the condenser aperture setting. A condenser has the role of

(0.95) the objective

provides maximum resolution, but some glare may be present, which reduces image

re is adjusted to about 0.70 the glare is reduced and contrast is

proved, without significant lose of image detail. Lowering the aperture increases

cations the field of vision is greatly reduced when lowering the

perture. Therefore, for optimal performance maintain the aperture above 0.70 when

ctives.

 on the optical

xis. This control is useful mainly to control the light illumination for the lower

5X, and 5X. For higher magnifications the field stop should be

t to the highest value, and only use the Aperture control to adjust brightness and

 control you are able to select between an analyzer, a DIC_RED

flector, and no reflector at all. A much higher exposure time is always needed when

The Aperture control ch

collecting, controlling and concentrating the light from the lamp onto the specimen. The

aperture of the condenser serves to control the angle of the cone of light emerging from

the top of the condenser. When the aperture is set to the maximum

contrast. If the apertu

im

contrast but image detail will be lost.

The aperture setting should only be lowered for magnifications greater than 10X,

because in lower magnifi

a

using 2.5X and 5X obje

Field Stop

The field stop allows you to control the amount of light entering the system as well as the

field of view. The field stop is basically a plate with a hole on it placed

a

magnifications such as 2.

se

contrast.

Reflectors

With the reflector

re

using the DIC_RED reflector or the analyzer, than when not using a reflector at all.

 79

Exposure Time

e bottom of the Microscope Client. Only valid

param

t. In addition, the Video Stream button should be selected

 view images at the fastest possible rate. Once the polymer has melted, the appropriate

target isothermal crystallization, and hold time should be entered into the

emperature Panel and the SUBMIT button should be pressed to regain temperature

 to the server. NOTE: The video streaming button must be pressed to save

ages, as the images are currently saved in the Video Stream. When sufficient images

orded (the number should not exceed 150), the recorder can be stopped, and

e experiment can be accessed through the Framework Server.

The exposure time controls the shutter speed of the camera. The normal setting for the

exposure time is 1 ms. If the user is using the analyzer or the DIC_RED reflector then to

get a clear image the exposure time has to be increased to around 20 ms.

Running Experiments

Experiments can be run by inputting the desired target temperature, ramp rate, and hold

time into the Temperature Panel at th

eters will be accepted; invalid parameters will be flagged by a popup dialog

window. After the desired parameters have been entered, press the SUBMIT or RUN

button at the bottom right of the Microscope Client. The analyzer should be in place to

view the polymer melting even

to

cooling rate,

T

control conditions.

Recording Experiments

The Recorder menu allows a user to specify when experiments are recorded and images

are saved

im

have been rec

th

For further client instructions, please refer to the Full Student Manual

at http://polymerlab.mit.edu.

 80

Appendix C: SQL Database Script

OBJECTPROPERTY(id, N'IsForeignKey') = 1)

exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_Add]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)

d]

exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_Delete]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_GetRunFromID]') and OBJECTPROPERTY(id,

drop procedure [dbo].[ExperimentRun_GetRunFromID]

OBJECTPROPERTY(id, N'IsProcedure') = 1)
entRun_GetRunFromUserID]

exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_GetRunFromUserIDAndExpID]') and

nFromUserIDAndExpID]
GO

exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_IsRun]') and OBJECTPROPERTY(id,

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_Update]') and OBJECTPROPERTY(id,

ew]') and OBJECTPROPERTY(id,

op procedure [dbo].[Experiment_CreateNew]
O

exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiment_GetExpFromID]') and OBJECTPROPERTY(id,
IsProcedure') = 1)

drop procedure [dbo].[Experiment_GetExpFromID]

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[FK_Experiment_Runs_Experiments]') and

ALTER TABLE [dbo].[Experiment_Runs] DROP CONSTRAINT FK_Experiment_Runs_Experiments
GO

if

drop procedure [dbo].[ExperimentRun_Ad
GO

if

drop procedure [dbo].[ExperimentRun_Delete]

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_GetRunFromExpID]') and
OBJECTPROPERTY(id, N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRun_GetRunFromExpID]
GO

N'IsProcedure') = 1)

GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_GetRunFromName]') and
OBJECTPROPERTY(id, N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRun_GetRunFromName]
GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[ExperimentRun_GetRunFromUserID]') and

drop procedure [dbo].[Experim
GO

if
OBJECTPROPERTY(id, N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRun_GetRu

if
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRun_IsRun]

N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRun_Update]
GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiment_CreateN
N'IsProcedure') = 1)
dr
G

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiment_GetAllExp]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[Experiment_GetAllExp]
GO

if
N'

 81

GO

mName]') and OBJECTPROPERTY(id,

op procedure [dbo].[Experiment_GetExpFromName]
O

ists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Reservations]') and OBJECTPROPERTY(id, N'IsUserTable') =

ervations]

ists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Role_To_Role_Map]') and OBJECTPROPERTY(id,

sts (select * from dbo.sysobjects where id = object_id(N'[dbo].[Roles]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)

ists (select * from dbo.sysobjects where id = object_id(N'[dbo].[User_To_Role_Map]') and OBJECTPROPERTY(id,
serTable') = 1)

sts (select * from dbo.sysobjects where id = object_id(N'[dbo].[Users]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)
table [dbo].[Users]

[RunID] [uniqueidentifier] NOT NULL ,
[ExperimentID] [uniqueidentifier] NOT NULL ,

on] [varchar] (500) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
L ,

[AddDate] [datetime] NOT NULL ,
[OutputXml] [ntext] COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

XTIMAGE_ON [PRIMARY]

ATE TABLE [dbo].[Experiments] (

ntName] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
TE SQL_Latin1_General_CP1_CI_AS NULL ,

[RegistrationDate] [datetime] NOT NULL ,
[CreatorID] [uniqueidentifier] NULL

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiment_GetExpFro
N'IsProcedure') = 1)
dr
G

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiment_IsExperiment]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[Experiment_IsExperiment]
GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiment_Update]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[Experiment_Update]
GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiment_Runs]') and OBJECTPROPERTY(id,
N'IsUserTable') = 1)
drop table [dbo].[Experiment_Runs]
GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[Experiments]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)
drop table [dbo].[Experiments]
GO

f exi

1)
drop table [dbo].[Res
GO

f exi

N'IsUserTable') = 1)
drop table [dbo].[Role_To_Role_Map]
GO

f exii

drop table [dbo].[Roles]
GO

if ex

'IsUN
drop table [dbo].[User_To_Role_Map]
GO

if exi

rop d
GO

CREATE TABLE [dbo].[Experiment_Runs] (

 [RunName] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
 [Descripti
 [UserID] [uniqueidentifier] NOT NUL

 [expdate] [datetime] NOT NULL
) ON [PRIMARY] TE
GO

REC
 [ExperimentID] [uniqueidentifier] NOT NULL ,
 [Experime
 [Description] [varchar] (500) COLLA

) ON [PRIMARY]
GO

 82

CREATE TABLE [dbo].[Reservations] (
[UserID] [uniqueidentifier] NOT NULL ,

] [datetime] NOT NULL ,

 [PRIMARY]

o].[Role_To_Role_Map] (
L ,

[RoleIDB] [uniqueidentifier] NOT NULL ,
[DateSubmitted] [datetime] NOT NULL

ATE TABLE [dbo].[Roles] (
[RoleID] [uniqueidentifier] NOT NULL ,

ription] [varchar] (7000) COLLATE SQL_Latin1_General_CP1_CI_AS NULL

tifier] NOT NULL ,
[RoleID] [uniqueidentifier] NOT NULL ,
[DateSubmitted] [datetime] NOT NULL

ATE TABLE [dbo].[Users] (
[UserID] [uniqueidentifier] NOT NULL ,

 [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
ATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,

[Password] [varchar] (500) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
[SchoolID] [int] NULL ,

Date] [datetime] NULL ,
[ConfirmationCode] [uniqueidentifier] NULL

N [PRIMARY]

ANSI_NULLS OFF

ATE PROCEDURE dbo.ExperimentRun_Add

ption, UserID, AddDate, OutputXml)
values
(@RunID, @ExpID, @RunName, @Desc, @UserID, @AddDate, @OutputXML)

ANS

QUOTED_IDENTIFIER OFF

 [Priority] [tinyint] NOT NULL ,
 [StartTime
 [EndTime] [datetime] NOT NULL
) ON
GO

CREATE TABLE [db
 [RoleIDA] [uniqueidentifier] NOT NUL

) ON [PRIMARY]
GO

CRE

 [RoleName] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
 [RoleDesc
) ON [PRIMARY]
GO

CREATE TABLE [dbo].[User_To_Role_Map] (
 [UserID] [uniqueiden

) ON [PRIMARY]
GO

CRE

 [FirstName] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL ,
 [LastName]
 [Email] [varchar] (50) COLL

 [RegistrationDate] [datetime] NOT NULL ,
 [Confirmation

) O
GO

SET QUOTED_IDENTIFIER ON
GO
SET
GO

CRE
 @RunID uniqueidentifier,
 @ExpID uniqueidentifier,
 @RunName varchar(50),
 @Desc varchar(500),
 @UserID uniqueidentifier,
 @AddDate datetime,
 @OutputXml ntext
AS
 insert into Experiment_Runs
 (RunID, ExperimentID, RunName, Descri

GO
SET QUOTED_IDENTIFIER OFF
GO
SET I_NULLS ON
GO

SET
GO

 83

SET ANSI_NULLS OFF
GO

CRE PROCEDURE dbo.ExperimentRun_DATE elete
 @RunID uniqueidentifier
 AS

 delete from Experiment_Runs where RunID = @RunID

ANSI

QUOTED_IDENTIFIER ON

ANSI

ATE PROCEDURE dbo.ExperimentRun_GetRunFromExpID
ExpID uniqueidentifier

ID, AddDate, OutputXml
om Exper der by AddDate desc

TED_IDENTIFIER OFF

ANSI

QUO

ANSI

URE dbo.ExperimentRun_GetRunFromID
@RunID uniqueidentifier

D, UserID, RunName, Description, AddDate, OutputXml
from Experiment_Runs

@RunID

TED_IDENTIFIER OFF

** O te: 9/26/2002 1:22:07 PM ******/
.ExperimentRun_GetRunFromName

select RunID, ExperimentID, UserID, RunName, Description, AddDate, OutputXml

where RunName = @RunName

TED_IDENTIFIER OFF

ANSI_NULLS ON

GO
SET QUOTED_IDENTIFIER OFF
GO
SET _NULLS ON
GO

SET
GO
SET _NULLS ON
GO

CRE
 @
AS
select RunID, ExperimentID, RunName, Description, User
fr iment_Runs where ExperimentID=@ExpID or

GO
SET QUO
GO
SET _NULLS ON
GO

SET TED_IDENTIFIER ON
GO
SET _NULLS OFF
GO

CREATE PROCED

AS
 select RunID, ExperimentI

 where RunID =

GO
SET QUO
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS OFF
GO

/**** bject: Stored Procedure dbo.FW_ExperimentRun_GetRunFromName Script Da
CREATE PROCEDURE dbo
 @RunName varchar(50)
AS

 from Experiment_Runs

GO
SET QUO
GO
SET

 84

GO

SET QUOTED_IDENTIFIER ON

ATE PROCEDURE dbo.ExperimentRun_GetRunFromUserID

D, RunName, Description, UserID, AddDate, OutputXml
 Experiment_Runs where UserID=@UserID order by AddDate desc

IER OFF

ANSI_NULLS ON

ATE PROCEDURE dbo.ExperimentRun_GetRunFromUserIDAndExpID

@ExpID uniqueidentifier

t RunID, ExperimentID, RunName, Description, UserID, AddDate, OutputXml
om Experiment_Runs where ExperimentID=@ExpID and UserID=@UserID

TED_IDENTIFIER OFF

QUO

ET ANSI

** Object: Stored Procedure dbo.FW_ExperimentRun_IsRun Script Date: 9/26/2002 1:22:07 PM ******/
bo.ExperimentRun_IsRun

@RunID uniqueidentifier

riment_Runs where RunID=@RunID

QUOTED_IDENTIFIER OFF

ANSI_NULLS ON

ANSI

ATE PROCEDURE dbo.ExperimentRun_Update

@Name varchar(50),
(500),

GO
SET ANSI_NULLS ON
GO

CRE
 @UserID uniqueidentifier
AS
select RunID, ExperimentI
from

GO
SET QUOTED_IDENTIF
GO
SET
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS ON
GO

CRE
 @UserID uniqueidentifier,

AS
selec
fr
order by AddDate desc

GO
SET QUO
GO
SET ANSI_NULLS ON
GO

SET TED_IDENTIFIER ON
GO
S _NULLS OFF
GO

/****
CREATE PROCEDURE d

AS
 select count(1) from Expe

GO
SET
GO
SET
GO

SET QUOTED_IDENTIFIER ON
GO
SET _NULLS OFF
GO

CRE
 @ExpID uniqueidentifier,

 @Desc varchar

 85

 @RunStatus varchar(50),
rID uniqueidentifier,

@RunID uniqueidentifier,

Experiment_Runs
set ExperimentID=@ExpID, RunName=@Name, Description=@Desc,

utputXml

ANSI_NULLS ON

QUOTED_IDENTIFIER ON

ANSI_NULLS ON

ATE PROCEDURE dbo.Experiment_CreateNew
ExpID uniqueidentifier,
ExperimentName varchar(50),

rID)
ID, @ExperimentName, @Desc, @RegDate, @CreatorID)

e, Description, RegistrationDate, CreatorID
from Experiments order by ExperimentName

QUOTED_IDENTIFIER OFF

ANSI_NULLS ON

QUOTED_IDENTIFIER ON

ANSI_NULLS ON

ATE PROCEDURE dbo.Experiment_GetExpFromID

tName, Description, RegistrationDate, CreatorID
entID=@ExpID

 @Use
 @AddDate datetime,

 @OutputXml ntext
AS
 update

 @UserID=UserID, AddDate=@AddDate, OutputXml=@O
 where RunID = @RunID

GO
SET QUOTED_IDENTIFIER OFF
GO
SET
GO

SET
GO
SET
GO

CRE
 @
 @
 @Desc varchar(500),
 @RegDate datetime,
 @CreatorID uniqueidentifier
AS
 insert into Experiments
 (ExperimentID, ExperimentName, Description, RegistrationDate, Creato
 values (@Exp

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS ON
GO

CREATE PROCEDURE dbo.Experiment_GetAllExp
AS
 select ExperimentID, ExperimentNam

GO
SET
GO
SET
GO

SET
GO
SET
GO

CRE
 @ExpID uniqueidentifier
AS
 select ExperimentID, Experimen
 from Experiments where Experim

 86

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON

O
ANSI_NULLS ON

bo.Experiment_GetExpFromName
@ExpName uniqueidentifier

erimentName, Description, RegistrationDate, CreatorID
from Experiments where ExperimentName=@ExpName

TED_IDENTIFIER OFF

ANSI_NULLS ON

ATE

select count(1) from Experiments where ExperimentID=@ExpID

IER OFF

ANSI_NULLS ON

IER ON

ANSI_NULLS ON

ATE

ExperimentName varchar(50),
@Desc varchar(500),

@CreatorID uniqueidentifier

te Experiments set ExperimentName=@ExperimentName,
sc, CreatorID=@CreatorID, RegistrationDate=@RegDate

QUOTED_IDENTIFIER OFF

ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON
G
SET
GO

CREATE PROCEDURE d

AS
 select ExperimentID, Exp

GO
SET QUO
GO
SET
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS ON
GO

CRE PROCEDURE dbo.Experiment_IsExperiment
 @ExpID uniqueidentifier
AS

GO
SET QUOTED_IDENTIF
GO
SET
GO

SET QUOTED_IDENTIF
GO
SET
GO

CRE PROCEDURE dbo.Experiment_Update
 @ExpID uniqueidentifier,
 @

 @RegDate datetime,

AS
upda
Description=@De
where ExperimentID=@ExpID

GO
SET
GO
SET
GO

 87

References

] P. Nasser. “Remote Microscope For Polymer Crystallization WebLab”, M.Eng.
Thesis, Department of Electrical Engineering and Computer Science,

echnology, September 2002.

[2] in, and J. Runt. “Crystallization of poly

nd melt-miscible PEO Blends”. Macromolecules, 1999.

] S. Magonov, and Y. Godovsky, “Atomic Forces Microscopy of Polymers: Studies
e Transitions”. Digital Instruments, 2001

[4] J. Kao. “Remote Microscope for Inspection of Integrated Circuits,” S.M. Thesis,
ineering and Computer Science, Massachusetts

Institute of Technology, September 1995.

] S. Kittipiyakul. “Automated Remote Microscope for Inspection of Integrated
Circuits,” S.M. Thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, September 1996.

“A Remotely Automated Microscope for Characterizing Micro
Electromechanical Systems (MEMS)”, S.M. Thesis, Department of Electrical

 Science, Massachusetts Institute of Technology, June

] A. Kuchling. “Internet Access to an Optical Microscope,” http://www.mems-

ions/ipc7-abstract.html, March 2002.

 WebLab at MIT. http://weblab.mit.edu

] E. Anderson, P. Greenspun, A. Grumet. “The Internet Application Workbook,”
http://philip.greenspun.com/internet-application-workbook/

[1

Massachusetts Institute of T

L. Wu, M.S. Lisowski, S. Talibudd
(ethylene oxide) a

[3

of Thermal Phas

Department of Electrical Eng

[5

[6] D. Seth.

Engineering and Computer
2001.

[7

exchange.org/software/microscope/publicat

[8] Microelectronics

[9

 88

[10] “W3C SMIL Recommendation,” http://www.w3.org/AudioVideo/

[11] L. Hui. “I-Lab Webpage,” http://i-lab.mit.edu. January 2001.

mputer
Science, Massachusetts Institute of Technology, May, 1997.

[14]

http://www.swiss.ai.mit.edu/projects/icampus/index.html, 2002

[15]

[16] “Java Foundation Classes (JFC),” http://java.sun.com/products/jfc/#components

[12] J. Kao, D. Troxel, S. Kittipiyakul. “Internet Remote Microscope,”

[Telemanipulator and Telepresence Technologies III ,SPIE Proceedings, 2901,
(Nov. 18-19, 1996) , Boston, MA.].

[13] M. Perez. “Java Remote Microscope for Collaborative Inspection of Integrated
Circuits,” M. Eng. Thesis, Department of Electrical Engineering and Co

iCampus Project Webpage.

“What is Python?” http://www.python.org/doc/Summary.html

 89

	Introduction
	Purpose and Motivation
	Background
	Polymer Crystallization Experiment
	Related Work
	iCampus Framework

	Development
	Java
	Python
	C#

	Remote Microscope
	Hardware Overview
	Microscope Client Overview
	Microscope Server Overview
	Hardware Controllers

	Hardware and Controller Design
	Hardware Setup
	TMS94 Temperature Programmer
	MDS600 Heating Stage and Controller
	Liquid Nitrogen Pump (LNP94)

	Hardware Controllers
	Axioplan2 Controller
	Axiocam Controller
	MDS600 Controller

	Database Schema
	Users
	Roles
	Experiments
	Experiment Runs
	Reservations
	Stored Procedures

	System Architecture
	Framework Server Overview
	Framework Server => Microscope Client Communication
	Microscope Server (Microscope Client Communication
	Client Commands
	Server Commands

	Microscope Server (Framework Server Communication
	SMIL

	Microscope Client
	Development Improvements
	Temperature Panel
	Other Interface Modifications
	Message Panel
	Image Panel
	Applet Menu

	Microscope Authorization
	Look and Feel

	Microscope Server
	Temperature Updates
	Running Experiments
	Recording Experiments

	Framework Server
	Class Summary
	Identity Service and Lab Service
	User Interface
	Administrative Interface
	Student Interface

	Registration
	Reservation System
	Using Remote Microscope
	Analyzing Experiment Runs
	ImageJ

	Evaluation of the Polymer Crystallization iLab
	Educational Value
	
	
	
	
	The primary goal of the Polymer Crystallization iLab is to deliver a rich and interactive educational experience in polymer crystallization. To accomplish this goal, we have created an interactive Remote Microscope with real time streaming of images and

	Usage Scenario

	Concluding Remarks and Future Work
	: Administrative User Manual
	: Student User Manual
	
	
	Microscope Client

	: SQL Database Script
	References

