
Online Polymer Crystallization Experiment

by

Derik A. Pridmore

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

 January 28, 2005

© Derik A. Pridmore, 2005. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author__

 Department of Electrical Engineering and Computer Science
 January 28, 2005

Certified by__

 Gregory C. Rutledge
Professor of Chemical Engineering

 Thesis Supervisor

Accepted by___

 Arthur C. Smith
 Chairman, Department Committee on Graduate Theses

 2

Online Polymer Crystallization Experiment

by
Derik A. Pridmore

Submitted to the Department of Electrical Engineering and Computer Science

January 28, 2005

In Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

An architecture for online remote operation of a polymer crystallization experiment was
refined, beta tested in actual use conditions, and extended based on feedback from those
tests. In addition, an application for graphically simulating macroscopic crystal spherulite
growth was developed for use as an educational tool. Finally, the experiment was used in
the design process for modifying the generic iLab framework to incorporate interactive
functionality. Specifically, a reservation model and design changes to the experiment
storage and service broker were proposed based on the Polymerlab, and the experiment
was used as a testbed for initial implementation of some of the proposed systems.

Thesis Supervisor: Gregory C. Rutledge

Title: Professor of Chemical Engineering

 3

Acknowledgments

I would like to thank Prof. Greg Rutledge, Enid Choi, Daniel Talavera, Jon Salz, Sid

Henderson, and Dan Lovell for their help and support.

Table of Contents

CHAPTER 1 ...11

INTRODUCTION..11

1.1 OBJECTIVE..11

1.2 PURPOSE AND MOTIVATION ..12

1.3 BACKGROUND..13

1.3.1 Polymer Crystallization Experiment..13

1.3.2 Related Work...14

1.3.3 iLab Project ...15

1.4 DEVELOPMENT...16

1.4.1 Java...16

1.4.2 Python ..17

1.4.3 C# ...18

CHAPTER 2 ...19

SYSTEM OVERVIEW ...19

2.1 SYSTEM ARCHITECTURE..19

2.2 FRAMEWORK SERVER..20

2.3 MICROSCOPE CLIENT OVERVIEW ...23

2.4 MICROSCOPE SERVER OVERVIEW...25

2.4.1 Axioplan2 Controller ..27

 5

2.4.2 Axiocam Controller...27

2.4.3 MDS600 Controller...27

CHAPTER 3 ...29

BETA TESTING AND DEPLOYMENT OF POLYMERLAB ...29

3.1 OVERVIEW OF EXPERIMENT ..29

3.2 RESULTS OF USE ..30

CHAPTER 4 ...33

MULTICASTING..33

4.1 MOTIVATION ..33

4.2 DESIGN ADDITIONS/ CHANGES..34

4.2.1 Client Changes ..35

4.2.2 Microscope Server additions ..37

4.2.3 Framework server additions ...38

4.3 PERFORMANCE ISSUES ...39

CHAPTER 5 ...41

GRAPHICAL SIMULATION APPLICATION ...41

5.1 CRYSTAL GROWTH MODEL...41

1.2 VORONOI DIAGRAMS...46

1.3 HETEROGENEOUS NUCLEATION APPLET ...47

1.4 ADDITIVELY WEIGHTED VORONOI DIAGRAMS..49

1.5 HOMOGENEOUS NUCLEATION APPLET ..50

1.6 RESULTS ...52

1.7 CONCLUSION ..54

CHAPTER 6 ...56

INCORPORATION OF GENERIC ILAB ARCHITECTURE...56

6.1 “BATCH” ILAB ARCHITECTURE ..57

6.2 SERVICE BROKER DESIGN CHANGES ..60

6.2.1 Experiment Storage Service ...61

6.2.2 Scheduling Server ...61

6.3 FUTURE WORK...63

 6

CHAPTER 7 ...64

CONCLUDING REMARKS AND FUTURE WORK...64

APPENDIX A: SQL DATABASE SCRIPT...66

APPENDIX B: HETEROGENEOUS SIMULATION APPLET...79

APPENDIX C: HOMOGENEOUS SIMULATION APPLET ...90

APPENDIX D: USER SURVEY RESULTS..102

APPENDIX E: REINSTALLATION PROCEDURES ...108

APPENDIX F: STUDENT USER MANUAL ...113

APPENDIX G: POLYMER SAMPLE PREPARATION..117

REFERENCES ...119

 7

List of Figures

Figure 1: PEO crystal imaged using Polymerlab.. 13
Figure 2: Growth of spherulites during crystallization. The image on left shows initial

crystallization; the image on the right shows the same sample at a later time. 14
Figure 3: General architecture overview.. 20
Figure 4: Typical student user interface... 22
Figure 5: Database schematic representation ... 23
Figure 6: Remote Microscope Client GUI ... 25
Figure 7: The Remote Microscope .. 26
Figure 8: Module Dependency Diagram of Hardware Controllers 28
Figure 9: Modified Microscope Client applet. .. 36
Figure 10: Framework Server Multicast Group management page................................. 39
Figure 11: Adding User to a Multicast Group.. 39
Figure 12: Microscope Server image output times versus number of clients. 40
Figure 13: Microscope Server image acquisition times versus number of clients. 40
Figure 14: Example showing winding of strands at the crystal surface. 43
Figure 15: Voronoi diagram and the dual Delaunay triangulation.................................. 47
Figure 16: Heterogeneous simulation applet showing crystal growth............................. 48
Figure 17: Graphical simulation using Additively weighted Voronoi diagram............... 51
Figure 18: Crystal growth versus time for animations at selected temperatures.............. 53
Figure 19: Determination of Kg from animation data. .. 53
Figure 20: Determination of Avrami exponent from graphical animation data............... 54
Figure 21: Communication between components of general iLab architecture............... 58
Figure 22: Screenshot from test implementation of Reservation System using Polymerlab

.. 63

 8

 9

List of Tables

Table 1: Commands from the Server to the Client. .. 37
Table 2: Commands from Client to Server. ... 38
Table 3: Parameters from applet test run. .. 52

 11

CHAPTER 1

Introduction

1.1 Objective

This paper focuses on the development and deployment of the polymer crystallization

iLab, a remote Internet laboratory for conducting polymer crystallization experiments

using optical microscopy. Using the polymer crystallization iLab, students learn about

the fundamentals of polymer physics while remotely conducting this experiment and

recording data in the form of digital images from an optical microscope. Through the use

of digital image analysis, students analyze the data obtained to derive the crystallization

properties of a specific polymer and characterize the crystallization kinetics.

This project had several objectives. The first was to evaluate the security,
functionality, and utility of the polymer crystallization iLab, or Polymerlab, system by
deploying it in beta testing for the first time with student users in an actual test, and then
to respond to design shortcomings identified through user feedback. An additional
goal was to modify the existing Polymerlab framework to enable multiple users
to view and control the experiment at once, to further the goal of real-time
remote collaboration between users. Another goal was the development of a graphical
crystal simulation tool that would allow students users to compare
their experiments to theoretical predictions in an intuitive way. Finally,
initial steps in the integration of the Polymerlab experiment, the only

 12

iLab experiment to use real-time user control in its experiments, with the
generic iLab framework were taken.

1.2 Purpose and Motivation

There are several motivating factors behind the development of the Polymerlab and iLabs
in general. One of the most important is to enable scarce and expensive equipment to be
used by students who might not otherwise be able to. In the case of the Polymerlab, the
optical microscope, associated controllers, and sample stage necessary to carry out the
experiment are quite costly. Since only one set of equipment is available, and it is
delicate, using the lab in a typical classroom setting would require both extreme care and
tight scheduling. In addition, lab personnel are required to supervise whenever students
might make use of the experiment. Thus, while making experimentation an integral part
of a student’s curriculum enhances the educational experience, there are cost barriers to
doing so. Developing a web mediated interface for the experiment allows for more
efficient sharing of resources in order to overcome cost barriers, while also enabling built
in hardware protection to reduce the need for supervision. These cost savings might be
distributed over a group of universities not bound geographically in order to expand the
experimental apparatus available to their respective students. Furthermore, the ability to
access the experiment via the web allows for innovations in the classroom, by allowing
instructors to illustrate their lectures with live demonstrations of experiments. Internet
laboratories can also be used 24/7, not just during scheduled lab hours. This gives
students more flexibility and allows more efficient use of time.

Another motivation for developing the Polymer crystallization iLab is to facilitate group

learning. An important trend in education has been the integration of both

experimentation and collaboration in degree programs, especially in the areas of science

and engineering. Once a system is developed to allow single users to share a resource

such as the Polymerlab equipment remotely via the internet, allowing remote

collaboration between multiple users is only a matter of extending the software design.

In contrast, the physical apparatus of the experiment might not be amenable to such

group collaboration due to, for example, laboratory space constraints or equipment

design.

 13

1.3 Background

1.3.1 Polymer Crystallization Experiment

The polymer crystallization experiment is used as part of an undergraduate course in the

Chemical Engineering Department called 10.467, Polymer Science Laboratory. The

experiment, a standard example used in teaching polymer physics, involves heating a

polymer sample (in this case PEO, or polyethylene oxide) above its melting point and

subsequently cooling it to various controlled temperatures in order to observe the

characteristics of crystal formation under isothermal conditions. Crystals are imaged

using a polarized light microscope, which can be difficult to obtain.

Figure 1: PEO crystal imaged using Polymerlab

When imaging crystallization, spherulites are observed. Spherulites are crystal particles

which grow radially and exhibit spherical symmetry. By observing the rate of formation

of crystal spherulites and the rate of growth of those spherulites as a function of

temperature, students can determine certain fundamental physical properties of the

sample. By comparing the functional form of the dependencies of transformed volume or

crystal growth rate on temperature to those predicted by theory students may obtain

physical characteristics such as activation energy, average surface energy, and Avrami

exponent of the thin film crystallization [1]. The exact manner of determining these

values will be discussed later in Chapter 5.

 14

Figure 2: Growth of spherulites during crystallization. The image on left shows initial crystallization;
the image on the right shows the same sample at a later time.

Unlike some experiments, the polymer crystallization experiment may be cycled

repeatedly with no user intervention to change or renew the polymer sample. In theory,

once the experiment has been set up, it is self-contained and may be used continuously.

In addition, with proper sample preparation, the experiment should be memoryless:

previous crystallization results should not affect subsequent runs. Therefore, the polymer

crystallization experiment is especially suited to the goals of an online laboratory. In

particular, the experiment can be run at any time convenient for the student without

instructor oversight, preparation, or intervention.

1.3.2 Related Work

The work contained in this thesis has been a direct continuation of work performed by

Paola Nasser and Daniel Talavera in connection with their Masters of Engineering theses.

In her thesis, Paola Nasser developed a Remote Microscope consisting of a light

microscope and a digital camera controlled via communication between a Java Applet on

a user’s local machine and a microscope server [2]. The client had capabilities to display

images captured by the digital camera and to view video at a rate of one frame every six

seconds. Additionally, the client could adjust the light, objective, and polarizer settings

of the microscope. Daniel Talavera’s thesis expanded both the microscope client and

server to enable additional functionality, including the capability to control a heating

stage, the XY position of the sample in the microscope, and the focus of the polymer

 15

sample, and to save experimental runs on the server. Additionally, the video streaming

rate of the system was improved and an on-line environment was created to enable users

to store and analyze data, as well as manage laboratory reservations [3].

Much of the development done in connection with the Polymerlab experiment has been

directly influenced by previous projects related to remote control of microscopy systems.

Among these are James Kao [4] and Somsak Kittipiyakul’s [5] Internet Remote

Microscope, a remote automated microscope developed by a MEMS research group at

MIT [6], as well as a DARPA sponsored open-source project [7]. Each of these systems

impacted the design of the Polymerlab in multiple ways. The most important of these, the

MEMS project, was developed by A. M. Kuchling and uses a simple asynchronous

message passing protocol ((the Microscope Networking Protocol Specification) between

the microscope and user (server and client) to set microscope parameters and request

images. This protocol formed the basis for Paola Nasser’s Remote Microscope design.

1.3.3 iLab Project

The iLab project began in June of 2000 as part of the iCampus initiative, a 5 year, $25

million research alliance between MIT and Microsoft to enhance university education

through information technology [9]. The goal of the iLab project was to create internet

accessible laboratories. Among these laboratories were the polymer crystallization

experiment, a heat exchange experiment, and a microelectronics lab.1 Additional

experiments were added as the project grew. Each of these experiments represents a

distinct set of requirements for an online experiment. As discussed above, the Polymer

Crystallization iLab serves as a prototype of an interactive experiment. In contrast, the

Microelectronics WebLab represents a “stateless” experiment [8]. Because of the

relatively small time scale in electronic measurements, there is no user interaction during

a stateless experiment. The user’s job is to set up the experiment and let the experiment

run without any additional interaction.

1 The Heat Exchange experiment may be found at http://heatex.mit.edu, and the Microelectronics WebLab

may be found at http://ilabserv.mit.edu.

 16

After these labs met their initial goals, work shifted to designing a common support

infrastructure that would allow the more general aspects of online laboratories to be

maintained as part of a common system, to reduce redundancy and make code

maintenance easier. This system would separate the administrative components which

would be common to all online laboratories, such as user authentication and result

storage, from experiment specific components. While part of the work detailed in this

thesis was being carried out, the first laboratory supported by this general iLab

framework debuted in January of 2004. This framework, however, included only support

for a general type of experiments known as “batched” experiments. These experiments do

not require user interaction. After this initial implementation, work was begun on

modifying the batched experiment architecture to support user-interactive experiments.

Experiment interfaces and communication protocols would need to be changed to address

the problems inherent to real-time control of experiments by users. Indeed, the very

concept of a reservation system would need to be introduced, as the previous “batched”

experiments could be scheduled automatically by a server. The details of many of these

modifications will be discussed later in this thesis. The current Polymerlab serves as a

testbed for software design to support interactive experiments.

1.4 Development

This section provides a description of the various programming languages and

programming environments used in creating components of this lab. This description is

necessary not only to detail the earliest design choices made in implementing components

but also for future maintenance.

1.4.1 Java

Both the Microscope Client and the Simulation module are implemented in Java. Java
was originally chosen by Paola Nasser to implement the earliest version of the
Microscope client, because of its simple native support for messaging over sockets, its

 17

easy use of pre-packaged GUI (Graphical User Interface) components, its object oriented
structure, and the relative pervasiveness of the Java within most browser applications.
Because the system uses full duplex communication between the client and server, the
client must be able to decipher messages sent over sockets. The use of Java allows for a
thinner client to be downloaded by users by relying on built-in Java classes and
functionality, which saves bandwidth and time, as well as ensures compatibility with
most if not all computing environments. The Java Virtual Machine (JVM) required by the
Polymer Crystallization iLab is Java 1.4. Since many web-browsers do not come with
Java 1.4, users will have to download the Java Plug-in supplied by Sun Microsystems.
(In Appendix D, the User Survey Responses, a number of browsers which have been used
with the experiment are listed.)

The Microscope Client was developed using the Sun Open Net Environment (Sun ONE).

This integrated development environment contains a number of coding, compiling, and

debugging tools as well as a graphical Form Editor, which allows the developer to easily

manipulate and preview visual Java components. The Simulation module was developed

using a simple Emacs editing environment, but both the Microscope client and simulation

module can easily be opened and edited in any of a number of standard Java editing

environments and IDEs (Integrated Development Environment).

1.4.2 Python

The Microscope Server and all associated hardware controllers are implemented in
Python. Python is an object-oriented language that has a number of freely available
modules to control everything from serial ports to image manipulation. Python was
chosen due to its efficient string manipulation and dictionary management. The hardware
modules implemented in Python communicate with the various hardware devices using
serial ports and Microsoft’s Component Object Model (COM), through simple yet
efficient modules available in the Win32 package. Another freely available library, the
Python Imaging Library (PIL), allows images to be manipulated and converted to
different formats.

Editing and debugging of the Python code was done using an IDE called PythonWin.

 18

PythonWin allows single line commands to be sent to the Python interpreter for easy
testing of software components. It also contains tools for managing, compiling, and
debugging code.

1.4.3 C#

The Framework Server, used for post-experimental data analysis and user management,
is implemented using C# and Microsoft’s .NET framework. C# was chosen as the
development language for this component because of its seamless integration into
ASP.NET web pages and its simple database access mechanism. Both properties of the
language greatly simplify the task of adding web services such as user verification and
management. In addition, .NET applications are easily hosted using Microsoft’s IIS web
server. VisualStudio.NET was used as the IDE for developing, debugging, and extending
the Framework server.

 19

CHAPTER 2

System Overview

The polymer crystallization iLab is made up of several independent yet interconnected
software and hardware systems. The system was implemented in order to best reflect the
use and structure of the polymer crystallization experiment itself, and to achieve
maximum design flexibility. On the software side, for example, the system provides a
level of abstraction between client and the microscope servers which in some respects
mimics the actual physical use of such an experiment, yet still maintains design flexibility
to allow for changes of the type discussed later in this thesis. Additionally, the separation
of these components allows for development in a respective language that offers the most
powerful benefits, as has been discussed previously. On the hardware side, the layout and
interoperability of components was, of course, influenced greatly by the commercial
availability and compatibility of the individual components, but has still been optimized
to suit the desired functionality of the system. The following chapter provides a detail
overview of these system components and their operation.

2.1 System Architecture
The general architecture of the Polymerlab system includes three separate components:
the Microscope Client, the Microscope Server, and the Framework Server. Figure 3
provides a simple graphical representation of these three components and the flow of
communication between them. In keeping with the original description of the system, the
Microscope client and Microscope server, shown grouped together at the bottom of the
figure, are known collectively as the Remote Microscope. While the Framework server
handles the administrative tasks of user authentication, account management, reservation

 20

scheduling, group management, and data storage and retrieval, the Remote Microscope
provides the instrument functionality of the various microscope and sample manipulation
hardware that one would typically associate with such a laboratory experiment.
Communication occurs between each of the three primary software elements of the
Polymerlab system. While the details of each leg of this communication is discussed
below, it is important to note that this three-way communication is currently unique to the
Polymer crystallization iLab, and is crucial for the user interaction and image streaming
needed for such an experiment. This detail will be discussed later in Chapter 9 in relation
to the current state of the generic iLab architecture.

REMOTE MICROSCOPE

Framework

Server

Microscope

Server

Microscope

Client

TCP/IP

Sockets

Database

Transactions

Applet

Elements

Figure 3: General architecture overview

2.2 Framework Server

As discussed above, the Framework server handles the administrative aspects of
managing the Polymer Crystallization iLab. It is a three-tier system consisting of a series
of dynamically generated web forms and services backed by database transactions which
are served through any standard web browser. The Framework server uses Microsoft’s
.NET platform to generate these services. This platform has many characteristics that
make it an ideal choice. The C# programming language used in developing .NET
applications is an object oriented language, allowing for a very intuitive internal

 21

representation of procedures and components. The development environment also
enables complex functions to be compiled and run locally, rather than transmitted to the
user to be run, which saves time for users. It also has built-in APIs for database
transactions. Easy compatibility with Microsoft’s IIS web server makes hosting .NET
web services relatively simple, which is a consideration in the long term maintenance of
the Polymer Crystallization iLab.

Within the Framework server, the individual components are closely related but can be
loosely described as a three-tier system. The first tier is actually the client browser.
Because of the ubiquitous availability of numerous web browsers and because .NET
applications are compile and run on the host server, this first tier is remarkably thin and
fast, requiring no lengthy download or installation and using very little bandwidth
resources. Figure 4 shows the typical page served to a student user. The details of the
layout and control flow of the interface provided to students and administrators are
omitted here, and readers are referred to Daniel Talavera’s thesis.

The middle tier of the Framework server consists of a series of web services implemented
in ASP.NET which provide the actual mechanisms for user authentication, account
management, and data retrieval. Most of these services make integral use of a system of
object oriented classes implemented in C# which provide wrappers for use by the web
services in accessing and modifying information stored in the systems database.
Examples include User objects, Role objects which are assigned to users and help define
their system privileges, and Experiment Run objects which correspond to individual
experiment runs. These classes will be discussed later when describing additions made to
allow Multicasting. Figure 4 shows an example of a web interface dynamically generated
by the Framework Server showing a user’s experiments.

 22

 Figure 4: Typical student user interface

The final tier of the Framework server is the underlying database. Implemented using
Microsoft SQL, the database allows for the storing of user account information,
reservation details, experiment run information, etc, and allows that information to persist
between user sessions and throughout the lifetime of the polymer crystallization
experiment. It also serves as a medium through which the Framework server
communicates with the Microscope server. The Microscope server has the ability to
verify with the Framework server information passed to it by the Microscope client, and
likewise to communicate to the Framework server the location of data stored during an
experiment run by performing database queries. Appendix A contains the scripting file
needed to generate the latest version of the database, and has proven useful in the process
of restoring the system after reinstallation. This script contains various structures and
stored procedures which are essential for operation of the latest version of the polymer
crystallization iLab, and should supersede the script contained in Talavera’s original
thesis.

The diagram in Figure 5 below outlines the structures and dependencies of the database
as it is currently implemented, including changes made to allow Multicasting which will
be discussed later.

 23

Figure 5: Database schematic representation

2.3 Microscope Client Overview

The Microscope Client is the interface through which students interact with the
experiment. It is designed to allow students to quickly and easily manipulate the
hardware while still restricting inputs to commands that are valid, so as not to damage
any of the hardware. As previously discussed, the Microscope Client is implemented as
an applet to allow for maximum compatibility with user operating systems. The applet is
handed off to users after authentication by the Framework Server. As shown in Figure 3,
unidirectional communication exists between the Framework Server and the Microscope
client. This communication occurs in the form of applet tag parameters which are
generated dynamically by the Framework Server. (This information is drawn from a
corresponding User object which is saved in the Framework Server’s session context

Users

PK UserID

FirstName

LastName

email

SchoolID

ConfirmationCode

RegistrationDate

RegistrationStatus

Roles

PK RoleID

RoleName

RoleDescription

Experiments

PK ExperimentID

ExperimentName

ExperimentDescription

FK2 CreatorID

DateRegistered

ExperimentRuns

PK RunID

FK1 ExperimentID

FK2 UserID

RunName

RunDescriotion

OutputXml

DateAdded

DateExpires

User_to_Role_Map

FK1 UserID

FK2 RoleID

DateAdded

Role_to_Role_Map

RoleID

FK1 RoleID

DateAdded

Reservations

PK ReservationID

FK1 UserID

Priority

StartTime

EndTime

ExperimentRuns

PK RunID

FK1 ExperimentID

FK2 UserID

RunName

RunDescription

OutputXml

DateAdded

DateExpires

MulticastGroup

PK OwnerID

FK1 UserID

 24

when a user first logs in.) These tags include information regarding a user’s identity and
reservation. The reservation information is used to prevent users from occupying the lab
indefinitely by giving the applet an HTML redirect to logout after the specified amount of
time. Additionally, this information is used in subsequent communication between the
Microscope Client and Microscope Server to determine who is using the Microscope
Server and, as will be seen later, whether that user is the “primary” user.

Communication between the Microscope Server and Client occurs via TCP/IP sockets.

The system uses a simple, human-readable ASCII message passing protocol based on

work done by A.M. Kuchling, as previously mentioned. This system offers the benefit

that it is easily extensible, as long as both the client and server recognize the messages

being passed. In actuality, there are two socket connections between the Microscope

Client and Server. One is uni-directional, and is dedicated to transmitting streamed

images from the Server to the Client. The other is an actual duplexed connection for

passing messages between the entities. It is important to note that messages are passed

both ways, and that the communication protocol is asynchronous: neither side waits for a

response from a command. For instance, a communication error which causes a

command to the server to grab an image to be dropped does not cause the client to wait

forever; instead, it simply displays a new image whenever it receives on. Each message

may also include any number of parameters for use by the receiver. For full discussion of

the details of the messaging syntax, readers are referred to Daniel Talavera’s thesis.

Users cause the Microscope Client to communicate with the Microscope Server by

manipulating the client GUI. As discussed in Talavera’s thesis, the ScopeFormApplet

class which implements the GUI associates messaging events with each of the Java

Swing controls which are able to be manipulated by the User. The Microscope Client

includes several panels which separate out the functionality of the experiment: a

temperature panel, which is used to control the temperature of a sample by submission of

an “experiment”; an image panel, which allows users to toggle between single image

capture mode and streaming video mode, translate the sample stage in the “xy” plane, and

focus the image; a microscope control panel which allows users to control various

settings such as magnification, aperture, field stop, exposure time, and autofocus, in an

 25

attempt to obtain the best image possible; and finally, a message area, where status and

error messages regarding the state of the experiment are displayed. The implementation

of the ScopeFormApplet allows for ease of editing and extending the functionality of the

GUI, which will be discussed later with respect to additions to it. Figure 6 shows a screen

capture of the Microscope Client before the modifications implemented in this thesis.

Figure 6: Remote Microscope Client GUI

2.4 Microscope Server Overview

The final component of the Polymerlab architecture is the Microscope Server. The
Microscope Server must not only communicate with both the Framework Server and
Microscope Client, but must also marshall the commands sent to it and dispatch them to
control the actual hardware implementing the experiment. The Microscope Server is a
Python object responsible for establishing and maintaining the socket connections to
clients. It contains listener and writer threads which continuously interpret and relay
commands between lower level hardware controllers and the Microscope Client. In
addition, the Microscope Server is responsible for communicating with the Framework
Server’s database to identify a user’s data directory and storing data from experiments
there.

 26

The Microscope Server functions mainly by interpreting commands from the Microscope
Client and then delegating them to an internal object known as the Device Manager.
Briefly, the Device Manager takes commands and determines to which of the available
hardware controllers to relay a command. The design of the Device Manager makes the
addition of new hardware components as easy as following a template for constructing it
hardware controller. Figure 7 depicts graphically the communication between the
Microscope Server, the Microscope Client, and the hardware components of the lab. For
a more detailed description of the Device Manager, please see Paula Nasser’s thesis.

Microscope Client

Microscope Server

MDS600
Controller

AxioCam
Controller

Axioplan
Controller

TCP/IP Internet

Figure 7: The Remote Microscope

The Polymerlab system currently uses three such hardware controllers mentioned above.
They are the Axiocam class, the Axioplan2 class, and the MDS600 class. The controllers
each correspond to one of the hardware systems used: the Axiocam controller class
controls the Zeiss Axiocam digital camera, the Axioplan2 controller class controls the
Zeiss Axioplan2 microscope, and the MDS600 controller class sends commands to the
Linkam TMS94 temperature programmer and the Linkam MDS600 motorized heating
stage. Each of these devices is pictured in Figure 7. In addition, they are briefly described
below. Figure 8 shows a more detailed object dependency between the controllers and
hardware.

 27

2.4.1 Axioplan2 Controller

The Axioplan2 Microscope is a Zeiss device. It has multiple light sources and
magnification settings, as well as the ability to insert various lenses. It is controlled
directly by Zeiss KS300 software. This software may be controlled by hand, but in the
case of the Polymerlab system commands are relayed to the KS300 software through
Microsoft’s COM interface (via a standard Python32 COM module) from the Axioplan2
controller. (This can be seen in Figure 8.) In this manner, the Axioplan2 controller is
able to control the microscope’s settings after having interpreted them through the
Configuration subclass. The structure of the Controller class is discussed in detail in
Paola Nasser’s thesis.

2.4.2 Axiocam Controller

Like the Axioplan2 controller, the Axiocam controller relays commands through a COM
interface to the KS300 software. Unlike the Axioplan2 controller, it makes use of saved
configuration scripts which may be opened though the KS300 software by using the
tvload function. This allows for the specification of image quality, size, and other related
properties.

2.4.3 MDS600 Controller
The MDS600 controller controls the TMS94 Temperature Programmer and MDS600
Heating Stage. Therefore, both temperature and XY movement are controlled via the
MDS600 controller. Unlike the previous two controllers, the MDS600 controller
communicates to the TMS94 through low level serial port commands. These commands
are simple text commands and are listed in the Linkam programming guide, “Serial
Communication Manual for the T92, T93, and T94 Series Programmers.”

 28

Device Manager

Controller

MDS600
Controller

Axiocam
Controller

Axioplan2
Controller

Serial PortCOM

KS.300
Software

Figure 8: Module Dependency Diagram of Hardware Controllers

 29

CHAPTER 3

Beta Testing and Deployment of Polymerlab

The ultimate goal for the polymer crystallization iLab is to be integrated in a sustainable
manner into a course on polymer science, to be used as an aid to teach polymer science.
During the Fall Term of 2003, the polymer crystallization experiment was beta tested in
such a setting. MIT students taking the course 10.467, Polymer Science Laboratory, used
the experiment for the first time in a laboratory setting with a typical user load. The
following section describes the details and results of that testing.

3.1 Overview of Experiment

The polymer crystallization experiment represented one of several labs which were
performed by students in 10.467, and was the only remotely operated, internet accessible
lab in the course. The class consisted of twelve students who worked in groups of 2 or 3.
These students were assisted by two lab teaching assistant, as well as one computer
assistant who monitored the experiment and responded to bugs/errors and other student
questions. Curricular materials describing the experiment setup and procedure, including
experiment user manuals, were drafted and distributed to the class. A one hour lecture
was given which provided adequate background with the physical principles underlying
the experiment. In addition, a one hour demonstration was given to explain all the
necessary features required to perform the online experiment.

 30

Each student group performed several runs through the experiment over the course of two
weeks. Groups were free to determine how to allot the work among themselves. Each run
consisted of making a reservation for the experiment, performing the experiment by
controlling the hardware remotely, taking data by recording streamed images, and
subsequently analyzing those images. Each experiment run involved heating a
Polyethylene oxide, or PEO, sample above the melting temperature of the polymer, and
then holding the temperature there for a period of time long enough to thoroughly melt
the crystalline sample and erase any memory effects. The students then cooled the
samples using ambient air at a controlled rate to one of several predetermined
temperatures, several degrees below the crystallization temperature of the polymer. With
a polarizing filter in place, the students then maintained this temperature while observing
the polymer sample using streamed images. Once the students observed the appearance
and growth of birefringent crystallites, they recorded and saved images for as long as
they deemed necessary. The students then re-heated the sample and noted that
temperature at which this new isothermally crystallized polymer re-melted. They
repeated this procedure for each of the several given crystallization temperatures. The
students then analyzed the recorded images from each of their temperature runs to
determine the nucleation density and crystal growth rates. By analyzing the temperature
dependence of the melt transition temperatures and growth rates, the students extracted
information about the thermodynamic equilibrium transition temperature, the
dimensionality of the crystals, and the activation energy for crystal growth are
determined. Each group was required to submit a report detailing the results of their
experiments and analysis, which included a determination of the equilibrium melting
temperature, the mean surface energy of the crystal lamella, and the Avrami exponent.

3.2 Results of Use

As a tool to evaluate the usefulness of the polymer crystallization iLab, each student was
asked to complete written questionnaires asking them to assess various aspects of the lab.
A copy of this questionnaire, including a summary of all student responses, is given in
Appendix D. In the questionnaire, students gave feedback about issues such as
experimental availability, ease of use, adequacy of parameters such as frame rate, and
overall instructional merit of the lab. Their feedback was largely positive, and was
invaluable in determining which portions of the lab required modification. For instance,
students found the initial registration process to be straightforward. They generally found

 31

the introductory demonstration of the experiment useful. However, when asked about
reserving and using the experiment, many of them requested longer reservation slots in
order to more effectively complete the experiments. This feedback is useful for lab
administrators when striking a balance between length of reservations for a single student
and overall lab availability. The students were satisfied with the availability of time slots,
suggesting that the experiment could support larger class sizes.

The time of day in which students used the experiment varied widely, and they
overwhelmingly found the 24 hour availability of the experiment useful. This in itself is a
strong validation of one of the underlying assumptions which led to the development of
internet laboratories. When asked if they would have preferred increased instructor
interaction, students were neutral except in cases where computer problems associated
with beta version of the system necessitated additional help. With subsequent, more
stable versions of the experiment, it is likely that students will require less interaction.
With respect to the interface of the experiment, students found the microscope controls
easy to understand and use, and agreed that the frame rate of the streamed microscope
images was adequate. (To increase the frame rate, image sizes were previously decreased
by Daniel Talavera from 1300x1030 pixels to 260x206 pixels, and image encoding was
changed to decrease post-capture processing time. This allows for a frame rate of two
images per second.) The students reported that the procedure used to analyze their data
was clear, though some found the image analysis tool which was provided too
complicated. (This tool, JImage, is a free, Java-based image analysis tool released by the
NIH.) Finally, the students overwhelmingly reported that the experiment increased their
knowledge of polymers and polymer crystallization. Only one student slightly disagreed
with the statement “I enjoyed using this experiment,” and the majority strongly agreed
with it.

The initial beta testing of the Polymerlab system was not without problems, however.
Most important of these was a hardware problem in the computer hosting the Framework
and Microscope Servers. Faulty RAM in this computer caused numerous computer
crashes and required frequent rebooting of the host machine. Students found this
frustrating. In addition, the KS300 software used to control the Axioplan2 microscope
was not intended for operation on a Windows XP platform, causing additional occasional
problems during startup. Eventually the faulty RAM was identified and removed, an
updated version of the KS300 software was installed, and the rest of the system was as
well during the end of the fall 2004 term. This included upgrading the operating system

 32

to Windows XP from Windows NT. (The updated KS300 software was meant for a
Windows XP system, as opposed to the earlier software, which was not meant for a
Windows NT platform.)

As with any newly developed system, numerous bugs were also discovered. The most
important of these was an error in the way that XY movement commands sent from the
Microscope Client were validated and ensured to be within the MDS600 stage’s safe
operating range. The error resulted in damaged hardware which caused movement in one
direction to be disabled for the remainder of the test. The equipment was later sent for
repairs. An additional bug involved naming conventions for saved experiments. Users
frequently used unexpected characters which caused the Microscope Server to enter an
error state, resulting in crashes. Additionally, while the experiment is theoretically able to
be cycled with no real interaction on the part of administrators, it was found that sample
quality and preparation were critical in obtaining meaningful results. For example, a
sample which is contaminated with dust and debris has far too many nucleation events to
be useful. An additional pathological mode of crystallization which was observed
involved the formation of crystals only at the edge of a sample. Because such samples
make it impossible for the experiment to be performed properly, it is critical to prepare a
proper sample. Appendix F outlines the procedure for preparing a proper sample.

One of the major results of the student feedback was the need for a real-time

collaboration utility. Limiting visibility of the scope to a single, registered use at any one

time is necessary to avoid hardware control conflicts, but is not well-suited to the

potential for learning and collaboration among students at different locations, or even

computer terminals. During the beta testing period, it was often the case that groups were

forced to come to a central computer lab and huddle around a single computer in order to

work together. This obviously contradicts one of the main purposes of developing

internet laboratories, especially when group use is foreseen as a primary mode of

teaching. This result verified the necessity of one of the initial goals of this thesis, and

development efforts were devoted to permitting multiple users to join a “group”, wherein

all members of which can view the experiment simultaneously, and who can take and

cede control of the experiment in real time.

 33

CHAPTER 4

Multicasting

This chapter discusses the addition of the Multicast feature to the Polymerlab system.
Multicasting allows users to form groups and simultaneously view and use the polymer
crystallization experiment in order to further the goal of user collaboration and allow for
remote oversight. Changes were made to each of the components of the Polymerlab
system: the Framework server, the Microscope Client, and the Microscope server.

4.1 Motivation

Although the addition of multicasting was already a goal at the outset of this project, the
results of the beta testing and user survey were useful verifications of the design goal.
The project had already identified that by allowing users to collaborate, the Polymerlab
experiment would encourage students to learn from one another. Having observed
students working in groups to use the original experiment, it was apparent that
collaboration was essential if students were to be able to take full advantage of the remote
nature of the lab. This makes intuitive sense, because collaboration is a natural part of a
conventional lab setting; preserving this aspect in the virtual lab is important.
Collaboration would also allow instructors to assist students remotely and guide them
through the experiment. In short, enabling multicasting would make Polymerlab an
experiment that could be completely operated remotely, from start to finish, in a typical
use scenario.

 34

4.2 Design Additions/ changes

Enabling Multicasting required changes to each of the three major components of the
Polymerlab architecture: the Framework Server, the Microscope Client, and the
Microscope Server. While these modifications were sufficient enough that the Multicast
versions of each of the components would be inoperable in use with the older design, it is
important to note that the basic architecture of the system remained unchanged.
Furthermore, many of the advantages previously discussed with respect to the design of
each component came into play during modifications. As a testament to the thought put
into the original design, modification of the components was relatively straightforward.

In general, the goal was to introduce the desired capability with a minimum of redesign.
One important feature that needed to be maintained included asynchronous
communication between clients and the Microscope Server. Additionally, it was decided
that communication should occur only between the server and clients, and not between
clients. The Microscope Server would mediate all communication between clients.
Furthermore, the maintenance of the video streaming frame rate was of prime concern.
Students had found the rate adequate, and introducing more clients could potentially slow
the distribution of the streamed images.

In addition to the maintenance of some features of the original design, choices about the
operational details of Multicasting had to be made. First, it was important that Users have
the ability to define their own groups. When interacting with the experiment, it was clear
that there would need to be two types of users: a controlling user, and observing users.
This is critical not only to prevent race conditions in situations that could potentially
damage hardware, but also to manage the complexity of having many users participate in
an interactive experiment. The data from an experiment would be stored within the
account of the user controlling the experiment. As a consequence, in order to prevent
ambiguity over data storage, it should not be possible to pass control of the system while
an actual experiment (in the sense of temperature controlling) is in progress. In order to
reduce the number of interactions between the three components of the system during
initialization of the client applet and communications with the Microscope Server, first
control of the experiment would be assigned to the first user to open the applet. While
others in a user’s Multicast group may open and view the experiment and its status, only

 35

the first user to arrive is first given control. This prevents wasted reservation sessions. In
addition, no “daisy-chaining” should be allowed: only direct members of a user’s
Multicast group may access their experiment. Members of members may not.
Considerations such as these influenced how the Multicast feature was implemented.

4.2.1 Client Changes

The most visible changes to the system took place in the Microscope Client. Users would
need a mechanism to give and take control of the experiment, as well as identify times
when control was available, etc. The ScopeFormApplet class underlying the client applet
was modified to introduce a new button panel alongside the message pane. It includes
two buttons: one to cede control of the experiment and the other to take it. While the
Microscope Server itself tracks which user has control of the experiment, as will be
discussed later, the applet also includes a layer of protection against users who do not
have control manipulating the experiment. All of the input mechanisms in the applet were
modified to be active contingently based on a number of Boolean fields: the haveControl
field indicates whether a client currently has the ability to send commands, while the
controlAvailable and experimentRunning fields determine at any time whether a user
may take control. These fields are initially set by the Framework Server when the applet
is handed off to a user, and update immediately through communication with the
Microscope Server. The Microscope Server immediately communicates the state of
control. When the haveControl field is set to false, a user may see the experiment
controls and any images streamed or captured by the controlling user, but may not
manipulate the controls. The controls at such a time appear grayed out and are
inaccessible. Figure 9 shows the modified Microscope Client applet.

While the observing user cannot modify the controls, the controls still reflect any
manipulations performed by the controlling user. Whenever an action is performed, an
updating message with all the necessary information is sent to each of the clients. This is
important if users are to stay oriented during the course of the experiment. For example,
if users saw the quality of images begin to deteriorate during an experiment run they
might not know whether the sample was simply melting or whether the controlling user
had modified the settings, such as exposure time. Due to the asynchronous nature of
communications between the Microscope Server and Client, there already existed an

 36

Figure 9: Modified Microscope Client applet.

infrastructure for distributing information to client about the state of the experiment. This
occurs through the cmd_scope() function of the IScopeProtocol interface which is
implemented by the ScopeFormApplet. (The IScopeProtocol interface is simply a list of
commands which the client must be able to recognize from the server.) Now, after every
command, the Microscope Server then simply sends this command to every client
connected to it, regardless of control status. Of course, the IScopeProtocol interface did
have to be extended to enable the ceding and taking of control by users. The handling of
two methods, the cmd_occupied() and cmd_available() methods, were rewritten to
configure the applet based on availability. Three other methods were added. A listing of
these commands is shown in Table 1. Readers are referred to Table 2 of Daniel
Talavera’s thesis for a full listing of the commands.

COMMAND EXPLANATION
TAKE_SUCCESSFUL Informs a client that control of the experiment has successfully

been taken. All other clients receive the TAKEN command.
TAKEN UserID

Informs client that another user, identified by the
accompanying string, has taken control of the experiment.

 37

CEDE Informs client that control of the experiment has been given up,
and is now available to be taken.

Table 1: Commands from the Server to the Client.

4.2.2 Microscope Server additions

Previously, the Microscope server only kept track of a single user. The server trusted
connections from any applet, since the verification of users was left to the Framework
server. If an additional user tried to make a connection to the server, it was sent an
“occupied” message automatically. The concept of serving a group of users, rather than
just one, with one user having “control” had to be introduced. Since additional users
could be expected now, this behavior was changed to include an access of the Framework
Server’s database to determine whether the user had a reservation or is a member of the
proper Multicast group. This provides an additional layer of protection against
unauthorized users accessing the lab, rather than relying on the assumption that any
applet contacting the Microscope server was properly authenticated by the Framework
Server. A user queue was implemented, in which every current user resides. The
AsynchronousServer class of the Python was actually given three such lists of socket
connections: clients, unauth_clients, and image_socket_clients. Now images being
streamed are sent to every client socket connection in the image_socket_clients list.
Likewise, commands for recognizing new users or removing current users involve adding
or removing their socket connections from the lists. An additional user field, currentUser,
was introduced to track the user who currently has control of the experiment. In order to
execute any command, a user must be the currentUser. The only exception to this occurs
when the currentUser gives up control of the experiment. At that time, the take command
is recognized by the first client to respond. Commands issued by the currentUser are
executed and updating messages are sent to all authenticated clients. The take and cede
functions were two new commands which were introduced to the Microscope Server
which it had to be able to understand from the clients. These functions are described
below in Table 2.

COMMAND PARAMETERS AND EXPLANATION
TAKE userID=value

Request to take control of the experiment. If control is available,
causes a user to be set to currentUser.

CEDE If a user is the currentUser, gives up control of the experiment and

 38

notifies all other clients of the availability of control.
Table 2: Commands from Client to Server.

4.2.3 Framework server additions

In order for the authentication process to acknowledge Multicast groups, and in order for
them to be managed dynamically by users, the Framework Server had to be modified.
These modifications occurred in three main areas: the creation of new object classes
which would correspond to this new structure and would allow the code backing the aspx
pages to store relevant information in a user’s session context; the creation of new aspx
pages for group management; and the modification of the database to introduce new data
structures and stored procedures.

The new C# object class MulticastGroup was modeled after the User class. In the interest
of maintaining a compact structure, however, it has no dependencies on the User class.
Instead, it tracks its members via one GUID corresponding to the groups owner, and a
separate list of GUIDs corresponding to the group’s members. (A GUID, or global
unique identifier, is a number which, within a system, is guaranteed to be unique. This
allows it to be used as an efficient representation of an object.) Like the User class, it
contains a variety of helper methods which connect to newly written stored procedures in
order to produce MulticastGroup objects from data in the Framework Server database.
These methods are also used to identify members and are used in the authentication
process. The new MulticastGroups database table merely identifies owner/member GUID
pairs, which are used to construct MulticastGroup objects when the proper helper
methods are called. The newest database generation script can be found in Appendix A.
In order for users to manage their own groups, new .aspx pages were created. For
instance, Figure 10 below shows the group management page, where users may be
deleted. By simply following a link to the page shown in Figure 11, the user can add any
other valid user. Finally, Reservation authentication was changed in

 39

Figure 10: Framework Server Multicast Group management page

the Framework Server to allow the handoff of applet and applet parameters to members
of a Reservation owner’s group. This involved modifying the code behind the applet
access page to use certain MulticastGroup object helper functions.

Figure 11: Adding User to a Multicast Group.

4.3 Performance issues

Given that much work had previously been done on the Polymerlab system to ensure that

 40

frame rates would be adequate for students, it was important to verify that the
introduction of potentially many clients using the system at once would not cause the rate
at which images were streamed to suffer greatly. Figures 12 and 13 below illustrate that
this is not the case. Figure 12 shows the time taken to output images (averaged over
approximately 5 images) to all clients for a varying number of such clients. The data

Image Output Times

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0 2 4 6 8 10 12 14 16

Number of Clients

T
im

e
 (

s
e

c
)

Figure 12: Microscope Server image output times versus number of clients.

indicate that, for reasonable numbers of clients, factors other than the actual time required
to send output images to all of the image sockets of clients dominates. In addition, it is
clear from Figure 13 that the time required to actually grab an image from the Axiocam
camera and perform any processing necessary absolutely dominates the approximately 6
frames/second streaming rate. Thus, the addition of multiple clients accessing the
microscope and receiving images at once is of no great concern in terms of frame rates.

Image Grab Times

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

0 2 4 6 8 10 12 14 16

Number of Clients

T
im

e
 (

s
e

c
)

Figure 13: Microscope Server image acquisition times versus number of clients.

 41

CHAPTER 5

Graphical Simulation Application

This chapter outlines the elements and algorithms behind the crystal simulation tool. The
motivation behind the application is simple: to provide an easy-to-use tool which students
can use to compare theoretical crystallizations with actual results from the online
microscopy experiment. For instance, variances in sample quality and/or preparation can
cause memory effects that in turn cause nucleation events to occur non-randomly.
Similarly, temperature gradients may cause variations in crystallization rate or melting
temperature. In addition, some of the assumptions used in the crystallization model may
be oversimplifications, which could cause predictions to be slightly different from
observed phenomena. A tool that would allow students to quickly and easily explore the
similarities and differences between observation and prediction would make a valuable
contribution to their understanding. More simply, such a tool could be used as a sanity
check: students could “rerun” the experiment virtually using the same values as the
original experiment and determine whether visually whether it generates similar results.

5.1 Crystal Growth Model

The primary goal of the polymer crystallization experiment is to use a model of the
temperature dependence of the rate of nucleation and rate of growth of crystal spherulites
to identify physical properties of the PEO sample and compare these to known values.
This is a test of both the experimental technique of the students and the validity of the
model used to understand the crystal growth.

 42

The standard goals of crystallization models are to explain the observed morphological
features and their kinetic features and, in a related manner, provide analytical methods by
which measured properties can be reliably predicted. Typical models take into account
variables such as temperature, stress, strain, and composition, but in the present polymer
crystallization experiment students are only concerned with temperature dependence. The
two main features which the polymer crystallization experiment investigates are primary
and secondary nucleation rates and their dependence on temperature. (Secondary
nucleation refers to nucleation of a new layer of crystalline material on an existing
crystallite.) A model of crystallization kinetics should try to explain or at least be
consistent with several features of crystal growth: the morphology of polymer crystals
(lamellar crystal growth, the magnitude of lamellar thickness, and the fact that at crystals
formed at intermediate temperatures have straight facets whereas those formed at lower
temperatures have curved facets), the temperature dependence of the growth velocity, and
the effect of molecular weight on growth kinetics. (Molecular weight effects are not
addressed in this experiment.) The model which is discussed below is a summary of an
excellent and clear discussion found in Schultz of the most basic models explaining
crystallization [1].

In general, there is consensus regarding the modeling of the primary nucleation of
crystallites. Primary nucleation theory derives from classical nucleation theory used to
describe the formation of water droplets. Generally, that theory considers water
molecules in vapor form in a temperature and pressure below the boiling point of water.
Thus, it is thermodynamically favorable for the water to exist in liquid form. However, a
small droplet has a high surface area to volume ratio because of its size, and may actually
be energetically unfavorable. By comparing the surface energy associated with a droplet
of size r and the corresponding energy difference between that drop in liquid and vapor
form, a critical drop size r* can be determined. Any drop formed at this size will continue
to grow. Thus, r* defines a critical nucleus. By determining the distribution of embryonic
nuclei in a sample (which is a Boltzman distribution) and the rate at which sub-critical
droplets are accumulated the primary rate of crystallization can be determined.

Analogously, primary nucleation theory of polymer crystals considers an embryonic
crystal consisting of strands of polymer molecules stretched out and aligned side by side.
For such an embryo having v polymer strands of length l and cross-section a, the total
free energy difference between the embryonic crystalline state and the liquid melt state

 43

can be written as:

sev
avClavGlavlvG !! ++"=" 2),(,

where Gv is the difference in free energy per unit volume between the crystallized and
melt states, C is a constant relating to the cross-section shape of the strands, and σe and
σs are the end and side surface energies respectively. By differentiating with respect to
the number of strands v and the length l, one can obtain the critical values for the length l
and number of strands v and eliminate them from the equation. Using for ΔGv the
formula (which is valid for undercooling)

o

m

x

o

m
fv
T

TT
hG

!
"!=" ,

where Tx is the crystallization temperature, yields a critical value for the energy barrier of

22

222
*

)(

)(2

x

o

mf

o

mes

TTh

TC
G

!"
="

##
.

By using arguments about the energy differential involved in adding one strand to a
critical embryo or subtracting a strand to reduce a v+1 embryo to a critical embryo based
on the free energy difference formula given above, a net growth rate of embryos can be
determined. (Demonstration of this calculation requires a substantial number of
approximations and is avoided here.)

The most commonly used model to explain secondary nucleation was proposed by
Lauritzen and Hoffman. It basically rests on the idea of a molecularly flat growth
interface on which a new crystal layer must nucleate and grow. In the model, growth
occurs as adjacent sequential strands are deposited in an entire layer, one layer after
another. The first strand bonds to the original layer, and then subsequent strands, which
are part of the chain containing the first strand, bond to both the original layer and also
the previous adjacent strands. The chain winds along the surface in the manner shown
below in Figure 14.

Figure 14: Example showing winding of strands at the crystal surface.

(The challenges to this idea have to do with the molecular surface being rough, with the

 44

nature of the nucleus that starts the new layer and with whether the barrier to nucleation
is predominantly enthalpic or entropic in origin. Hoffman has also proposed a “Regime”
model that accounts for roughness of the growth surface as a consequence of competing
rates of nucleation for a new layer and lateral growth to complete an existing layer. This
is different from roughness of the fold surface, which requires entropic arguments.)

Starting in a manner very similar to the primary nucleation analysis, the secondary
nucleation analysis begins with an expression for the free energy change caused by the
addition of the first strand. By subsequently using this expression determining the net rate
of deposition of first strands on potential sites, a functional form for the growth rate is
obtained [1]. A typical model of the growth velocity of crystal lamella obtains the
formula

TT

K

TTR

U

o

g

eeTl G !

"

" #=$
)(

*

),(% .

Go is a constant that contains some temperature dependence itself and also wraps up the
dependence on strand length, etc. The growth constant Kg is given by

f

o

mes
g

hk

Tb
K

!
=

""4
.

It should be noted that the leading constant in the formula depends on the assumptions
made about the exact manner of formation of new monolayers on the crystal surface. The
value of 4 above corresponds to the case in which one monolayer completes before
another begins. Furthermore, the scaling of the temperature in one exponential of the
growth velocity formula from an absolute level to one dependent on a value T∞ reflects
the fact that strand mobility ceases not at absolute zero but around the glass transition
temperature Tg.

T∞ is identified empirically to be around Tg + 30oK. In the polymer crystallization
experiment this corresponds to a value of 176 K. U* has a value of 29.3 kJ/mole. Δhf,
the heat of fusion of PEO, has a value of 2.43x10^9 ergs/cm3. The parameter b is the
diameter of the polymer molecule, which for PEO is approximately 0.5-1.0 nm.

A good model of crystallization must simultaneously take into account both the primary
and secondary nucleation processes discussed above, since even while one crystal has
already formed and may be quite large another primary nucleation event may just be
occurring. Such a “continuous nucleation” (nucleation at a constant nonzero rate)

 45

contrasts with “instantaneous nucleation,” in which all nucleation takes place at t=0, and
the subsequent nucleation rate is zero.) The first is appropriate for homogeneous
nucleation, while the second describes heterogeneous nucleation. An analysis that
incorporates both primary and secondary nucleation leads to a prediction of total
transformed crystalline fraction of a sample as a function of model parameters such as
temperature. The Avrami equation yields just such a relationship.

The Avrami analysis begins by observing that for a polymer sample in which spherulites
nucleate randomly at a constant rate of n per second, and grow at a steady velocity v, a
spherulite that begins at time τ will have a volume

3

1))((
3

4
!

"
#=$ tv .

Note that this assumes the crystal grows as a sphere, but this does not affect the overall
analysis; the generalized result is given below. If one did not have to worry about crystals
overlapping, the volume transformed in a small period of time dt would be

dtvtntd
3')(

3

4
)(

!
="

The difficulty arises in determining the total volume Ω transformed, since once crystal
cannot nucleate and begin to grow within an area already occupied by another. Denoting
the fraction of the sample which has been transformed as Φ(t), the amount of sample
which is transformed at any time t is simply the amount that would have been
transformed with overlap possible scaled by the fraction of the sample which remains to
be transformed, given by the equation

)()](1[)('
tdttd !"#=! .

Dividing through by the total volume of the sample and integrating, an expression for
Φ(t) is obtained which describes the total fractional transformation. In the general case of
this dependency is known as the Avrami equation and is given by:

m
kt

et
!

!=" 1)(.

The constant m represents the Avrami exponent. The Avrami exponent is equal to the
growth dimensionality plus one. (The factor k also depends on the growth dimensionality
and is a function of the growth rate v raised to a power that goes as the dimensionality.)
The equation given above also depends on the time distribution of nucleation events. In
particular, it assumes homogeneous nucleation, meaning that nucleation events occur at a
constant rate throughout time. The opposite of homogenous nucleation is known as

 46

heterogeneous nucleation, and describes the situation in which all of the nuclei appear
and begin growing at one moment and only that moment. The dependence of facet or
edge shape mentioned earlier depends crucially on the distribution of nucleation events
and was a key consideration in the simulation applet which will be discussed below.

 Knowing the functional form of the volume transformation and temperature dependence
of the rate of crystal growth, students using the Polymerlab are equipped to compare the
results of their experiments to those predicted by their model of crystallization kinetics.
The goal in implementing the graphical simulation applet was to adequately represent the
predicted behaviors.

5.2 Voronoi Diagrams

Given the positions and growth rate of spherulites formed at a uniform temperature in a
sample, graphical simulation of the growth of these crystals becomes essentially the
problem of calculating boundaries between growing spherulites. This problem, especially
in the simplified case of heterogeneous nucleation, may be addressed through the use of
Voronoi diagrams.

Given a set of points in a two dimensional grid, the set of all points closer to a given point
than to any other point in the set forms a structure known as the Voronoi polygon for the
point. The union of the all the Voronoi polygons for a point set is known as the Voronoi
diagram for that set [10]. Examples of uses for Voronoi diagrams include route planning
algorithms for robots, operational logistics for supplying to a specified set of locations,
astronomy, etc. Figure 15 shows a set of points along with the associated Voronoi
diagram (dark) and the Delaunay triangulation (light).

 47

Figure 15: Voronoi diagram and the dual Delaunay triangulation

The dual of the Voronoi diagram problem is the problem of calculating the Delaunay
triangulation of a set of points. The Delaunay triangulation is given by the set of lines
drawn between each point and the set of points “closest to” it. The problems are dual in
that any algorithm or computation which calculates one problem may also be trivially
converted to calculate the other. Points in the XY plane are connected by a line in the
Delaunay triangulation if their Voronoi polygons share a common edge in the Voronoi
diagram. As can be seen in Figure 15, the edges of the Voronoi diagram form
perpendicular bisectors of the lines in the Delaunay triangulation.

The Voronoi diagram of a set of points has several properties that lend themselves to the
construction of efficient algorithms. The most important of these properties is that the
number of lines in both the diagram and its dual is linear in the number of points N, and
this linearity is typically of order a small constant times N. Algorithms exist based on the
convex hull problem which can solve the Voronoi triangulation problem in O(NlogN)
time and O(N) space. This algorithmic efficiency can be shown to be optimal [10].

5.3 Heterogeneous nucleation applet

In order to first approach the most tractable problem, the design of the simulation applet
began by addressing the problem of heterogeneous nucleation. Heterogeneous nucleation
was chosen because, independent of crystal growth rate, the boundaries between crystals

 48

formed during heterogeneous nucleation always form straight lines. In contrast,
homogeneous nucleation in general causes the boundaries to form hyperbolas, although
this is not always apparent at low crystal growth rates. The assumption of heterogeneous
nucleation simplified the problem of graphical implementation in Java and in terms of the
pre-computation of boundaries.

Given the definition of the Voronoi diagram problem, the parallels between the problem
of calculating boundaries for crystals formed during heterogeneous nucleation
crystallization are obvious. Since each crystal starts growing at the same time and at the
same rate, the boundaries between crystal centers will be formed along perpendicular
bisectors. In addition, the assumption of a uniform growth rate allows the problem of
graphical rendering to be broken into two simple steps. The first is painting the area filled
by at least one crystal. By painting all crystals in a similar monochrome manner, it does
not matter which crystal is painted first or whether crystals overlap. (Note that this is not
true if crystals grow at different rates.) This saves the work of having to calculate the
exact time and point of every contact between crystals and modifying their boundaries to
be some arbitrary shape. The second step, then, involves painting the pre-calculated
boundaries. By painting these boundaries the same color as the background, it is only
apparent at an impinging location between two or more crystals. This method yields a
convincing appearance of crystal growth and impingement to the eye as long as the
boundaries are properly calculated. Appendix B contains the Java code for the initial
design of the simulation applet implementing this strategy for heterogeneous nucleation.

Figure 16: Heterogeneous simulation applet showing crystal growth.

 49

Figure 16 demonstrates the previously discussed approach. In general, the logical flow of
the simulation is as follows. Random nucleation sites are calculated based on an input
(which was initially simply of number of crystals.) For each site, a crystal with zero
radius and a center located at the nucleation site is created. The boundaries between the
crystals are calculated using Voronoi diagram algorithms discussed below. The animation
is then started, with time iterating in intervals of 20 milliseconds. (Future version may
base this rate on growth rate of crystals to ensure they are smoothly rendered.) At every
times step, each crystal object is given a message to “grow,” which alters its radius field.
Each crystal in the window is then asked to paint itself. Finally, the boundaries of the
crystals are painted over the crystals and time is iterated. In Figure 16, the boundaries are
painted a shade obviously different from the background in order to demonstrate that
these pre-existing boundaries are in fact correct.

While the heterogeneous animation applet accomplished the goals set out for it, it still has
limited usefulness since the actual crystallization process observed in the polymer
crystallization experiment involves homogeneous nucleation. For this reason, more
realistic methods of calculating and rendering crystal boundaries were investigated.

5.4 Additively Weighted Voronoi Diagrams

There exist extensions of the Voronoi diagram to problems more general than simple
heterogeneous, uniform growth rate crystallization. In the most common statement of the
problem, discussed in the previous section, the function used to determine whether a
particular location in the XY plane is closer to one point than another is simple Euclidean
distance. However, the Voronoi diagram problem can handle more general functions.
One such extension of the standard Voronoi diagram is known as the additively weighted
Voronoi diagram. Additively weighted Voronoi diagrams are defined in the same way as
the Voronoi diagrams previously described, except that the Euclidean distance used to
determine the location of boundaries is modified for each point by a “weighting.” For
instance, in the case of calculating the boundary between crystals, each crystal may be
given a weighting equal to the time for which the crystal has been in existence. Crystals
which formed early might have a large weighting, while relatively recent crystals might
have a small weighting. This weighting is used to modify the Euclidean distance to any
point. Thus crystals started earlier are considered to be “closer” to any location than later

 50

crystals. It should be noted that there exist still other forms of the Voronoi diagram which
correspond to crystals whose individual growth rates are different in addition to different
start times. The solutions for such problems involve complex spirals. [11]

Like the simplest Voronoi diagram problem, optimal algorithms exist for additively
weighted diagrams. These diagrams are also of order O(NlogN). However, not only are
these algorithms difficult to implement, their implementation using the Java APIs chosen
for this project would require writing complex representations of curved lines. Since an
initial implementation would have involved numerical approximations, using existing
graphics functions, of the hyperbolic lines needed, it was decided first to attempt an
outright numerical calculation of the crystal boundaries. Because the boundary
calculation would still be done as a pre-computation, optimization of the algorithm would
not be critical.

5.5 Homogeneous nucleation applet

In the heterogeneous applet, the algorithm for calculating the boundaries is a brute force,
O(N3) iteration. The basic idea is to iterate over every crystal combination, calculating
the hyperbolic curve that would form the boundary between those two crystals if no other
existed. This curved boundary is then graphically approximated by short, straight line
segments which are added to a set of boundary lines, contingent on the fact that no other
crystal is closer to that location in the sense of the additively weighted distance function.
This function is calculated using Euclidean distance minus the difference between
product of the start time and growth rate of the subject point and any other point. This in
effect handicaps younger crystals by subtracting from their present radius the radius of
the older crystal. Figure 17 shows two screenshots of the heterogeneous applet. Crystals
forming at different times can be seen to grow and impinge on one another.

 51

Figure 17: Graphical simulation using Additively weighted Voronoi diagram.

The heterogeneous applet must, of course, also provide a method for adding crystals
throughout time. At present, crystals are simply added at a constant, preset rate. After
inputting a number of crystals, the algorithm calculates a random location for the first
crystal. Given the next crystal “nucleation” time, the algorithm then calculates a new
random point. If this point lies inside the previous crystals, it is discarded and another is
chosen. If it does not, a crystal with that location and start time is added to a Vector
holding all the crystals. This continues until the desired number of crystals is achieved.
While this method provides an excellent first pass and yields good results, as will be seen
later, there are several problems that may potentially be improved upon. The first is that
as a large number of crystals are added, the probability of finding an available site to
place an additional crystal becomes extremely small. Because the algorithm described
above would simply loop until one is found, a hard coded upper limit was used to prevent
such a scenario. The second manner in which this technique could cause a problem is in
the analysis of the Avrami exponent, since the analysis given before assumed a constant
rate of nucleation. A third area of possible improvement is that the nucleation rate is
simply programmed in and is constant. A more realistic approach might take into account
the temperature at which the crystals are formed.

 52

5.6 Results

Given the model discussed in section 5.1 and the numerical values of constants for PEO,
it should be straightforward to generate realistic results for the crystal animation.
However, as discussed before, certain assumptions and simplifications were made during
the development of the graphical animation applet. Therefore, as a test the applet was
used to measure crystal growth rates at 4 randomly chosen temperatures. (Appendix F,
the Student User Manual, contains details on how to run the applet.)

Parameter Value
(σσe)1/2 3.35E-6 J/cm2
b 1 nm
Tm 70.3 C
T∞ -97.15 C
U* 29.3 kJ/mole
Δhf 2.43x10^9 ergs/cm3
R 8.3144 J/mol*K
Table 3: Parameters from applet test run.

Table 3 shows the values used in the simulation applet to calculate growth rates. The
sizes of crystals were recorded at various times while the graphical simulation ran for
each temperature. Each crystal was measured at least three times and the results of those
measurements were averaged and plotted against time for each temperature. This analysis
follows the same steps as those taken by the MIT students using the Polymerlab. The
analysis allows one to obtain a value of the growth constant, Kg. Using that constant and
the previously defined relationship, the value of the mean surface energy, (σsσe)1/2, was
calculated. The results yielded a value for (σσe)1/2 of 3.32E-6 J/cm2, which is in good
agreement with the accepted value of 3.35E-6 J/cm2. Because, in the simulation, the
actual number driving the evolution of the crystals is the correct one, this level of
accuracy reflects a typical measurement inaccuracy that can be expected by normal users.
The intermediate results are shown in Figure 18 and Figure 19.

 53

Crystal Radius vs Time

y = 0.0082x - 0.0118

y = 0.0049x - 0.0004

y = 0.0022x - 0.0013

y = 0.0008x - 0.0006

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40 50

time (sec)

ra
d

iu
s

 (
m

m
)

T=50 C T=52.5 C T=55 C T=57 C

Figure 18: Crystal growth versus time for animations at selected temperatures.

Determination of Kg

y = -45269x + 26.046

0

5

10

15

20

25

0 0.00005 0.0001 0.00015 0.0002 0.00025

1/Tc(Tm-Tc)

ln
(v

)+
U

* /R
(T

c
-T
!
)

Figure 19: Determination of Kg from animation data.

While measurements were being made, the total volume of crystal transformed was also
being recorded in order to complete the Avrami analysis. Figure 20 shows the results of
that analysis. In particular, one would expect that, with the two dimensional disks used to
depict crystal growth, the Avrami analysis would yield a value of three for the Avrami
exponent. Figure 20 demonstrates that this was very nearly the case. The most important

 54

Determination of Avrami Exponent

y = 2.9742x - 6.0974

y = 2.7392x - 6.6971

y = 2.8637x - 8.5513

-7

-6

-5

-4

-3

-2

-1

0

0 0.5 1 1.5 2 2.5

ln(t)

ln
(-

ln
(1

-_
)) T=50 C

T=52.5 C

T=55 C

Figure 20: Determination of Avrami exponent from graphical animation data.

thing to realize here is that even with the simplified manner of adding the crystals, the
heterogeneous nucleation analysis still holds quite well. It should be noted that the total
time required to complete the experiment using the animated applet was on the order of
forty-five minutes. This time includes running the simulation, making measurements, and
performing analysis. This is a drastic reduction over the amount of time required to
complete the actual experiment.

5.7 Conclusion

To summarize, an applet enabling fairly realistic graphical simulation of crystal growth
was developed using a Voronoi diagram representation and a numerical calculation for
the boundaries. The applet enables a quick yet accurate completion of the same analysis
required for the actual Polymerlab experiment. Using this applet, student will be able to
quickly test their results or learn through trial and error the correct analysis, while being
confident that their measured results are correct. Areas of possible improvement in terms
of the model used include better process for inserting nuclei and a temperature dependent
nucleation rate. Graphically, a better paint implementation for the Crystal class which
took into account boundary collisions and modified the internal boundary representation
accordingly would allow for crystals to paint the Maltese cross patterns shown in the first
chapter. However, this would be difficult as it might require a more analytical
computation of the boundaries of each crystal.

 55

 56

CHAPTER 6

Incorporation of Generic iLab Architecture

The final goal of this project was to facilitate the development of a generic iLab
architecture able to handle user interactive experiments like the polymer crystallization
experiment, and to incorporate these architectural enhancements into the Polymerlab
system where appropriate. Limited progress was made in incorporating the latest design
changes into deployed Polymerlab components due to the lack of a completed API
suitable for interactive experiments. However, the Polymerlab system was used as a
model to direct changes in the communication architecture of the generic iLab
framework. Furthermore, the Polymerlab system was used as a model and stub testbed
for development and testing of the reservation system needed to facilitate user interactive
experiments, including design suggestions that are not currently possible in the
Polymerlab setup.

During the development of the first generic iLab APIs and system architecture, the MIT
Microelectronics laboratory served as a model system that allowed the designers of the
architecture to identify abstract issues that would face internet laboratories [12]. At the
same time, it enabled them to stay focused on a concise design, by virtue of constraining
them to implement the architecture for that actual system. This initial iteration worked
closely with the Microelectronics Weblab team and prioritized their requirements to
establish some functionality to the API’s core methods. While this system served its
purpose well in that the designers were able to implement their APIs to yield a fully
functional and robust platform, it also served to limit their design scope to laboratories
which use a “batch” architecture. Batch laboratories do not require user input during the
actual execution of an experiment. (Other examples of experiment types are interactive

 57

experiments and sensor experiments, such as the MIT flagpole project, in which raw
sensor data from a flagpole is streamed to a user.) Batched experiments are the simplest,
where a specification is made and submitted, and experiments run without user
interaction; they are not subject to many of the demands that a real-time, user interactive
experiment must meet. As a result, the iLab architecture also lacked the capability to
meet these demands.

6.1 “Batch” iLab Architecture

The following section discusses the iLab architecture as it was developed at the outset of
this thesis. Specifically, it describes the implementation which paralleled the
Microelectronics Weblab [13]. In general, most remotely run experiments operate in a
similar manner: users are identified/ authenticated, they submit input parameters which
characterize an experiment to be run, the inputs are validated, the experiment
specification is submitted, the experiment is run, and the results are retrieved. By design,
the components of the generic iLab architecture correspond to the most general aspects of
any internet laboratory, and their functionality and domains strongly embody this
concept.

The generic iLab architecture can be broken down into three main components. The first
and central of these components is the Service Broker. The Service Broker is an attempt
to abstract out the most general and common administrative features of internet
laboratories. The guiding force in the design of the Service Broker was the desire to
separate out domain-independent functions. Domain-independent functions are those that
are common yet not exclusively associated with any particular type of lab. The iLab
development team roughly identified five such necessary functions: an experiment
storage mechanism for experiment parameters and results, a user authentication/ security
mechanism, an authorization mechanism to specify user privileges, a reservation
mechanism, and an administrative mechanism to manage user accounts. The Service
Broker APIs specifically attempt not to incorporate hardware or vendor specific details.
The need is for a component that can facilitate all these common functions and
communicate with lab components. The functions provided are not exposed to the lab
equipment; instead, only what is necessary for communicating with lab hardware is
exposed. The Service Broker is designed to be platform independent and interoperable. In
view of this, the Service Broker is implemented as a group of web services, in no small

 58

part due to the presence of accepted and open web standards. In general, the Service
Broker is designed to be customizable as far as administrative policies are concerned.

The next main component of the iLab architecture is the Lab Client. The Lab Client is the
interface through which users (students) interact. It accepts inputs to be transmitted to lab
hardware, and displays experiment results when received. The Lab Client, however, is
not able to directly communicate with lab hardware in the original iLab design. In order
to enforce an abstraction barrier that would, among other things, allow independent
developers to create their own clients to suit their specific needs, all communication with
the actual lab hardware is passed as messages through the Service Broker. The Service
Broker acts as a middle man, exposing a standard interface to the Lab Client. On the
other side of the Service Broker lies the Lab Server. The Lab Server is responsible for
converting the input messages specifying experiment conditions and for controlling lab
hardware. Like the Lab Client, the Lab Server can only communicate with the Service
Broker through a series of standard web services. Figure 21 shows the flow of
communication between the three main components in the original iLab architecture. It is
useful to contrast this figure with Figure 3 from Chapter 2 (a similar graphic
representation of the Polymerlab system.)

Figure 21: Communication between components of general iLab architecture.

The structure of the original iLab architecture posed several formidable challenges for
anyone wishing to implement an interactive experiment using the APIs. Most of these

 59

challenges relate to latency/ performance issues, which are critical in real-time user
controlled experiments. The first big performance hit comes about because the initial
external architecture, which must be implemented by the Internet-accessible labs in order
to communicate with the Service Broker, was designed so that the Service Broker takes
in all message exchanges centrally before passing them on, as can be easily seen in
Figure 9. Two APIs, the client-to-Service-Broker API and the Service Broker-to-lab API
establish this centralized communication. The prototype allows messages to be
exchanged only between the Lab Client and the Service Broker, or the Lab Server and the
Service Broker. No direct communication between server and client is possible. This is a
key difference between the Polymerlab system and the iLab general architecture. It
allows a third party developer to construct a client to their satisfaction, rather than have
one customized client provided by the original developer, as is the case in the Polymer
crystallization iLab; however, it also introduces unacceptable latency for several reasons.
The SOAP-based web service methods which the APIs facing both the Lab Server and
Lab Client are formed around require interpretation using the Web Services Description
Language (WSDL). Subsequently, the data must be packaged into XML SOAP request
and response messages that are transmitted using HTTP. The parsing, validation, and
transmission times introduce large amounts of latency. Furthermore, all transmissions to
and from the Service Broker are encrypted, adding yet another layer of latency. In a
similar manner, the communication design of the initial architecture dictates that
experiment results be written to a database in the Service Broker before being passed
back to the client. In a system where experiment results might comprise digital images
requiring high bandwidth, the database calls needed to access the records might be overly
time intensive.

Not all of the issues preventing interactive experiments are performance related,
however. Because the model experiment was a batched experiment which relied on a
simple FIFO queue to determine the order to execute experiments, a reservation system
was the only area of the above identified domain-independent services which was not
implemented in the internal APIs of the Service Broker. While it may seem that this is
merely a trivial matter of implementation, the interactions between users on the client
end, administrators who set reservation policies, and the need to make connections
contingent upon time-based reservation makes such a system difficult in the context of
the initial architecture.

In light of all of these concerns, work was begun to identify weaknesses relating to the

 60

implementation of a user interactive experiment and to modify the existing architecture
accordingly. In the course of this thesis, work was done with two other Masters students
to use the Polymerlab to identify design needs and problem areas, to serve as a model
experiment in much the same way as the Microelectronics WebLab did for the initial
architecture. Karim Yehiya worked to propose architectural changes to the Service
Broker which would address some of the concerns above, while Jedidiah Northridge
specifically addressed the development of a Scheduling Service.

6.2 Service Broker Design Changes

As discussed above, the centralized message passing architecture underlying the original
Service Broker design introduces inherent problems for interactive experiments. In the
Spring term of 2004, Karim Yehia worked with the administrator of the Polymerlab
system to identify critical areas of the generic iLab architecture which needed redesign in
order to accommodate similar experiments. As a result, three major areas were identified.
As part of his thesis, Karim and the iLab development team proposed architecture
changes and new APIs to support changes in these areas. These changes primarily
focused on the Service Broker [14].

The first and most important design change required by the Service Broker was the
ability to allow Lab Clients and Lab Servers to communicate directly with one another
via an internal domain-specific protocol. To meet this need the iLab development team
introduced the idea of General Ticketing. The primary idea behind General Ticketing is
that many of the services previously hosted by the Service Broker should be broken out
as stand-alone entities. These stand-alone entities, known as process agents, may run on
different systems than the Service Broker. The process agents allow users to bypass the
Service Broker for certain method calls, given that they have a valid ticket issued by the
Service Broker. This ticketing mechanism closely resembles the token passing from the
Framework Server to the Microscope Client in the polymer crystallization iLab. In the
new system, the Service Broker has the authority to write tickets and dispense them to
clients. Rather than being specific to one particular Lab Server, the general ticketing
mechanism offers access to one of any number of resources (process agents) which are
known to and advertised by the Service Broker. These resources may include many
individual Lab Servers, in keeping with the Service Broker’s more general architecture,
which allows one Service Broker to provide domain independent services for multiple lab

 61

servers. More importantly, these resources may include services that were formerly fully
integrated into the Service Broker, such as an Experiment Storage Service, or a
Reservation Service. It is precisely these services which were the next necessary
modifications.

6.2.1 Experiment Storage Service

In the first iteration of the iLab architecture, experiment results were communicated
directly from the Lab Server to the Service Broker, where they were stored and later
retrieved by the Lab Client. For the aforementioned reasons, this system prohibits
interactive streaming of results. The ESS changes the treatment of experiment objects and
the method they are retrieved. The original API treated experiments as individual units,
which doesn't suit the idea of a client making multiple experiment runs (in our case
temperature runs) by a client during a single reservation session. The ESS defines
experiment objects as sequences of experiment records, each holding some type of
payload representing data, error messages, etc. Records are added to the experiment as
long as the single session persists. The ESS provides a mechanism for storing large
binary results such as images. Instead of transferring the results as an attachment in a web
service call, the data is streamed. In the Polymerlab, it happens that the "ESS" which the
Microscope Server writes to is the same system which hosts the Framework Server.
However, the generic architecture of the iLab ESS allows for this functionality to be
separated out, making it more flexible.

6.2.2 Scheduling Server

General ticketing eliminates the static communication pathway between Service Broker
and Lab server by allowing web services to be invoked by anyone possessing the proper
credentials, in the form of a ticket. This has broader implications for the types of
communications possible, as discussed previously, but in the context of scheduling it
allows for a reservation system to piggyback on top of the built in time-dependent
features of the ticket system.

The development of a reservation system was begun in tandem by Jedidiah Northridge, a
Masters student at MIT [15]. Like Yehia, Northridge also made use of the Polymerlab as

 62

a case study to illustrate design needs. Furthermore, modified components of the
Polymerlab system were made available to him to use as a stub testbed for the test
implementation of the system he designed. Unlike the current implementation of the
Polymerlab system, the general iLab architecture wanted to enable a general concept of
scheduling which might include factors other than first come first serve. Lab
administrators might want to enable auctioning of time slots, for example. In addition,
administrators need the flexibility to implement generic rules for describing and
restricting reservations, if the system is to be applicable for many types of experiments.

The Scheduling Server is designed to be an optional component that handles the details of
creating tickets according to some desired scheduling system. It is designed to operate as
both a web service and a web application. The application will allow users to enter
interact with the Server to shape the scheduling. Administrators would interact with it in
order to lay out reservation policies, while students would use the application to choose
reservation times that best fit their schedule. This system is, of course, quite similar to the
current Polymerlab system, except that administrative policies regarding scheduling are
separated by an abstraction barrier from the details of implementation. Rather than
editing code to ensure maximum reservation times, for example, the administrator is able
to implement the rules generally through a web interface. The figure below depicts a beta
test of Northridge’s reservation system which used a modified version of the Microscope
Client and Server (bypassing the Framework Server.) In addition to setting up a
Scheduling Server, which he developed, and a Service Broker to fill the role occupied by
the Framework Server, Northridge modified two components of the Polymerlab system in
several ways. The Microscope Server was modified to support the new Service Provider
API, as well as process Lab Server tickets received from clients in order to grant access
to the server. The Microscope Client was also modified to recognize and use tickets, as
well as interface with the Service Brokers web services. These modifications were
successful, and Northridge was able to create a reservation system, be passed the applet
from the Service Broker, and access the Microscope Server using tickets.

 63

Figure 22: Screenshot from test implementation of Reservation System using Polymerlab

6.3 Future Work

The changes to the Service Broker outlined above and the development of a Scheduling

Service position the generic iLab architecture for implementation of a full interactive

experiment soon. In order for this system to support the Polymerlab system, several

issues must be addressed. One of the most important will be the development of a method

for introducing modular internal domain-independent functions that can be customized

for a particular lab. This would allow for components such as the ESS to be tweaked for

optimal use with the Polymerlab system. For instance, the design outlined by Yehiya for

the ESS does not allow individual temperature runs completed during the same user

session to be stored or deleted separate from each other. In addition, the Microscope

Server and its components would need to be modified to connect to the ESS in the

manner desired. While Northridge’s test implementation verified the ability to modify the

Microscope Client and Server to consume tickets, it did not address the ESS at all. With

respect to Multicasting, in general, the General Ticketing mechanism introduced by

Yehiya et al. seems general enough to take on this functionality in the same way the

Scheduling Server implementation was able to piggy back on top of that system.

 64

CHAPTER 7

Concluding Remarks and Future Work

The Polymerlab system is now able to allow multiple users to collaborate and control the
experiment at the same time. Initial testing has supported the idea that such an
experiment will better engage students and serve as a useful teaching device. Future steps
will include rolling out the simulation applet for use with students to determine its
usefulness to them.

While the Polymerlab now has the functionality initially envisioned for it, issues of
support become a concern. Although the lab equipment and sample itself are actually
stable for extremely long periods of time without user interaction (to change light bulbs,
or polymer samples, for example), it is ironic that the component of the system that
shows its age most quickly is the software. Without periodic updates to the operating
system and network software, the host system may become vulnerable to attacks from
outside intruders. This aspect of online laboratories will exist for as long as network
security remains a problem. Another aspect of security and support involves the upkeep
of the code implementing the Framework Server, Microscope Client, and Microscope
Server. To this end, the generic iLab architecture previously discusses has now begun to
address the needs of an interactive experiment such as Polymerlab, and indeed is in the
process of rolling out the first complete APIs and specifications. Once this is completed,
it will be possible to implement the pre-multicasting version of Polymerlab using that
architecture. While this will represent a step backward in terms of functionality (because
of the lost of multicasting), it will represent a step forward in ensuring that the lab is
supported over its lifetime, because the general architecture will have the combined
support of every laboratory implementing it.

There are also several areas in which the graphical simulation applet could be improved.
One potential improvement includes making the frame rate dependent on growth rate.
Additionally, the algorithm used for inserting crystals is quite naïve and should be
improved. At the same time the assumption of a pre-set nucleation rate could be modified

 65

to include temperature dependence. The most important area in which the applet could be
modified is in the internal representation of the Crystal object. Currently these objects are
represented as simple circles that grow and overlap. A more sophisticated internal
representation of its boundaries, and importantly is paint method, would allow for a very
realistic rendering including the characteristic Maltese cross pattern. Once this is
achieved, the applet could very well stand in completely for the actual physical
experiment.

 66

Appendix A: SQL Database Script

The following script initializes all the necessary tables and stored procedures, including

modifications from previous versions of the polymer crystallization iLab. It should be

imported in the standard way through the Enterprise Manager of MS SQL.

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[ExperimentRun_Add]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRun_Add]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[ExperimentRun_Delete]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRun_Delete]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[ExperimentRun_GetRunFromExpID]') and
OBJECTPROPERTY(id, N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRun_GetRunFromExpID]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[ExperimentRun_GetRunFromID]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRun_GetRunFromID]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[ExperimentRun_GetRunFromName]') and
OBJECTPROPERTY(id, N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRun_GetRunFromName]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[ExperimentRun_GetRunFromUserID]') and
OBJECTPROPERTY(id, N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRun_GetRunFromUserID]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[ExperimentRun_GetRunFromUserIDAndExpID]') and
OBJECTPROPERTY(id, N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRun_GetRunFromUserIDAndExpID]
GO

 67

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[ExperimentRun_IsRun]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRun_IsRun]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[ExperimentRun_Update]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[ExperimentRun_Update]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Experiment_CreateNew]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[Experiment_CreateNew]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Experiment_GetAllExp]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[Experiment_GetAllExp]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Experiment_GetExpFromID]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[Experiment_GetExpFromID]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Experiment_GetExpFromName]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[Experiment_GetExpFromName]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Experiment_IsExperiment]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[Experiment_IsExperiment]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Experiment_Update]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[Experiment_Update]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Reservation_CheckConflict]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[Reservation_CheckConflict]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Reservation_CreateNew]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)

 68

drop procedure [dbo].[Reservation_CreateNew]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Reservation_GetResFromDay]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[Reservation_GetResFromDay]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Reservation_GetResFromID]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[Reservation_GetResFromID]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Reservation_GetResFromUserID]') and
OBJECTPROPERTY(id, N'IsProcedure') = 1)
drop procedure [dbo].[Reservation_GetResFromUserID]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Reservation_IsReservation]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[Reservation_IsReservation]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Reservation_Redeem]') and OBJECTPROPERTY(id,
N'IsProcedure') = 1)
drop procedure [dbo].[Reservation_Redeem]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Experiment_Runs]') and OBJECTPROPERTY(id,
N'IsUserTable') = 1)
drop table [dbo].[Experiment_Runs]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Experiments]') and OBJECTPROPERTY(id,
N'IsUserTable') = 1)
drop table [dbo].[Experiments]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[MulticastGroups]') and OBJECTPROPERTY(id,
N'IsUserTable') = 1)
drop table [dbo].[MulticastGroups]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Reservations]') and OBJECTPROPERTY(id,
N'IsUserTable') = 1)
drop table [dbo].[Reservations]
GO

 69

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Role_To_Role_Map]') and OBJECTPROPERTY(id,
N'IsUserTable') = 1)
drop table [dbo].[Role_To_Role_Map]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Roles]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)
drop table [dbo].[Roles]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[User_To_Role_Map]') and OBJECTPROPERTY(id,
N'IsUserTable') = 1)
drop table [dbo].[User_To_Role_Map]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[Users]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)
drop table [dbo].[Users]
GO

CREATE TABLE [dbo].[Experiment_Runs] (
 [RunID] [uniqueidentifier] NOT NULL ,
 [ExperimentID] [uniqueidentifier] NOT NULL ,
 [RunName] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT
NULL ,
 [Description] [varchar] (500) COLLATE
SQL_Latin1_General_CP1_CI_AS NULL ,
 [UserID] [uniqueidentifier] NOT NULL ,
 [AddDate] [datetime] NOT NULL ,
 [OutputXml] [ntext] COLLATE SQL_Latin1_General_CP1_CI_AS NULL
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]
GO

CREATE TABLE [dbo].[Experiments] (
 [ExperimentID] [uniqueidentifier] NOT NULL ,
 [ExperimentName] [varchar] (50) COLLATE
SQL_Latin1_General_CP1_CI_AS NOT NULL ,
 [Description] [varchar] (500) COLLATE
SQL_Latin1_General_CP1_CI_AS NULL ,
 [RegistrationDate] [datetime] NOT NULL ,
 [CreatorID] [uniqueidentifier] NULL
) ON [PRIMARY]
GO

CREATE TABLE [dbo].[MulticastGroups] (
 [ownerID] [uniqueidentifier] NOT NULL ,
 [memberID] [uniqueidentifier] NOT NULL
) ON [PRIMARY]
GO

CREATE TABLE [dbo].[Reservations] (
 [UserID] [uniqueidentifier] NOT NULL ,
 [ReservationID] [uniqueidentifier] NOT NULL ,
 [StartTime] [datetime] NOT NULL ,
 [EndTime] [datetime] NOT NULL

 70

) ON [PRIMARY]
GO

CREATE TABLE [dbo].[Role_To_Role_Map] (
 [RoleIDA] [uniqueidentifier] NOT NULL ,
 [RoleIDB] [uniqueidentifier] NOT NULL ,
 [DateSubmitted] [datetime] NOT NULL
) ON [PRIMARY]
GO

CREATE TABLE [dbo].[Roles] (
 [RoleID] [uniqueidentifier] NOT NULL ,
 [RoleName] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL ,
 [RoleDescription] [varchar] (7000) COLLATE
SQL_Latin1_General_CP1_CI_AS NULL
) ON [PRIMARY]
GO

CREATE TABLE [dbo].[User_To_Role_Map] (
 [UserID] [uniqueidentifier] NOT NULL ,
 [RoleID] [uniqueidentifier] NOT NULL ,
 [DateSubmitted] [datetime] NOT NULL
) ON [PRIMARY]
GO

CREATE TABLE [dbo].[Users] (
 [UserID] [uniqueidentifier] NOT NULL ,
 [FirstName] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL ,
 [LastName] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL ,
 [Email] [varchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NOT
NULL ,
 [Password] [varchar] (500) COLLATE SQL_Latin1_General_CP1_CI_AS
NOT NULL ,
 [SchoolID] [int] NULL ,
 [RegistrationDate] [datetime] NOT NULL ,
 [ConfirmationDate] [datetime] NULL ,
 [ConfirmationCode] [uniqueidentifier] NULL
) ON [PRIMARY]
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS OFF
GO

CREATE PROCEDURE dbo.ExperimentRun_Add
 @RunID uniqueidentifier,
 @ExpID uniqueidentifier,
 @RunName varchar(50),
 @Desc varchar(500)=NULL,
 @UserID uniqueidentifier,
 @AddDate datetime,

 71

 @OutputXml ntext =NULL
AS
 insert into Experiment_Runs
 (RunID, ExperimentID, RunName, Description, UserID, AddDate,
OutputXml)
 values
 (@RunID, @ExpID, @RunName, @Desc, @UserID, @AddDate, @OutputXML)
GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS OFF
GO

CREATE PROCEDURE dbo.ExperimentRun_Delete
 @RunID uniqueidentifier
 AS

 delete from Experiment_Runs where RunID = @RunID

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS ON
GO

CREATE PROCEDURE dbo.ExperimentRun_GetRunFromExpID
 @ExpID uniqueidentifier
AS
select RunID, ExperimentID, RunName, Description, UserID, AddDate,
OutputXml
from Experiment_Runs where ExperimentID=@ExpID order by AddDate desc

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS OFF
GO

 72

CREATE PROCEDURE dbo.ExperimentRun_GetRunFromID
 @RunID uniqueidentifier
AS
 select RunID, ExperimentID, UserID, RunName, Description,
AddDate, OutputXml
 from Experiment_Runs
 where RunID = @RunID

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS OFF
GO

/****** Object: Stored Procedure dbo.FW_ExperimentRun_GetRunFromName
Script Date: 9/26/2002 1:22:07 PM ******/
CREATE PROCEDURE dbo.ExperimentRun_GetRunFromName
 @RunName varchar(50)
AS
 select RunID, ExperimentID, UserID, RunName, Description,
AddDate, OutputXml
 from Experiment_Runs
 where RunName = @RunName

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS ON
GO

CREATE PROCEDURE dbo.ExperimentRun_GetRunFromUserID
 @UserID uniqueidentifier
AS
select RunID, ExperimentID, RunName, Description, UserID, AddDate,
OutputXml
from Experiment_Runs where UserID=@UserID order by AddDate desc

 73

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS ON
GO

CREATE PROCEDURE dbo.ExperimentRun_GetRunFromUserIDAndExpID
 @UserID uniqueidentifier,
 @ExpID uniqueidentifier
AS
select RunID, ExperimentID, RunName, Description, UserID, AddDate,
OutputXml
from Experiment_Runs where ExperimentID=@ExpID and UserID=@UserID
order by AddDate desc

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS OFF
GO

/****** Object: Stored Procedure dbo.FW_ExperimentRun_IsRun Script
Date: 9/26/2002 1:22:07 PM ******/
CREATE PROCEDURE dbo.ExperimentRun_IsRun
 @RunID uniqueidentifier
AS
 select count(1) from Experiment_Runs where RunID=@RunID

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS OFF
GO

 74

CREATE PROCEDURE dbo.ExperimentRun_Update
 @ExpID uniqueidentifier,
 @Name varchar(50),
 @Desc varchar(500),
 @RunStatus varchar(50),
 @UserID uniqueidentifier,
 @AddDate datetime,
 @RunID uniqueidentifier,
 @OutputXml ntext
AS
 update Experiment_Runs
 set ExperimentID=@ExpID, RunName=@Name, Description=@Desc,
 @UserID=UserID, AddDate=@AddDate, OutputXml=@OutputXml
 where RunID = @RunID

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

CREATE PROCEDURE dbo.Experiment_CreateNew
 @ExpID uniqueidentifier,
 @ExperimentName varchar(50),
 @Desc varchar(500),
 @RegDate datetime,
 @CreatorID uniqueidentifier
AS
 insert into Experiments
 (ExperimentID, ExperimentName, Description, RegistrationDate,
CreatorID)
 values (@ExpID, @ExperimentName, @Desc, @RegDate, @CreatorID)
GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS ON
GO

CREATE PROCEDURE dbo.Experiment_GetAllExp
AS
 select ExperimentID, ExperimentName, Description,
RegistrationDate, CreatorID

 75

 from Experiments order by ExperimentName

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS ON
GO

CREATE PROCEDURE dbo.Experiment_GetExpFromID
 @ExpID uniqueidentifier
AS
 select ExperimentID, ExperimentName, Description,
RegistrationDate, CreatorID
 from Experiments where ExperimentID=@ExpID

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS ON
GO

CREATE PROCEDURE dbo.Experiment_GetExpFromName
 @ExpName uniqueidentifier
AS
 select ExperimentID, ExperimentName, Description,
RegistrationDate, CreatorID
 from Experiments where ExperimentName=@ExpName

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS ON
GO

 76

CREATE PROCEDURE dbo.Experiment_IsExperiment
 @ExpID uniqueidentifier
AS
 select count(1) from Experiments where ExperimentID=@ExpID

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS ON
GO

CREATE PROCEDURE dbo.Experiment_Update
 @ExpID uniqueidentifier,
 @ExperimentName varchar(50),
 @Desc varchar(500),
 @RegDate datetime,
 @CreatorID uniqueidentifier
AS
update Experiments set ExperimentName=@ExperimentName,
Description=@Desc, CreatorID=@CreatorID, RegistrationDate=@RegDate
where ExperimentID=@ExpID

GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS OFF
GO

CREATE PROCEDURE dbo.Reservation_CheckConflict
 @Start datetime,
 @End datetime
AS
 select COUNT(*)
 from Reservations where ((StartTime >= @Start) and (StartTime <=
@End)) or ((EndTime >= @Start) and (EndTime <= @End)) or ((StartTime <=
@Start) and (EndTime >= @End)) or ((StartTime>= @Start) and (EndTime<=
@End))
GO
SET QUOTED_IDENTIFIER OFF
GO

 77

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS OFF
GO

CREATE PROCEDURE dbo.Reservation_CreateNew
 @ResID uniqueidentifier,
 @UserID uniqueidentifier,
 @StartTime datetime,
 @EndTime datetime
AS
 insert into Reservations
 (ReservationID, UserID, StartTime, EndTime)
 values (@ResID, @UserID, @StartTime, @EndTime)
GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS OFF
GO

CREATE PROCEDURE dbo.Reservation_GetResFromDay
 @Day datetime
AS
 select ReservationID, UserID, StartTime, EndTime
 from Reservations where (DAY(StartTime) = DAY(@DAY)) and
(MONTH(StartTime)=MONTH(@DAY)) and (YEAR(StartTime)=YEAR(@DAY))
GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO
SET ANSI_NULLS OFF
GO

CREATE PROCEDURE dbo.Reservation_GetResFromID
 @ResID uniqueidentifier
AS
 select ReservationID, UserID, StartTime, EndTime
 from Reservations where ReservationID=@ResID
GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON

 78

GO
SET ANSI_NULLS OFF
GO

CREATE PROCEDURE dbo.Reservation_GetResFromUserID
 @UserID uniqueidentifier
AS
 select ReservationID, UserID, StartTime, EndTime
 from Reservations where UserID=@UserID
GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS OFF
GO

CREATE PROCEDURE dbo.Reservation_IsReservation
 @ResID uniqueidentifier
AS
 select COUNT(*)
 from Reservations where ReservationID=@ResID
GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS OFF
GO

CREATE PROCEDURE dbo.Reservation_Redeem
 @UserID uniqueidentifier,
 @Now datetime
AS
 select ReservationID, UserID, StartTime, EndTime
 from Reservations where UserID=@UserID and (DAY(StartTime) =
DAY(@NOW)) and (MONTH(StartTime)=MONTH(@NOW)) and
(YEAR(StartTime)=YEAR(@NOW)) order by StartTime
GO
SET QUOTED_IDENTIFIER OFF
GO
SET ANSI_NULLS ON
GO

 79

Appendix B: Heterogeneous Simulation Applet

This appendix provides all Java code necessary to compile and run the heterogeneous τo

nucleation graphical simulation applet. This applet was an alpha version which calculated

boundaries analytically using simple Euclidean distance weighted Voronoi diagram.

B.1 SimTwo.java
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.lang.Math;

import java.util.*;
import javax.swing.Timer;

 // Note the very indirect way control flow works during an animation:
 //
 // (1) We set up an eventListener with a reference to the animationWindow.
 // (2) We set up a timer with a reference to the eventListener.
 // (3) We call timer.start().
 // (4) Every 20 milliseconds the timer calls eventListener.actionPerformed()
 // (5) eventListener.actionPerformed() modifies the logical
 // datastructure (e.g. changes the coordinates of the ball).
 // (6) eventListener.actionPerformed() calls myWindow.repaint.
 // (7) Swing schedules, at some point in the future, a call to
 // myWindow.paint()
 // (8) myWindow.paint() tells various objects to paint
 // themselves on the provided Graphics context.
 //
 // This may seem very complicated, but it makes the coordination of
 // all the various different kinds of user input much easier. For
 // example here is how control flow works when the user presses the
 // mouse button:
 //
 // (1) We set up an eventListener (actually we just use the same
 // eventListener that is being used by the timer.)
 // (2) We register the eventListener with the window using the
 // addMouseListener() method.
 // (3) Every time the mouse button is pressed inside the window the
 // window calls eventListener.mouseClicked().
 // (4) eventListener.mouseClicked() modifies the logical
 // datastructures. (In this example it calls ball.randomBump(), but
 // in other programs it might do something else, including request a
 // repaint operation).
 //

class AnimationWindow extends JPanel {
 // overview: an AnimationWindow is an area on the screen in which a
 // crystal animation occurs. AnimationWindows have two modes:
 // on and off. During the on mode the crystal grows, during the off
 // mode the crystal doesn't grow.

 private AnimationEventListener eventListener;
 private Vector crystals;
 private AddWeightVoro awvoro;

 80

 private String message;
 private double displaytime;
 private double pixpermm;
 int x1,y1,x2,y2;
 boolean mouseclick;

 private Timer timer;
 private boolean mode;

 public AnimationWindow() {

 // effects: initializes this to be in the off mode.

 super(); // do the standard JPanel setup stuff
 pixpermm = 100/0.5;
 mouseclick=false;
 // this only initializes the timer, we actually start and stop the
 // timer in the setMode() method
 eventListener = new AnimationEventListener();
 // The first parameter is how often (in milliseconds) the timer
 // should call us back. 50 milliseconds = 20 frames/second
 timer = new Timer(50, eventListener);

 mode = false;
 }

 public void initializeCrystals(int n, double r) {
 // this method will eventually take in the number of crystals and the rate
 // and insert the crystals.

 // may be able to use getSize like methods (see Main.java line 153) when
 // creating crystals so that they always get created in the right area
 // no matter if the window has been resized.

 // FOR NOW we assume that crystals are added every 10 time clicks.
 x1 =0;
 x2=0;
 y1=0;
 y2=0;
 mouseclick=false;
 int timeinc = 10;
 int time = 0;
 displaytime=0.0;
 crystals = new Vector();
 Crystal c;
 //double w = (double) super.getSize().width;
 //double h = (double) super.getSize().height;
 double w = 510.0;
 double h = 530.0;

 while (crystals.size() != n) {
 c = new Crystal((int) (w*Math.random()), (int) (h*Math.random()));
 c.setRate(r);
 c.setStartTime(time);
 boolean ok = true;
 for (int i = 0; i < crystals.size(); i++) {
 if (((Crystal) crystals.get(i)).inside(c)) {
 ok = false;
 }
 }
 if (ok) {
 crystals.addElement(c);
 time += timeinc;
 }
 }

 /*

 81

 c = new Crystal(100,100);
 c.setRate(r);
 c.setStartTime(30);
 crystals.addElement(c);
 c = new Crystal(300,300);
 c.setRate(r);
 crystals.addElement(c);
 c = new Crystal(400,100);
 c.setStartTime(50);
 c.setRate(r);
 crystals.addElement(c);
 c = new Crystal(450,150);
 c.setRate(r);
 crystals.addElement(c);
 */
 awvoro = new AddWeightVoro(crystals,r);

 }

 public void resetAnimationWindow(double n, double r) {

 //Resets the animation window to start over
 mouseclick=false;
 initializeCrystals(((int) n),r);
 repaint();
 // remember to add code to clear any imput window. that'll have to happen
 // higher up.
 // this only initializes the timer, we actually start and stop the
 // timer in the setMode() method
 eventListener = new AnimationEventListener();
 // The first parameter is how often (in milliseconds) the timer
 // should call us back. 50 milliseconds = 20 frames/second
 timer = new Timer(50, eventListener);

 mode = false;
 }

 // This is just here so that we can accept the keyboard focus
 public boolean isFocusTraversable() { return true; }

 public void paint(Graphics g) {
 // modifies: <g>
 // effects: Repaints the Graphics area <g>. Swing will then send the
 // newly painted g to the screen.

 // first repaint the proper background color (controlled by
 // the windowing system)
 Color b = Color.black;
 super.paint(g);

 Color c = new Color(0,0,255);
 paintCrystals(g);
 g.setColor(c);
 awvoro.paint(g);
 g.setColor(b);
 g.drawString("T = "+Math.round(displaytime*1000)+" ms",25,13);
 if ((! mode) && mouseclick) {
 g.drawLine(x1,y1,x2,y2);
 double length = Math.pow((double) ((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)),0.5);
 length = length/pixpermm;
 g.drawString(Math.round(length*1000) +" nm",x2+10,y2+10);
 x1=0;
 y1=0;
 x2=0;
 y2=0;
 mouseclick=false;
 }

 }

 public void paintCrystals(Graphics g) {

 82

 // modifies: <g>
 // effects: Repaints the Graphics area <g>. Swing will then send the
 // newly painted g to the screen.

 // calls the paint method of each crystal in the crystals vector.
 //
 for (int i = 0; i < crystals.size(); i++) {
 ((Crystal) crystals.get(i)).paint(g);
 }
 for (int i = 0; i < crystals.size(); i++) {
 ((Crystal) crystals.get(i)).paintCenter(g);
 }
 }

 public void setMode(boolean m) {
 // modifies: this
 // effects: changes the mode to <m>.

 if (mode == true) {
 // we're about to change mode: turn off all the old listeners
 addMouseListener(eventListener);
 addMouseMotionListener(eventListener);
 removeKeyListener(eventListener);
 } else {
 removeMouseListener(eventListener);
 removeMouseMotionListener(eventListener);
 }

 mode = m;

 if (mode == true) {
 // the mode is true: turn on the listeners
 removeMouseListener(eventListener);
 removeMouseMotionListener(eventListener);
 addKeyListener(eventListener);
 requestFocus(); // make sure keyboard is directed to us
 timer.start();
 }
 else {
 timer.stop();
 }
 }

 class AnimationEventListener extends MouseAdapter
 implements MouseMotionListener, KeyListener, ActionListener
 {
 // overview: AnimationEventListener is an inner class that
 // responds to all sorts of external events, and provides the
 // required semantic operations for our particular program. It
 // owns, and sends semantic actions to the crystal and window of the
 // outer class

 // MouseAdapter gives us empty methods for the MouseListener
 // interface: mouseClicked, mouseEntered, mouseExited, mousePressed,
 // and mouseReleased.

 // for this example we only need to override mouseClicked
 public void mouseClicked(MouseEvent e) {
 }

 public void mousePressed(MouseEvent e) {
 //System.out.println("mousePressed "+e.getX()+","+e.getY());
 x1=e.getX();
 y1=e.getY();
 }

 public void mouseReleased(MouseEvent e) {

 83

 //System.out.println("mouseReleased "+e.getX()+","+e.getY());
 x2=e.getX();
 y2=e.getY();
 mouseclick=true;
 repaint(0,0,510,530);
 }

 // Here's the MouseMotionListener interface
 public void mouseDragged(MouseEvent e) { }
 public void mouseMoved(MouseEvent e) { }

 // Here's the KeyListener interface
 public void keyPressed(KeyEvent e) {
 // modifes: the ball that this listener owns
 // effects: causes the crystal to stop growing but
 // only if one of the keys A-J is pressed.

 // Come back and rewrite this? Is this the desired functionality?
 // Better to have it call the stop button function. As currently
 // written it permanently stops growth.

 int keynum = e.getKeyCode();

 if ((keynum >= 65) && (keynum <= 74)) {
 System.out.println("keypress " + e.getKeyCode());
 //for (int i = 0; i < crystals.size(); i++) {
 // ((Crystal) crystals.get(i)).stopGrowth();
 //}
 }
 }
 public void keyReleased(KeyEvent e) { }
 public void keyTyped(KeyEvent e) { }

 // this is the callback for the timer
 public void actionPerformed(ActionEvent e) {
 // modifes: both the crystal and the window that this listener owns
 // effects: causes the crystal to grow and the window to be updated
 // to show the new position of the ball.

 // MAY BE ROOM TO IMPROVE PERFORMANCE BELOW. MAYBE NOT THOUGH.
 Rectangle rec;
 Rectangle repaintArea;
 Crystal c;
 for (int i = 0; i < crystals.size(); i++) {
 c = ((Crystal) crystals.get(i));
 rec = c.boundingBox();
 c.growCrystal();
 repaintArea = rec.union(c.boundingBox());
 //repaint(repaintArea.x,
 //repaintArea.y,
 //repaintArea.width,
 //repaintArea.height);
 repaint(0,0,510,530);
 }
 // NOTE THAT THE TIME INCREMENT DEPENDS ON THE FRAME RATE
 // We assume below that the frame rate is 20 frames/sec.
 displaytime += 0.05;

 //repaint();

 // Have Swing tell the AnimationWindow to run its paint()
 // method. One could also call repaint(), but this would
 // repaint the entire window as opposed to only the portion that
 // has changed.

 }
 }
}

 84

public class Simulator extends javax.swing.JApplet {
 // overview: An ApplicationWindow is a top level program window that
 // contains a toolbar and an animation window.

 protected AnimationWindow animationWindow;
 JTextField numfield;
 JTextField ratefield;
 public double pixpermm = 100/0.5;
 public double num = 10.0;
 public double rate = 1.0;

 public void init() {
 // effects: Initializes the application window so that it contains
 // a toolbar and an animation window.

 // Title bar
 //super("Crystal Demonstration Program");

 //Create the toolbar.
 JToolBar toolBar = new JToolBar();
 addButtons(toolBar);

 //Create the animation area used for output.
 animationWindow = new AnimationWindow();
 // Put it in a scrollPane, (this makes a border)
 JScrollPane scrollPane = new JScrollPane(animationWindow);

 //Lay out the content pane.
 JPanel contentPane = new JPanel();
 contentPane.setLayout(new BorderLayout());
 contentPane.setPreferredSize(new Dimension(510, 550));
 contentPane.add(toolBar, BorderLayout.NORTH);
 contentPane.add(scrollPane, BorderLayout.CENTER);
 setContentPane(contentPane);
 //Initialize the crystals.
 animationWindow.initializeCrystals(10,1.0);
 }

 protected void addButtons(JToolBar toolBar) {
 // modifies: toolBar
 // effects: adds Run, Stop, Reset, and Quit buttons to toolBar

 JButton button = null;
 numfield = null;
 ratefield = null;
 JLabel label = null;

 button = new JButton("Run");
 button.setToolTipText("Start the animation");
 // when this button is pushed it calls animationWindow.setMode(true)
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 animationWindow.setMode(true);
 }
 });
 toolBar.add(button);

 button = new JButton("Stop");
 button.setToolTipText("Stop the animation");
 // when this button is pushed it calls animationWindow.setMode(false)
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 animationWindow.setMode(false);
 }
 });
 toolBar.add(button);

 85

 button = new JButton("Reset");
 button.setToolTipText("Reset the animation");
 // when this button is pushed it calls animationWindow.setMode(false)
 // and animationWindow.resetAnimationWindow()
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 animationWindow.setMode(false);
 animationWindow.resetAnimationWindow(num,rate);
 }
 });
 toolBar.add(button);

 button = new JButton("Quit");
 button.setToolTipText("Quit the program");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 });
 toolBar.add(button);

 label = new JLabel("Crystals:");
 label.setToolTipText("Number of crystals to appear");
 toolBar.add(label);

 numfield = new JTextField("10");
 numfield.addFocusListener(new java.awt.event.FocusAdapter() {
 public void focusLost(java.awt.event.FocusEvent evt) {
 numfieldFocusLost(evt);
 }});
 toolBar.add(numfield);

 label = new JLabel("Temp (C):");
 label.setToolTipText("Temperature of the sample");
 toolBar.add(label);

 ratefield = new JTextField("1.0");
 ratefield.addFocusListener(new java.awt.event.FocusAdapter() {
 public void focusLost(java.awt.event.FocusEvent evt) {
 ratefieldFocusLost(evt);
 }});
 toolBar.add(ratefield);

 button = new JButton("Set");
 button.setToolTipText("Set the crystal values");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 setButtonPressed();
 }
 });
 toolBar.add(button);
 }

 private void setButtonPressed() {
 animationWindow.setMode(false);
 num = Double.parseDouble(numfield.getText().trim());
 if (num < 0 || num > 20) {
 num = 10.0;
 }
 rate = Double.parseDouble(ratefield.getText().trim());
 if (rate < 0 || rate > 10) {
 rate = 1.0;
 }
 animationWindow.resetAnimationWindow(num,rate);
 }

 private void numfieldFocusLost(java.awt.event.FocusEvent evt) {
 try {
 //num = Double.parseDouble(numfield.getText().trim());
 //if (num < 0 || num > 1000) {
 //do something about popping up an error box.

 86

 //}
 } catch (NumberFormatException e) {
 //
 }
 }

 private void ratefieldFocusLost(java.awt.event.FocusEvent evt) {
 try {
 //rate = Double.parseDouble(ratefield.getText().trim());
 //if (rate < 0 || rate > 1000) {
 //do something about popping up an error box.
 //}
 } catch (NumberFormatException e) {
 //
 }
 }

}

B.2 Crystal.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.lang.Math;

import java.util.*;

public class Crystal {
 // Overview: A Crystal is a mutable data type. It simulates a
 // crystal growing inside a two dimensional box. It also
 // provides methods that are useful for creating animations of the
 // crystal as it grows

 // Note that may want to change the dimensions of the box.

 private int x = (int)((Math.random() * 600.0) - 0.0);
 private int y = (int)((Math.random() * 600.0) - 0.0);

 private double rate = 1.0;
 private double radius = 0.0;
 private Color color = new Color(255, 0, 0);
 private Color color2 = new Color(0,255,0);
 private int start = 0;
 private Point center = new Point(x, y);

 public Crystal(int a, int b) {
 center = new Point(a, b);
 this.x = a;
 this.y = b;
 }

 public Crystal() {
 }

 public boolean inside(Crystal c) {
 Point p = c.getCenter();
 int d = center.distanceToPoint(p);
 int diff = c.getStartTime()-start;
 if (d<=diff*rate)
 return true;
 else
 return false;
 }

 public void setStartTime(int i) {
 start = i;

 87

 }

 public int getStartTime() {
 return start;
 }

 public void changeColor() {
 color = new Color(0,255,0);
 }

 public Point getCenter() {
 return center;
 }

 public double getRadius() {
 return radius;
 }

 public void setRadius(double rnew) {
 this.radius = rnew;
 }

 public void setRate(double i) {
 rate = i;
 }

 public void growCrystal() {
 if (start == 0) {
 radius += rate;
 }
 }

 public void stopGrowth() {
 rate = 0.0;
 }

 public void paint(Graphics g) {
 // modifies: the Graphics object <g>.
 // effects: paints a circle on <g> reflecting the current position
 // of the ball.

 // the "clip rectangle" is the area of the screen that needs to be
 // modified
 if (start == 0) {
 Rectangle clipRect = g.getClipBounds();
 int rad = (int) radius;
 // For this tiny program, testing whether we need to redraw is
 // kind of silly. But when there are lots of objects all over the
 // screen this is a very important performance optimization
 if (clipRect.intersects(this.boundingBox())) {
 g.setColor(color);
 g.fillOval(x-rad, y-rad, rad+rad, rad+rad);

 }
 } else {
 start = start - 1;
 }
 }

 public void paintCenter(Graphics g) {
 if (start == 0) {
 Rectangle clipRect = g.getClipBounds();

 // For this tiny program, testing whether we need to redraw is
 // kind of silly. But when there are lots of objects all over the
 // screen this is a very important performance optimization
 if (clipRect.intersects(this.boundingBox())) {
 g.setColor(color2);
 g.fillOval(x-1, y-1, 1, 1);
 }}
 }

 88

 public Rectangle boundingBox() {
 // effect: Returns the smallest rectangle that completely covers the
 // current position of the crystal.

 // a Rectangle is the x,y for the upper left corner and then the
 // width and height
 int rad = (int) radius;
 return new Rectangle(x-rad, y-rad, rad+rad+1, rad+rad+1);
 }

}

B.3 Point.java and Line.java
import java.awt.*;
import java.awt.event.*;
import java.lang.Math;

public class Point {
 // Overview: A Point is just what it seems. It has an x and a y value,
 // and a few methods for determining distances to other points.
 private int x;
 private int y;

 // Constructor
 public Point(int x, int y) {
 // Creates a new point
 this.x = x;
 this.y = y;
 }

 public int xval() {
 return x;
 }

 public int yval() {
 return y;
 }

 public void setX(int xval) {
 this.x = xval;
 }

 public void setY(int yval) {
 this.y = yval;
 }

 public int distanceToPoint(Point p) {
 // modifies:
 // effects:
 // returns: distance to Point p
 double px = (double) p.xval();
 double py = (double) p.yval();
 double dx = (double) x;
 double dy = (double) y;
 int d = (int) Math.sqrt(Math.pow((px-dx),2.0) + Math.pow((py-dy),2.0));
 return d;
 }

}

public class Line {
 // Overview: A Line is just what it seems. It has two endpoints which each
 // have an x and a y value.

 public int x1;
 public int y1;
 public int x2;
 public int y2;

 89

 // Constructor
 public Line(int x1, int y1, int x2, int y2) {
 // Creates a new point
 this.x1 = x1;
 this.y1 = y1;
 this.x2 = x2;
 this.y2 = y2;
 }

 public int x1val() {
 return x1;
 }

 public int y1val() {
 return y1;
 }

 public void setX1(int xval) {
 this.x1 = xval;
 }

 public void setY1(int yval) {
 this.y1 = yval;
 }

 public int x2val() {
 return x2;
 }

 public int y2val() {
 return y2;
 }

 public void setX2(int xval) {
 this.x2 = xval;
 }

 public void setY2(int yval) {
 this.y2 = yval;
 }

}

 90

Appendix C: Homogeneous Simulation Applet

This appendix provides the Java code necessary to compile and run the homogeneous
nucleation graphical simulation applet. This applet calculates boundaries numerically
using simple additively weighted Euclidean distance. (The code for the new numerical
AddWeightVoro class is also included.) This applet takes in a temperature and yields a
correct crystal growth rate for that temperature. It also includes a built-in crystal
measuring ability to simplify analysis of the animation results.

C.1 Simulator2.java

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.lang.Math;

import java.util.*;
import javax.swing.Timer;

 // Note the very indirect way control flow works during an animation:
 //
 // (1) We set up an eventListener with a reference to the animationWindow.
 // (2) We set up a timer with a reference to the eventListener.
 // (3) We call timer.start().
 // (4) Every 20 milliseconds the timer calls eventListener.actionPerformed()
 // (5) eventListener.actionPerformed() modifies the logical
 // datastructure (e.g. changes the coordinates of the ball).
 // (6) eventListener.actionPerformed() calls myWindow.repaint.
 // (7) Swing schedules, at some point in the future, a call to
 // myWindow.paint()
 // (8) myWindow.paint() tells various objects to paint
 // themselves on the provided Graphics context.
 //
 // This may seem very complicated, but it makes the coordination of
 // all the various different kinds of user input much easier. For
 // example here is how control flow works when the user presses the
 // mouse button:
 //
 // (1) We set up an eventListener (actually we just use the same
 // eventListener that is being used by the timer.)
 // (2) We register the eventListener with the window using the
 // addMouseListener() method.
 // (3) Every time the mouse button is pressed inside the window the
 // window calls eventListener.mouseClicked().
 // (4) eventListener.mouseClicked() modifies the logical
 // datastructures. (In this example it calls ball.randomBump(), but
 // in other programs it might do something else, including request a
 // repaint operation).
 //

class AnimationWindow extends JPanel {
 // overview: an AnimationWindow is an area on the screen in which a
 // crystal animation occurs. AnimationWindows have two modes:
 // on and off. During the on mode the crystal grows, during the off
 // mode the crystal doesn't grow.

 91

 private AnimationEventListener eventListener;
 private Vector crystals;
 private AddWeightVoro awvoro;
 private String message;
 private double displaytime;
 private double pixpermm;
 int x1,y1,x2,y2;
 boolean mouseclick;

 private Timer timer;
 private boolean mode;

 public AnimationWindow() {

 // effects: initializes this to be in the off mode.

 super(); // do the standard JPanel setup stuff
 pixpermm = 100/0.05;
 mouseclick=false;
 // this only initializes the timer, we actually start and stop the
 // timer in the setMode() method
 eventListener = new AnimationEventListener();
 // The first parameter is how often (in milliseconds) the timer
 // should call us back. 50 milliseconds = 20 frames/second
 timer = new Timer(50, eventListener);

 mode = false;
 }

 public void initializeCrystals(int n, double r) {
 // this method will eventually take in the number of crystals and the rate
 // and insert the crystals.

 // may be able to use getSize like methods (see Main.java line 153) when
 // creating crystals so that they always get created in the right area
 // no matter if the window has been resized.

 // FOR NOW we assume that crystals are added every 10 time clicks.
 x1 =0;
 x2=0;
 y1=0;
 y2=0;
 mouseclick=false;
 int timeinc = 10;
 int time = 0;
 displaytime=0.0;
 crystals = new Vector();
 Crystal c;
 //double w = (double) super.getSize().width;
 //double h = (double) super.getSize().height;
 double w = 510.0;
 double h = 530.0;

 while (crystals.size() != n) {
 c = new Crystal((int) (w*Math.random()), (int) (h*Math.random()));
 c.setRate(r);
 c.setStartTime(time);
 boolean ok = true;
 for (int i = 0; i < crystals.size(); i++) {
 if (((Crystal) crystals.get(i)).inside(c)) {
 ok = false;
 }
 }
 if (ok) {
 crystals.addElement(c);
 time += timeinc;
 }

 92

 }

 /*
 c = new Crystal(100,100);
 c.setRate(r);
 c.setStartTime(30);
 crystals.addElement(c);
 c = new Crystal(300,300);
 c.setRate(r);
 crystals.addElement(c);
 c = new Crystal(400,100);
 c.setStartTime(50);
 c.setRate(r);
 crystals.addElement(c);
 c = new Crystal(450,150);
 c.setRate(r);
 crystals.addElement(c);
 */
 awvoro = new AddWeightVoro(crystals,r);

 }

 public void resetAnimationWindow(double n, double r) {

 //Resets the animation window to start over
 mouseclick=false;
 initializeCrystals(((int) n),r);
 repaint();
 // remember to add code to clear any imput window. that'll have to happen
 // higher up.
 // this only initializes the timer, we actually start and stop the
 // timer in the setMode() method
 eventListener = new AnimationEventListener();
 // The first parameter is how often (in milliseconds) the timer
 // should call us back. 50 milliseconds = 20 frames/second
 timer = new Timer(50, eventListener);

 mode = false;
 }

 // This is just here so that we can accept the keyboard focus
 public boolean isFocusTraversable() { return true; }

 public void paint(Graphics g) {
 // modifies: <g>
 // effects: Repaints the Graphics area <g>. Swing will then send the
 // newly painted g to the screen.

 // first repaint the proper background color (controlled by
 // the windowing system)
 Color b = Color.black;
 super.paint(g);

 Color c = new Color(0,0,255);
 paintCrystals(g);
 g.setColor(c);
 awvoro.paint(g);
 g.setColor(b);
 g.drawString("T = "+Math.round(displaytime*1000)+" ms",25,13);
 if ((! mode) && mouseclick) {
 g.drawLine(x1,y1,x2,y2);
 double length = Math.pow((double) ((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)),0.5);
 length = length/pixpermm;
 g.drawString(Math.round(length*10000) +"E-4 mm",x2+10,y2+10);
 x1=0;
 y1=0;
 x2=0;
 y2=0;
 mouseclick=false;
 }

 93

 }

 public void paintCrystals(Graphics g) {
 // modifies: <g>
 // effects: Repaints the Graphics area <g>. Swing will then send the
 // newly painted g to the screen.

 // calls the paint method of each crystal in the crystals vector.
 //
 for (int i = 0; i < crystals.size(); i++) {
 ((Crystal) crystals.get(i)).paint(g);
 }
 for (int i = 0; i < crystals.size(); i++) {
 ((Crystal) crystals.get(i)).paintCenter(g);
 }
 }

 public void setMode(boolean m) {
 // modifies: this
 // effects: changes the mode to <m>.

 if (mode == true) {
 // we're about to change mode: turn off all the old listeners
 addMouseListener(eventListener);
 addMouseMotionListener(eventListener);
 removeKeyListener(eventListener);
 } else {
 removeMouseListener(eventListener);
 removeMouseMotionListener(eventListener);
 }

 mode = m;

 if (mode == true) {
 // the mode is true: turn on the listeners
 removeMouseListener(eventListener);
 removeMouseMotionListener(eventListener);
 addKeyListener(eventListener);
 requestFocus(); // make sure keyboard is directed to us
 timer.start();
 }
 else {
 timer.stop();
 }
 }

 class AnimationEventListener extends MouseAdapter
 implements MouseMotionListener, KeyListener, ActionListener
 {
 // overview: AnimationEventListener is an inner class that
 // responds to all sorts of external events, and provides the
 // required semantic operations for our particular program. It
 // owns, and sends semantic actions to the crystal and window of the
 // outer class

 // MouseAdapter gives us empty methods for the MouseListener
 // interface: mouseClicked, mouseEntered, mouseExited, mousePressed,
 // and mouseReleased.

 // for this example we only need to override mouseClicked
 public void mouseClicked(MouseEvent e) {
 }

 public void mousePressed(MouseEvent e) {
 //System.out.println("mousePressed "+e.getX()+","+e.getY());
 x1=e.getX();

 94

 y1=e.getY();
 }

 public void mouseReleased(MouseEvent e) {
 //System.out.println("mouseReleased "+e.getX()+","+e.getY());
 x2=e.getX();
 y2=e.getY();
 mouseclick=true;
 repaint(0,0,510,530);
 }

 // Here's the MouseMotionListener interface
 public void mouseDragged(MouseEvent e) { }
 public void mouseMoved(MouseEvent e) { }

 // Here's the KeyListener interface
 public void keyPressed(KeyEvent e) {
 // modifes: the ball that this listener owns
 // effects: causes the crystal to stop growing but
 // only if one of the keys A-J is pressed.

 // Come back and rewrite this? Is this the desired functionality?
 // Better to have it call the stop button function. As currently
 // written it permanently stops growth.

 int keynum = e.getKeyCode();

 if ((keynum >= 65) && (keynum <= 74)) {
 System.out.println("keypress " + e.getKeyCode());
 //for (int i = 0; i < crystals.size(); i++) {
 // ((Crystal) crystals.get(i)).stopGrowth();
 //}
 }
 }
 public void keyReleased(KeyEvent e) { }
 public void keyTyped(KeyEvent e) { }

 // this is the callback for the timer
 public void actionPerformed(ActionEvent e) {
 // modifes: both the crystal and the window that this listener owns
 // effects: causes the crystal to grow and the window to be updated
 // to show the new position of the ball.

 // MAY BE ROOM TO IMPROVE PERFORMANCE BELOW. MAYBE NOT THOUGH.
 Rectangle rec;
 Rectangle repaintArea;
 Crystal c;
 for (int i = 0; i < crystals.size(); i++) {
 c = ((Crystal) crystals.get(i));
 rec = c.boundingBox();
 c.growCrystal();
 repaintArea = rec.union(c.boundingBox());
 //repaint(repaintArea.x,
 //repaintArea.y,
 //repaintArea.width,
 //repaintArea.height);
 repaint(0,0,510,530);
 }
 // NOTE THAT THE TIME INCREMENT DEPENDS ON THE FRAME RATE
 // We assume below that the frame rate is 20 frames/sec.
 displaytime += 0.05;

 //repaint();

 // Have Swing tell the AnimationWindow to run its paint()
 // method. One could also call repaint(), but this would
 // repaint the entire window as opposed to only the portion that
 // has changed.

 95

 }
 }
}

public class Simulator2 extends javax.swing.JApplet {
 // overview: An ApplicationWindow is a top level program window that
 // contains a toolbar and an animation window.

 protected AnimationWindow animationWindow;
 JTextField numfield;
 JTextField ratefield;
 public double pixpermm = 100/0.05;
 public double framespersec = 20.0;
 public double num = 10.0;
 public double rate = 0.21553;
 public double temp = 55.0;

 public void init() {
 // effects: Initializes the application window so that it contains
 // a toolbar and an animation window.

 // Title bar
 //super("Crystal Demonstration Program");

 //Create the toolbar.
 JToolBar toolBar = new JToolBar();
 addButtons(toolBar);

 //Create the animation area used for output.
 animationWindow = new AnimationWindow();
 // Put it in a scrollPane, (this makes a border)
 JScrollPane scrollPane = new JScrollPane(animationWindow);

 //Lay out the content pane.
 JPanel contentPane = new JPanel();
 contentPane.setLayout(new BorderLayout());
 contentPane.setPreferredSize(new Dimension(510, 550));
 contentPane.add(toolBar, BorderLayout.NORTH);
 contentPane.add(scrollPane, BorderLayout.CENTER);
 setContentPane(contentPane);
 //Initialize the crystals.
 animationWindow.initializeCrystals(10,0.21553);
 }

 protected void addButtons(JToolBar toolBar) {
 // modifies: toolBar
 // effects: adds Run, Stop, Reset, and Quit buttons to toolBar

 JButton button = null;
 numfield = null;
 ratefield = null;
 JLabel label = null;

 button = new JButton("Run");
 button.setToolTipText("Start the animation");
 // when this button is pushed it calls animationWindow.setMode(true)
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 animationWindow.setMode(true);
 }
 });
 toolBar.add(button);

 button = new JButton("Stop");
 button.setToolTipText("Stop the animation");
 // when this button is pushed it calls animationWindow.setMode(false)
 button.addActionListener(new ActionListener() {

 96

 public void actionPerformed(ActionEvent e) {
 animationWindow.setMode(false);
 }
 });
 toolBar.add(button);

 button = new JButton("Reset");
 button.setToolTipText("Reset the animation");
 // when this button is pushed it calls animationWindow.setMode(false)
 // and animationWindow.resetAnimationWindow()
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 animationWindow.setMode(false);
 animationWindow.resetAnimationWindow(num,rate);
 }
 });
 toolBar.add(button);

 button = new JButton("Quit");
 button.setToolTipText("Quit the program");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.exit(0);
 }
 });
 toolBar.add(button);

 label = new JLabel("Crystals:");
 label.setToolTipText("Number of crystals to appear");
 toolBar.add(label);

 numfield = new JTextField("10");
 numfield.addFocusListener(new java.awt.event.FocusAdapter() {
 public void focusLost(java.awt.event.FocusEvent evt) {
 numfieldFocusLost(evt);
 }});
 toolBar.add(numfield);

 label = new JLabel("Temp (C):");
 label.setToolTipText("Temperature of the sample");
 toolBar.add(label);

 ratefield = new JTextField("55.0");
 ratefield.addFocusListener(new java.awt.event.FocusAdapter() {
 public void focusLost(java.awt.event.FocusEvent evt) {
 ratefieldFocusLost(evt);
 }});
 toolBar.add(ratefield);

 button = new JButton("Set");
 button.setToolTipText("Set the crystal values");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 setButtonPressed();
 }
 });
 toolBar.add(button);
 }

 private void setButtonPressed() {
 animationWindow.setMode(false);
 num = Double.parseDouble(numfield.getText().trim());
 if (num < 0 || num > 15) {
 num = 10.0;
 }
 temp = Double.parseDouble(ratefield.getText().trim());
 if (temp < 48 || rate > 62) {
 rate = 0.21553;
 temp = 55.0;
 } else {

 97

 rate = Math.exp(26.147-(29300.0/(8.3144*(temp+97.15)))-
45816.0/((temp+273.15)*(70.3-temp)))*pixpermm/framespersec;
 }
 animationWindow.resetAnimationWindow(num,rate);
 }

 private void numfieldFocusLost(java.awt.event.FocusEvent evt) {
 try {
 //num = Double.parseDouble(numfield.getText().trim());
 //if (num < 0 || num > 1000) {
 //do something about popping up an error box.
 //}
 } catch (NumberFormatException e) {
 //
 }
 }

 private void ratefieldFocusLost(java.awt.event.FocusEvent evt) {
 try {
 //rate = Double.parseDouble(ratefield.getText().trim());
 //if (rate < 0 || rate > 1000) {
 //do something about popping up an error box.
 //}
 } catch (NumberFormatException e) {
 //
 }
 }

}

C.2 AddWeightVoro.java

import java.awt.Graphics;
import java.applet.Applet;
import java.awt.Color;
import java.util.*;
public class AddWeightVoro {
 Color col1,col2,col3;
 double pi=3.14159265358979;
 int num;
 int winHeight,winWidth;
 int i,j, k, m;
 double dist,be,dist2,xc,yc,yy,slope,th,miny,maxy;
 int rr,xj;
 double a1r,a2r,yr;
 double ymr,x2r,y2r,d3,d4;
 int x2rI,y2rI,rwe;
 int yjI,minyI,maxyI,x10I,y10I;
 double b1y,b2y,b3y,b4y,x0,x10,y10,d5,d6;
 int br2,br3;
 double rate;
 double[] x1;
 double[] y1;
 double[] w1;
 int[] x;
 int[] y;
 int[] w;
 double[] s;
 String[] sss;
 Vector crystals;
 boolean drawn;
 Vector lines;
 Line l;

 public double dou(String doublestring){
 double d;
 d = (Double.valueOf(doublestring)).doubleValue();

 98

 return d;
 }

 public AddWeightVoro(Vector cs, double r){
 //Takes in a Vector of Crystals.
 this.crystals = cs;
 rate = r;
 int n = cs.size();
 col1=new Color(204,204,204);
 col2=Color.yellow;
 col3=Color.blue;
 drawn = false;
 lines = new Vector();

 winWidth=510;
 winHeight=530;
 num=n;
 x1=new double[n];
 y1=new double[n];
 w1=new double[n];
 x=new int[n];
 y=new int[n];
 w=new int[n];
 s=new double[n];
 sss=new String[n];
 for(k=0;k<num;k++){
 x1[k]=((Point) ((Crystal) crystals.get(k)).getCenter()).xval();
 y1[k]=((Point) ((Crystal) crystals.get(k)).getCenter()).yval();
 w1[k]=((Crystal) crystals.get(k)).getStartTime();
 x[k]=(int)(x1[k]+0.5);
 y[k]=(int)(y1[k]+0.5);
 w[k]=(int)(w1[k]+0.5);
 sss[k]=""+w[k];
 }
 }

 public double pow(double a,double b){
 double ans;
 ans=Math.pow(a,b);
 return ans;
 }
 public double atan(double a){
 double ans;
 ans=Math.atan(a);
 return ans;
 }
 public double sin(double a){
 double ans;
 ans=Math.sin(a);
 return ans;
 }
 public double cos(double a){
 double ans;
 ans=Math.cos(a);
 return ans;
 }

 void heap(double weight[],double xval[],double yval[],int n){
 int k,half,i,j,m;
 double b1,b2,b3,c1,c2,c3;
 half=(int)(n/2);
 for(k=half;k>=1;k--){
 i=k;
 b1=weight[i-1];
 b2=xval[i-1];
 b3=yval[i-1];
 while(2*i<=n){
 j=2*i;
 if(j+1<=n){

 99

 if(weight[j-1]<weight[j]){
 j++;
 }
 }
 if(weight[j-1]<=b1){
 break;
 }
 weight[i-1]=weight[j-1];
 xval[i-1]=xval[j-1];
 yval[i-1]=yval[j-1];
 i=j;
 }//wend
 weight[i-1]=b1;
 xval[i-1]=b2;
 yval[i-1]=b3;
 }//next k
 for(m=n-1;m>=1;m--){
 c1=weight[m];
 c2=xval[m];
 c3=yval[m];
 weight[m]=weight[0];
 xval[m]=xval[0];
 yval[m]=yval[0];
 i=1;
 while(2*i<=m){
 k=2*i;
 if(k+1<=m){
 if(weight[k-1]<=weight[k]){
 k++;
 }
 }
 if(weight[k-1]<=c1){
 break;
 }
 weight[i-1]=weight[k-1];
 xval[i-1]=xval[k-1];
 yval[i-1]=yval[k-1];
 i=k;
 }//wend
 weight[i-1]=c1;
 xval[i-1]=c2;
 yval[i-1]=c3;
 }//next m
 }
 public void paint(java.awt.Graphics g){
 //g.setColor(col3);
 //g.drawLine(winWidth-150,10,winWidth-50,10);
 //g.drawLine(winWidth-150,5,winWidth-150,15);
 //g.drawLine(winWidth-100,5,winWidth-100,10);
 //g.drawLine(winWidth-50,5,winWidth-50,15);
 //g.drawString("0",winWidth-158,13);
 //g.drawString("100",winWidth-48,13);
 g.setColor(col1);
 if (! drawn) {
 heap(w1,x1,y1,num);
 //g.setColor(col3);
 for(i=1;i<=num-1;i++){
 for(j=i+1;j<=num;j++){
 dist=pow(pow(x1[i-1]-x1[j-1],2)+pow(y1[i-1]-y1[j-1],2),0.5);
 be=w1[j-1]-w1[i-1];
 be = (int) (be*rate);
 // The following if-statement checks to make sure the crystal can
 // event occur, though this should already be insured. If
 // it can't, nothing happens.
 if(dist>be){
 dist2=dist/2;
 xc=(x1[i-1]+x1[j-1])/2; // find the mid x dist between the points
 yc=(y1[i-1]+y1[j-1])/2; // find the mid y dist between the points
 yy=yc-y1[i-1]; // find the delta_y from point 1 to mid
 slope=yy/dist2; // slope is a misnomer

 100

 th=atan(slope/pow(1-slope*slope,0.5)); // calculate the angle the line makes
to x axis
 if(x1[i-1]<x1[j-1]){
 th=pi-atan(slope/pow(1-slope*slope,0.5));
 }
 miny=0;
 maxy=0;
 rr=0;
 xj=0;
 a2r=0.5/be;
 /*
 while(rr==0){ // do this while inside the bounds of the viewing window or
xj<100
 a1r=16*dist2*dist2*xj*xj-4*be*be*xj*xj-4*dist2*dist2*be*be+pow(be,4);
 if(a1r>=0){
 yr=a2r*pow(a1r,0.5);
 // sometimes change sign below to see effect
 ymr=yr;
 x2r=xc-cos(-th)*xj-sin(-th)*ymr;
 y2r=yc-sin(-th)*xj+cos(-th)*ymr;
 if(x2r>0 && x2r<winWidth && y2r>0 && y2r<winHeight){
 d3=pow(pow(x2r-x1[i-1],2)+pow(y2r-y1[i-1],2),0.5)+((int)w1[i-
1]*rate);
 br2=0;
 for(k=1;k<=num;k++){
 if(k!=i && k!=j){
 d4=pow(pow(x2r-x1[k-1],2)+pow(y2r-y1[k-1],2),0.5)+((int)w1[k-
1]*rate);
 if(d3>d4){
 br2=1;
 break;
 }//if d3>d4
 }//if k!=i...
 }//next k
 if(br2==0){
 x2rI=(int)(x2r+0.5);
 y2rI=(int)(y2r+0.5);
 g.drawLine(x2rI,y2rI,x2rI,y2rI);
 l = new Line(x2rI,y2rI,x2rI,y2rI);
 lines.addElement(l);
 }//if br2==0
 if(ymr<miny){
 miny=ymr;
 }
 if(ymr>maxy){
 maxy=ymr;
 }
 }//if x2r>0 &&1950
 }//if a1r>=0 1950
 xj++;
 rwe=0;
 if(x2r<0 || x2r>winWidth || y2r<0 || y2r>winHeight){
 rwe++;
 }
 if(rwe==1){
 rr=1;
 }
 if(xj<100){
 rr=0;
 }
 }//while rr==0
 */
 minyI=-winHeight;//(int)(miny+0.5);
 maxyI=winHeight;//(int)(maxy+0.5);
 for(yjI=minyI;yjI<=maxyI;yjI++){
 // old line was: b1y=4*pow(dist2*be,2)+4*pow(be*yjI,2)-pow(be,4);
 b2y=1/(4*dist2*dist2-be*be);
 b1y=pow(dist2*be,2)+pow(be*yjI,2)-pow(be,4)/4;
 b3y=b1y*b2y;
 if(b3y>=0){
 // added the be/4 term below.

 101

 x0=-(pow(b3y,0.5));
 // Note that I flipped the signs on the x0 and yjI terms.
 x10=xc+cos(-th)*x0+sin(-th)*(yjI); // ok,
 y10=yc+sin(-th)*x0-cos(-th)*(yjI); // these coord transforms check out
 if(x10>0 && x10<winWidth && y10>0 && y10<winHeight){
 d5=pow(pow(x10-x1[i-1],2)+pow(y10-y1[i-1],2),0.5)+((int)w1[i-
1]*rate);
 br3=0;
 for(k=1;k<=num;k++){
 if(k!=i && k!=j){
 d6=pow(pow(x10-x1[k-1],2)+pow(y10-y1[k-1],2),0.5)+((int)w1[k-
1]*rate);
 if(d5>d6){
 br3=1;
 break;
 }//if d5>d6
 }//if k!=i
 }//next k
 if(br3==0){
 x10I=(int)(x10+0.5);
 y10I=(int)(y10+0.5);
 g.drawLine(x10I,y10I,x10I,y10I);
 l = new Line(x10I,y10I,x10I,y10I);
 lines.addElement(l);
 }//if br3==0
 }//if x10>0...
 }//if b3y>=0
 }//next yjI
 }//if dist>be
 }//next jmw
 }//next imw
 drawn = true;
 } else {
 // paint all the lines in lines.
 for (int i = 0; i < lines.size(); i++) {
 l = (Line) lines.get(i);
 g.drawLine(l.x1,l.y1,l.x2,l.y2);
 }

 }

 g.setColor(Color.black);
 g.drawLine(winWidth-200,10,winWidth-100,10);
 g.drawLine(winWidth-200,5,winWidth-200,15);
 g.drawLine(winWidth-150,5,winWidth-150,10);
 g.drawLine(winWidth-100,5,winWidth-100,15);
 g.drawString("0",winWidth-208,13);
 g.drawString("0.5 mm",winWidth-98,13);
 }

}

 102

Appendix D: User Survey Results

Repeated below is a survey given to each of 10.467 students involved in the Beta testing
of the Polymerlab system. Included are summaries of their responses along with charts
showing the distribution of answers for questions that required quantitative answers.

Polymerlab Survey

Please answer the following questions. This survey is intended to help us evaluate and improve

the iLab experience. Your answers will remain anonymous.

When applicable, please circle a number from 1 to 7 to indicate whether you agree

with the statement. (1 = Strongly Disagree, 2 = Disagree, 3 = Mildly Disagree, 4 =

Neutral, 5 = Mildly Agree, 6 = Agree, 7 = Strongly Agree).

Registration

1) The registration process was straightforward and easy to use. 1 2 3 4 5 6 7

[2, 3, 5, 6, 7, 7, 7]

2) Please describe any problems you encountered while registering to use the site.

One student encountered errors stating they had already registered. Another

stated the process was difficult to understand.

3) Please list any other comments you have on the registration process.

One student asked for earlier registration availability. Another asked for a

shorter time required to be verified in the system.

Reservations

4) The reservation process was straightforward and easy to use. 1 2 3 4 5 6 7

 103

[3, 5, 6, 6, 7, 7, 7]

5) The maximum reservation time is adequate. 1 2 3 4 5 6 7

[1, 4, 2, 6, 3, 2, 3, 1]

6) I was able to make scheduled reservations for the times I needed. 1 2 3 4 5 6 7

[7, 5, 6, 5, 7, 5, 7, 5]

7) I used all of my reserved time slots. 1 2 3 4 5 6 7

[7, 6, 6, 5, 7, 4, 7, 7]

8) The 24/7 availability of the experiment was useful to me. 1 2 3 4 5 6 7

[7, 7, 7, 6, 7, 6, 7, 6]

9) For what length of time did you typically use the experiment in a single session?

All said 90 min.

10) Did you typically use all of a scheduled reservation? yes / no

Answers were overwhelmingly yes.

11) What time of day did you typically log into the experiment?

 (morning / afternoon / evening / night)

Students were fairly evenly distributed over the time slots, though a surprising number
also signed up for times which were their normal lab time.

12) Currently, the maximum reservation time is 90 minutes. Do you think it should

be longer or shorter? If so, how long/ short?

All students asked for more time. Most suggest 2 hours or more.

13) How much time was needed to complete the entire experiment? (If your group

divided the experiment, please give the estimated total time. Do not include server

down time.)

[5, 6, 6, 10, 2, 6, 3-4, 5 hours]

Running the Experiment

14) I found the instructions for the lab clear and easy to use. 1 2 3 4 5 6 7

[7, 4, 6, 7, 5, 4, 7, 6]

15) I would like to have had the lab instructions available online as part of the iLab

experiment. 1 2 3 4 5 6 7

 104

[1, 5, 4, 6, 7, 4, 5, 3]

16) The demo performed by Prof. Rutledge in the Chem. Eng. PC cluster was helpful to my

understanding of how to run the experiment. 1 2 3 4 5 6 7

[7, 6, 7, 4, 7, 6, 7, 5]

17) I would have found the capability to have another teammate or TA view the experiment

remotely as I ran it useful. 1 2 3 4 5 6 7

[4, 5, 6, 5, 3, 7, 7, 7]]

18) How many times did the iLab server “freeze” while you were trying to use it?

[1, 1, 0, 5, 6, 6, 6, 4]

19) From where did you successfully log onto the experiment (Athena cluster,

RESNET, off-campus housing, Chem. E. PC cluster, etc.)? (List all that apply.)

Chem. E. PC cluster, Athena. Students repeated these answers.

20) Was there any place where you were unsuccessful in logging onto the

experiment? If yes, please describe.

Off campus housing, personal computer. Students repeated these answers.

21) What operating system(s) did you successfully log onto the experiment

(Windows NT/2000/XP, Redhat Linux, Sun Unix, etc.)? (List all that apply.)

Sun UNIX, Windows XP. Windows XP. Students repeated these messages.

22) Were there any operating systems on which you tried unsuccessfully to run this

experiment? If so, please list them.

Windows 2000. N/A.

23) What browser(s) did you use (Internet Explorer, Mozilla, etc.)? (List all that

apply.)

Internet Explorer, Mozilla, Netscape. Students repeated these answers.

24) Were there any browsers on which you tried unsuccessfully to run this

 105

experiment? If so, please list them.

Netscape, Internet Explorer, N/A. Students repeated these answers.

25) How much of the experiment were you able to complete (i.e. how many

isothermal crystallizations)?

2 crystallizations. All. All. All. All. All. All.

26) If you experienced any problems or difficulties with the lab instructions or

explanations, please describe them.

<blank>. N/A. <blank>. <blank>. None. None. Procedure #8 was briefly unclear for

one student.

TA Interaction

27) I would have found it helpful to interact more with the lab TA's to understand and run the

experiment. 1 2 3 4 5 6 7

[4, 4, 3, 4, 4, 4, 5, 3]

28) I would have found it helpful to interact more with the computer TA (Derik) to understand and

run the experiment. 1 2 3 4 5 6 7

[6, 5, 3, 5, 7, 5, 7, 7]

29) The lab TA's response time to questions/ issues was adequate. 1 2 3 4 5 6 7

[7, 4, 5, 4, 5, 4, 5, 3]

30) The computer TA's response time to questions/ issues was adequate. 1 2 3 4 5 6 7

[4, 5, 5, 7, 7, 5, 7]

31) How many times was it necessary for you the contact the lab TA's with

questions about the lab procedure?

2-3 times. None. 1 time. None. None. None. 1 time.

32) How many times was it necessary for you the contact the computer TA with

questions about the lab server?

10+ times. 4-5 times. 3-4 times. 4 times. 3 times. 1 time. 1 time.

 106

33) Please describe any problems/ issues you had.

Microscope server freezing, unable to login. <blank>. <blank>. <blank>. Microscope

freezing. Server down. Server crashed during movement of stage. Time warnings

were wrong.

Experiment Interface

34) The user interface for the microscope was easy to use. 1 2 3 4 5 6 7

[7, 5, 5, 5, 6, 5, 7, 6]

35) The feedback panel was useful. 1 2 3 4 5 6 7

[7, 5, 6, 6, 4, 4, 5, 6]

36) The heat controls/ experiment run controls were easy to use. 1 2 3 4 5 6 7

[7, 5, 6, 6, 6, 3, 5, 6]

37) When streaming images, the image refresh rate was adequate. 1 2 3 4 5 6 7

[7, 6, 6, 7, 7, 5, 6, 6]

38) The procedure for recording a temperature run was easy to use. 1 2 3 4 5 6 7

[7, 5, 3, 7, 4, 2, 6, 6]

39) I would liked to have had a real image of the equipment (microscope, hotstage) to refer to.

1 2 3 4 5 6 7

[4, 5, 3, 5, 7, 3, 4, 7]

40) Were there any aspects of the experiment controls that were confusing?

Video recording vs. video stream. No. Student thought should be able to hold a

temperature indefinitely. No. No. No.

41) What changes if any would you make to the experiment controls/ user interface?

<blank>. N/A. More colorful. <blank>. None. None. Ability to resize applet.

Data Analysis

42) The procedure for analyzing the data was clear. 1 2 3 4 5 6 7

[7, 6, 6, 6, 4, 6, 5, 6]

43) I found the Jimage tool useful. 1 2 3 4 5 6 7

[7, 7, 6, 1, 6, 1]

 107

44) I found the JImage tool easy to use. 1 2 3 4 5 6 7

[7, 6, 6, 1, 6, 1]

45) Did you have any problems retrieving saved experiments? If so, please

describe.

Student described the process as “tedious and said that he ended up converting the

files to bitmap. No. No. No. No. No, but student though procedure led to hurriedly

naming files.

46) Did you use the JImage applet to analyze your data? If so, did you experience

any problems using the applet?

No. Student tried to use it but crashed. Yes. Yes. No. Yes. Yes.

47) If you did not use the JImage applet, what technique did you use to analyze your

data?

Bitmap. Windows Paint. Students repeated these answers.

Science Objectives and Overall Experience

48) The lab has increased my understanding of the properties of polymers and polymer

crystallization. 1 2 3 4 5 6 7

[7, 5, 6, 6, 7, 6, 6, 6]

49) I enjoyed using this experiment. 1 2 3 4 5 6 7

[4, 5, 6, 5, 6, 4, 5, 3]

50) I learned as much using this experiment as I would have using a hands-on lab in building 31-

068. 1 2 3 4 5 6 7

[7, 4, 7, 4, 7, 3, 3, 5]

52) Please describe any other changes or additions you would make to the lab, and

give any other comments you have.

One student stated technical problems and having to share the lab made the lab too

time consuming. Another student asked for a live picture of the equipment. One

student asked for access to data taken by other members of her group.

Confirmation box for deleting data runs.

 108

Appendix E: Reinstallation procedures

E.1 Backing up System
Before any attempt to reinstall components of the Polymerlab system, an important first

step should include backing up the current Polymerlab system. There are three main areas

that must be backed up. The first two include the Microscope server code and the

Framework and Microscope Client code. The Microscope Server code, including all

Python code and Perl scripts for launching the server, may be found in the C:\iLab

directory. The Microscope Client Java code, as well as the Framework .NET project code

and user recorded data, may be found in the C:\Inetpub directory. Both of these

directories should be backed up in their entirety.

The third area which must be backed up is the SQL database. While it is theoretically

possible to try to recreate the database from a simple copy of the files in various

directories, this is not straightforward. It is especially difficult if the reason for the backup

is an upgrade to a newer version of the database software. Therefore, there are two steps

to backing up the database. The first is to generate a database script that can be used to

recreate the format of the database. An example of this script is given in Appendix A.

The procedure for generating this script is falirly simple: in Enterprise Manager, right

click on the Polymerlab database, and select the option to generate script. Within the

option box that appears, select the option to script all objects, including stored

procedures, and give the file a name. This file can later be imported to generate the

structure of the database. However, when generated this way the database will not be

populated with data. To backup the database with all data intact, right click on the

Polymerlab database within Enterprise Manager and select backup database. This will

generate a file containing both the structure and data from the database. Reinstating the

database is as simple then as importing the backup file from within Enterprise Manager.

 109

It is important to note that these two methods are redundant: the full database backup is

much more complete than the script generation. However, because the script is stored as a

text file it is more easily duplicated, for instance in this thesis.

E.2 Program Requirements

After refomatting, obtaining a new computer, or an unexpected system crash, the next

step in reinstalling the Polymerlab system is to reinstall the operating system and off-the-

shelf software components. The newest versions of the KS software require Windows XP

as the operating system. (Before installing however, the latest versions of each of the

components below should be researched and their requirements determined.) In order to

provide services over the web, the machine will need IIS and .NET software installed.

• Python 2.2.2 : http://www.python.org/

• The Python Imaging Library 1.1.4 (Windows version) :

http://www.pythonware.com/products/pil/

• Python Win32 Extension Package for Python 2.2, Win32all version 152 :

http://starship.python.net/crew/mhammond/win32/Downloads.html

• Serial Communication Extension Package, SioModule22 :

http://starship.python.net/crew/roger/

To edit and compile the Microscope Client applet you will need the following installed:

• Java 2 SDK version 1.4.1_02 :

http://java.sun.com/

• Any standard Java IDE, though even a simple text editor may be used.

To run the Microscope Client applet, users will need the following installed:

• Java Plug-in 1.4.0 or higher:

 110

http://java.sun.com/

• Quick Time Plug-in with SMIL interpreter (optional for viewing slide show)

http://quicktime.apple.com

• Real Player (optional for viewing slide show)

http://www.real.com/

To run and compile the Framework Server, the following software must be installed:

• .NET Framework Version 1.1 or later.

http://www.microsoft.com/net/

• VisualStudio.NET

From VisualStuido.NET CDs

• Internet Information Services

Included in Windows XP CD

• SQL Server 2000 with Service Pack 3

http://www.microsoft.com/sql/downloads/default.asp and SQL CD

E.3 Compiling Instructions

For the Microscope Server no compilation is necessary because the Python language is an

interpreted language that does not require compiling. Although Python files can be

compiled into .pyc or .pyo files, there currently is no benefit to doing so. Therefore, the

Microscope Server is currently used as a scripted application. Modifications need only

be made and saved to the corresponding .py to alter the behavior of the Microscope

Server.

To compile the client application using the command line:

• Go to the appropriate directory:
cd C:\ILab\RemoteMicroscope

 111

• To compile the code:
javac –classpath C:\ILab\RemoteMicroscope client\ScopeFormApplet.java

• To deploy a release version of the code you need to create a jar file and move it to

the C:\inetpub\wwwroot\PolymerLab directory, which is the directory where the

Framework Server resides. To do this go to C:\ILab\RemoteMicroscope and do:
jar -cvf client\data\PCiLab.jar client/*.class client/images/* com/*

move client\data\PCiLab.jar C:\inetpub\wwwroot\ TODO

To compile the Framework Server, it is suggested that VisualStudio.NET be used.

Although it is possible to compile the program outside of VisualStudio, this is not

recommended because of the complexity of the project. The Framework Server is stored

under the VisualStudio project called PolymerLab.

E.4 Running Instructions

To run the Microscope Server, first make sure that the sample is centered in the MDS600

heating stage. Since the MDS600 is not equipped with a reference motor, the initial

starting position will be used as a reference position for the center of the polymer sample:

• Go to the appropriate directory:

cd C:\ILab\RemoteMicroscope

• Run the starting script:

startServer.py [options]

• The available options for the script are the following:

 -d, --debug Display debugging trace messages
 -f, --cfg <file> Use specified configuration file
 -h, --help Display this help message
 -t, --timing Display timing trace messages
 -v, --verbose Display verbose activity messages

 112

To run the client applet, log on to the Framework Server and follow the links to reserve

and open the polymer lab.

E.5 How to add more files to the HTTP server

The HTTP server can read files that are located in the following directory:

C:\inetpub\wwwroot

The HTTP server is a development version of Microsoft’s IIS web server. On Windows

XP Professional, there are a maximum of 10 simultaneous sessions supported. In order to

allow more simultaneous connections, the operating system will have to be upgraded wo

Windows XP Server or downgraded to Windows 2000 Server.

Virtual Directories can be added to expose any directories on the file system to the Web

Server. Currently, there is a virtual directory called iLab, accessible through

http://polymerlab.mit.edu/iLab. This virtual directory points to the local directory

C:\inetpub\wwwilab\. Under this virtual directory, the users directory is where all

experiment run images and SMIL output files are saved to the file system.

More web applications can be added to the web server by adding new web applications in

VisualStudio.NET. This IDE automatically makes the necessary changes to the file

system to allow the web application to be run remotely.

 113

Appendix F: Student User Manual

This user manual is intended to explain how to use the student client interface for the

Microscope Client and the Framework Server. It explains what each graphical

component does, and how it should be used. We start with the Microscope Client.

Microscope Client

Capturing Images
To capture microscope images, first the user has to make sure the “Capture Single
Snapshots” is selected on the Video/Capture control. Then every time the CAPTURE
button is pressed an image is captured and it displayed on the screen.

Video Streaming
To start video streaming select the “Video Stream” selection on the Video/Capture

 114

control. The capture button is disabled, and a sequence of images is captured and

displayed on the screen.

Moving the Image

To move the image around use the arrow buttons located to the side and bottom of the

image display panel. Whenever any of these arrow buttons are pressed the XY stage

moves, and if “Capture Single Snapshots” is selected a new image is captured and

displayed on the screen immediately after the stage finishes moving.

Perform Autofocus
The Perform Autofocus button calls the one-time autofocus function, and returns a new

focused image that is displayed on the image panel. The autofocus main purpose is to

search for the right z stage position for adequate focusing.

Magnification
The Magnification control changes the objective lens being used. The possible

magnifications are: 2.5X, 5X, 10X, 20X, and 50X.

Aperture
The Aperture control changes the condenser aperture setting. A condenser has the role of

collecting, controlling and concentrating the light from the lamp onto the specimen. The

aperture of the condenser serves to control the angle of the cone of light emerging from

the top of the condenser. When the aperture is set to the maximum (0.95) the objective

provides maximum resolution, but some glare may be present, which reduces image

contrast. If the aperture is adjusted to about 0.70 the glare is reduced and contrast is

improved, without significant lose of image detail. Lowering the aperture increases

contrast but image detail will be lost.

The aperture setting should only be lowered for magnifications greater than 10X,

because in lower magnifications the field of vision is greatly reduced when lowering the

aperture. Therefore, for optimal performance maintain the aperture above 0.70 when

 115

using 2.5X and 5X objectives.

Field Stop
The field stop allows you to control the amount of light entering the system as well as the

field of view. The field stop is basically a plate with a hole on it placed on the optical

axis. This control is useful mainly to control the light illumination for the lower

magnifications such as 2.5X, and 5X. For higher magnifications the field stop should be

set to the highest value, and only use the Aperture control to adjust brightness and

contrast.

Reflectors
With the reflector control you are able to select between an analyzer, a DIC_RED

reflector, and no reflector at all. A much higher exposure time is always needed when

using the DIC_RED reflector or the analyzer, than when not using a reflector at all.

Exposure Time
The exposure time controls the shutter speed of the camera. The normal setting for the

exposure time is 1 ms. If the user is using the analyzer or the DIC_RED reflector then to

get a clear image the exposure time has to be increased to around 20 ms.

Running Experiments
Experiments can be run by inputting the desired target temperature, ramp rate, and hold

time into the Temperature Panel at the bottom of the Microscope Client. Only valid

parameters will be accepted; a popup dialog window will flag invalid parameters. After

the desired parameters have been entered, press the SUBMIT or RUN button at the

bottom of the Microscope Client. The analyzer should be in place to view the polymer

melting event. In addition, the Video Stream button should be selected to view images at

the fastest possible rate. Once the polymer has melted, the appropriate cooling rate, target

isothermal crystallization temperature, and hold time should be entered into the

 116

Temperature Panel and the SUBMIT button should be pressed to regain temperature

control conditions.

Recording Experiments

The Recorder menu allows a user to specify when experiments are recorded and images

are saved to the server. NOTE: The video streaming button must be pressed to save

images, as the images are currently saved in the Video Stream. When sufficient images

have been recorded (the number should not exceed 150), the recorder can be stopped, and

the experiment can be accessed through the Framework Server.

Ceding Control
When a user has control and is not running an experiment, the CEDE button in the upper

right hand corner of the applet will be enabled. By pressing this button, other users who

are also viewing the experiment will be given the chance to take control. Control is taken

on a first come, first serve basis. All users will see a message informing them that control

is available, and once another user has taken control another message will be sent to all

clients informing them of that fact.

Taking Control
 When control of the Microscope becomes available, a message will be displayed in the

text area, and the TAKE button will be enabled. The first user to press TAKE gains

control of the experiment. When control has been taken, a message will be sent to all

clients and displayed in the text message area. The TAKE button, and other control

buttons, will become enabled if a user has control of the experiment.

 117

Appendix G: Polymer Sample Preparation

Because air pockets, dirt, and detritus can contaminate the crystal sample, causing
crystallization to occur non-randomly, it is important to prepare the sample with extreme
care. The first step should include cleaning the round quartz slide using Kimwipes with
water and then alcohol. After cleaning and drying the slide so that no residual polymer or
debris remains, place it back inside the circular holder in the MDS600 hot stage. (Note
that the slide has a preferential orientation in the holder- this can be seen by carefully
examining the edge of the slide. It should be returned in the proper orientation, and the
sample, of course, should be placed on top.)

The PEO sample should be prepared as a solution, using Polyethylene oxide, molecular
weight 100,000. Using a 20 mL scintillation vial, add approximately 1.5 g of PEO.
Slowly stir in about 15mL of purified water. Use a stirrer at a medium setting until the
PEO is well dissolved. (Previous samples were stirred for approximately 24 hours.)

Draw approximately 2 mL of the solution into a syringe. Add an Acrodysc syringe filter
to the tip of the syringe. With the magnification pieces moved to the open slot, to allow
access to the quartz slide, reach in and place several large drops on the sample holder. (It
will be difficult to force the drops out.) The liquid should cover the entire circular slide.
When observing directly though the eyepiece on the Axioplan2, the sample should appear
clean.

Using the Polymerlab, make a reservation and open the experiment. (Do not replace the
cover to the hot stage yet.) Set the temperature controller to a rate of 30 deg/min, the hold
temperature to 100 degrees, and the hold time to 300 seconds. Submit the experiment.
Once the temperature begins to reach 100 degrees the water from the solution will begin
to evaporate. When drying the sample, do not completely seal the MDS600, as water
vapor will condense inside. Simply set the cover atop the instrument to keep dust from
settling on the sample. Leave enough room to observe the sample drying.

Continue submitting the experiment until the sample is dry. When it is, slowly lower the
temperature to around 52 degrees, and observe the crystals formed. They should appear

 118

and grow relatively quickly at that temperature. They should also appear distinct and
sparse enough to allow student to successfully track the growth of several crystals for an
extended period of time. They should also appear across the entire sample, not just near
the edges, etc.

 119

References

[1] Schultz, J.M. Polymer Crystallization, 129-147. Oxford University Press, 2001.

[2] P. Nasser. “Remote Microscope For Polymer Crystallization WebLab”, M.Eng.

Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, September 2002.

[3] D. Talavera. “On-Line Laboratory for Remote Polymer Crystalliation

Experiments Using Optical Microscopy”, M.Eng. Thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, June 2003

[4] J. Kao. “Remote Microscope for Inspection of Integrated Circuits,” S.M. Thesis,

Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, September 1995.

[5] S. Kittipiyakul. “Automated Remote Microscope for Inspection of Integrated

Circuits,” S.M. Thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, September 1996.

[6] D. Seth. “A Remotely Automated Microscope for Characterizing Micro

Electromechanical Systems (MEMS)”, S.M. Thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, June
2001.

[7] A. Kuchling. “Internet Access to an Optical Microscope,” http://www.mems-

exchange.org/software/microscope/publications/ipc7-abstract.html, March 2002.

[8] Microelectronics WebLab at MIT. http://weblab.mit.edu

[9] L. Hui. “I-Lab Webpage,” http://i-lab.mit.edu. January 2001.

 120

[10] Sedgewick, Robert. Algorithms in C++, 407-411. Addison-Wellesley Co., 1992.

[11] De Berg, Mark et al. Computational Geometry: Algorithms and Applications. 2nd

ed. Springer-Verlag, 2000.

[12] iCampus Project Webpage. http://icampus.mit.edu, 2004.

[13] iLab Service Broker Webpage. http://ilab.mit.edu, 2004.

[14] K. Yehia. “The iLab Service Broker: a Software Infrastructure Providing
Common Service in Suppose of Internet Accessible Laboratories”, M.Eng.
Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, June 2004.

[15] J. Northridge. “A Federated Time Distribution System for Online Laboratories”,

M.Eng. Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, June 2004.

