
Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
 38th ASEE/IEEE Frontiers in Education Conference
 T1A-1

Deploying Interactive Remote Labs Using the iLab
Shared Architecture

James L. Hardison, Kimberly DeLong, Philip H. Bailey, and V. Judson Harward

Massachusetts Institute of Technology, hardison@mit.edu, kirky@mit.edu, pbailey@mit.edu, jud@mit.edu

Abstract - The MIT iLab Project has developed a
distributed service infrastructure and software toolkit to
support a scalable community of online laboratory
experiments. The iLab Shared Architecture provides a
framework for the development and deployment of
remote laboratories using a three-tiered model based on
web services consisting of lab clients, service broker
middleware, and lab servers. This simplifies the
development of remote labs by providing reusable
components for common lab administration functions.
The initial focus of the iLab Project was on batched labs,
which require no interactive control. Following the
project’s success in supporting these labs, it has
expanded its efforts to include those requiring
interactive control. Interactive labs require that the user
have active control of lab instruments during the course
of an experiment and can generate a large amount of
data. In order to accommodate these requirements, the
iLab Shared Architecture has been extended with a
highly configurable lab resource scheduling service, a
robust data storage system and support for high
bandwidth communication between the lab client and
server. By integrating these services into the iLab
Shared Architecture, a more diverse set of educationally
valuable labs can now be easily deployed online and
shared around the world.

Index Terms – Educational Technology, Engineering
Education, Internet, Laboratories

INTRODUCTION & BACKGROUND

Since 1998, effort has been put towards the development of
remotely accessible online laboratories, or iLabs, at MIT.
Initially, these were ad hoc efforts by individual faculty who
were dissatisfied with the laboratory experiences available
to their students [1]-[4]. One such remote lab, the MIT
Microelectronics WebLab, was born out of an introductory
microelectronics course that, traditionally, was focused on
the study of theoretical device models. Adding a laboratory
component to this class would be educationally valuable,
but a hands-on lab would not be feasible. Lab instruments
were costly, suitable space was limited and the logistical
requirements for such a lab were prohibitive [5]. Faced with
this situation, Prof. Jesús A. del Alamo initiated the
development of the Microelectronics WebLab, which
allowed students to perform laboratory experiments at any

time via the Internet using a single semiconductor parameter
analyzer in a research lab.

The Microelectronics WebLab and other similar efforts
shared goals and were successful, but grew independently.
This resulted in a number of different approaches to the task
of providing access to an online lab as well as some
duplicate efforts by the individual groups. The MIT iLab
Project was formed with the goal of defining a standard
approach to the development of online labs and providing
tools to make such development simpler for those wanting
to create new labs. To this end, the iLab Project developed
a distributed service infrastructure termed the iLab Shared
Architecture [6].

In broad terms, the iLab Shared Architecture (ISA)
divides an online lab into three distinct parts: the lab client,
the Service Broker and the lab server. The lab client is the
user’s interface to the iLab while the lab server connects to
the lab hardware and manages the execution of user
submitted experiments. The ISA specifies that lab clients
and lab servers contain lab-specific functionality. The
Service Broker is responsible for providing functionality
that is generic and useful to all iLabs. Services such as user
authentication/authorization and data storage are built into
this middleware layer. The ISA provides a framework for
the deployment of iLabs in a distributed fashion using web
services. This allows online labs developed on the ISA to
be made available to users worldwide using standard
network protocols.

In addition to aiding the development of remote labs,
the distributed nature of iLabs encourages the sharing of
these resources. By placing a Service Broker at an
institution, its users can access iLabs without creating an
administrative burden to the host of the lab. University A
can deploy an iLab and manage its own students using its
own Service Broker. Meanwhile, it can share this iLab with
University B who, with the use of its own Service Broker,
can manage its own students. In this way, there is little or
no cost to sharing an iLab beyond the instrument’s time and
any consumable resources.

Initial work on the ISA centered on support for what
were termed “batched” labs. These are labs where
experiments are completely specified prior to submission
and run without intervention. Batched iLabs are deployed
with lab clients, Service Brokers and lab servers that
communicate over the Internet using web services. In this
model, detailed in Figure 1, lab clients and lab servers
communicate with each other exclusively through the

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
 38th ASEE/IEEE Frontiers in Education Conference
 T1A-2

iLab Service Broker. This ensures that communications
between these systems are standardized. Any batched type
remote lab that is iLab compliant will be compatible with,
and sharable through, any Batched Service Broker in the
world.

In 2004, the MIT Microelectronics WebLab was
redeployed on the ISA and has been successfully used in
for-credit courses both at MIT and 18 other institutions
worldwide [7]-[8]. Since then, additional batched iLabs
have been developed at MIT, the University of Queensland,
Australia and at Obafemi Awolowo University, Nigeria [8].

Following this work, the iLab Project focused on
supporting “interactive” labs. These are experiments that
involve some manner of real-time control or observation.
Many traditional labs fit this model and adding support for
them in the ISA would enable the deployment of a much
broader set of iLabs.

Interactive experiments are fundamentally different
from their batched counterparts. Primarily, interactive
experiments require control of lab hardware while the user
sets parameters and observes results. This is in contrast to
the batched model where experiments are queued and run
when the lab hardware is available. An interactive
experiment, then, must commit the lab hardware to a single
user for the duration of their session - typically 20 minutes
to an hour – and may require scheduling.

Another main difference between interactive and
batched labs involves the role of the Service Broker.
Interactive experiments require real-time control and,
potentially, much greater bandwidth between the lab client
and the lab server. Because of this, the batched notion of a
Service Broker that uses web services to route all
communications between the lab client and lab server will
not work effectively in an interactive iLab.

In order to support the deployment of interactive
experiments, the iLab Project would have to revise and
extend the iLab Shared Architecture.

SUPPORTING INTERACTIVE LABS IN THE ILAB
ARCHITECTURE

From the user’s perspective, an interactive iLab provides a
higher degree of control than its batched counterpart. As in
the batched case, the student logs on to their Service Broker
to gain access to the lab. Since an interactive lab grants full
control of the lab hardware to the user for a relatively long
period of time, the user must have previously scheduled

time to use the experiment. Having done this, the user is
able to launch the lab client, which presents the interface to
the interactive iLab. At this point, the user has full control
of the lab hardware. They can submit experiment
parameters and commands as well as observe the resulting
behavior of the experiment. The user can adjust parameters
or submit new commands in real-time. All interaction
between the user and the lab can be saved to form a
definitive record of the experiment session.

The iLab Shared Architecture dictates that, for batched
labs, the lab client and the lab server communicate through
an iLab Service Broker using web services. This ensures
that labs deployed on the iLab standard remain easily
accessible across the Internet and that users are properly
authenticated before being granted access to a lab. This also
allows the user’s Service Broker to construct a complete
record of their experiments. As all lab communications –
lab configurations, experiment specification and data – pass
through a Service Broker, it is trivial for the Broker to also
record that information. These features are valuable to the
broad set of remote labs, not just batched ones.

Developers of interactive labs need the same data
storage capability as well as access to the other generic
services available to batched labs on the ISA. However, the
nature of an interactive experiment is such that the
methodologies used for batched labs do not apply.
Interactive experiments require real-time or close to real-
time control of lab hardware. Further, such active control
must be achievable for a variety of observational modes.
Most experiment information in batched labs is transmitted
as text-based messages. However, an interactive lab
developer may want students to observe, for instance, video
of a sample through a microscope. Developers of
interactive labs need the freedom to utilize those
communication protocols that best fit their needs while still
having access to the features of the iLab Shared
Architecture.

The interactive iLab topology is detailed in Figure 2. In
addition to the lab client, Service Broker and lab server,
stand alone web services are added to manage experiment
storage and lab scheduling. As in the batched model, a user
begins his or her session on an interactive lab by logging on
to the Service Broker at their university and authenticating
themselves to the system. The student must first schedule a
time to use the lab. At the scheduled time, the student logs
in and is able to launch a lab client. This client interacts
directly with the lab server and, once a lab session begins,
the Service Broker steps out of the picture. Using “tickets”,
the Service Broker can authorize and vouch for the user to
the lab server in a way that can be preserved on the lab
server for the duration of the scheduled experiment session.

An interactive lab must support the ISA web service
interfaces in order to take advantage of these added features.
The use of web services for these generic services ensures
portability of the ISA across different networks and
platforms. The ISA, however, makes few assumptions
about the nature of direct communication between the lab

FIGURE 1

TOPOLOGY OF A BATCHED EXPERIMENT BASED ON THE ILAB SHARED
ARCHITECTURE.

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
 38th ASEE/IEEE Frontiers in Education Conference
 T1A-3

client and lab server. Any technology can be employed for
lab client to lab server communication so long as it supports
the implementation of control mechanisms that the ISA can
use to enforce lab management policy (i.e. closing the
session of a user who runs over into another user’s
scheduled time). This flexibility enables both higher
performance communication and the use of the ISA’s
generic interactive services.

DESCRIPTION OF THE INTERACTIVE SERVICES

In the iLab Shared Architecture, the Service Broker is
responsible for user and group management, authentication
and authorization as well as experiment storage and
retrieval. However, the interactive model requires that these
features be implemented in a new way. First, in an
interactive iLab, lab clients and servers communicate
directly, so the Service Broker cannot construct a record of
an experiment merely by “listening in” on the traffic.
Therefore, the lab server and the lab client must be involved
in the storage process. Second, interactive experiments
typically require that students have exclusive use of lab
hardware for blocks of time, so resource management and
scheduling is a concern. Third, an interactive experiment is
not a set of well-defined, individually verifiable transactions
that pass through the Service Broker, as in the batched
model. This creates a need for a powerful yet flexible
authentication and authorization mechanism to enable
secure access to remote lab resources. To support these
functions for interactive labs, three new services have been
added to the ISA: the Experiment Storage Service,
Scheduling Services and Ticketing.

I. The Experiment Storage Service

In batched iLabs, the burden for storing the definitive record
of a student’s experiment rests with the Service Broker.
Generally speaking, this is a sensible decision as it is likely
to be close to the student, in terms of network topology. If
the Service Broker is located on the student’s campus, its

managers will likely be aware of the student’s academic
schedule when setting policy on the longevity of data. For
batched iLabs, all experiment communications can be
recorded by the Service Broker with little effort since all of
this information passes through the Service Broker. This is
not the case for interactive experiments.

In an interactive experiment, the Service Broker sets up
a relationship between a student using the lab client and the
lab server. After this relationship is established, the client
and the lab server communicate with each other directly.
The Service Broker is no longer privy to experiment
parameters, commands or results. This suggests that the
storage of experiment data should be handled by a separate
service that can be accessed by the Service Broker, lab
client or lab server as needed.

In the interactive model, this functionality is provided
by the Experiment Storage Service (ESS). The ESS is a
stand-alone web service that allows Service Brokers, lab
servers and lab clients to store experiment data. As an
independent system, a single ESS can potentially be used by
many Brokers and their associated labs.

Records on the ESS consist only of experiment data.
This includes binary data (images, video or audio) and XML
based text/numeric data. Administrative data describing an
experiment, such as the student it belongs to, is stored on
the Service Broker responsible for that experiment. As
such, individual Service Brokers are still able to set
customized policy regarding the longevity of experiment
records. Students must also use their Service Broker, either
directly or in conjunction with an appropriate lab client or
analysis program, to access data from a completed
experiment.

II. The Scheduling Services

Batched experiments require lab hardware to be committed
to a given student only after the experiment is submitted but
not beyond the point where data is generated. In many of
the batched labs implemented thus far, a single experiment
takes 10 to 100 seconds of instrument time. Interactive
experiments require the use of hardware while the student
controls and observes the experiment, extending the length
of a single control session to the tens of minutes or longer.
Thus, the batched lab strategy of mitigating high usage
loads with a lab-based queuing system does not work in the
interactive case.

When one thinks of a traditional, hands-on lab, access
is typically managed using a lab schedule. There are hours
when the lab is available and students can sign up for blocks
of time where they alone can use the equipment. This is the
model the ISA applies to managing the use of interactive
experiments. Scheduling Services in the ISA consists of
two separate, web services-based systems, the User-side
Scheduling Service (USS) and the Lab-side Scheduling
Service (LSS).

The Service Broker is a critical agent in the scheduling
process as it alone can authenticate a user and determine
whether they are authorized to schedule time on a given lab.

FIGURE 2

TOPOLOGY OF AN INTERACTIVE EXPERIMENT BASED ON THE ILAB
SHARED ARCHITECTURE.

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
 38th ASEE/IEEE Frontiers in Education Conference
 T1A-4

Once authorized, the User-side Scheduling Service is used
in conjunction with the LSS to allocate lab time to users.
Using the USS, a student who wants to schedule time on a
given lab must select from a set of available blocks of time
published by the LSS. Once a time is selected, the USS
stores the reservation for later redemption and the LSS
removes it from the list of available time blocks.
Additionally, the USS is responsible for notifying students
if their reservation must be canceled and for considering
course/lab requirements when distributing time blocks. For
instance, a course instructor may only want students to use
the lab for 20 minutes at a time. Such requirements must be
factored in when allocating student time on a lab.

The Lab-side Scheduling Service is responsible for
defining scheduling policy for a particular lab. The LSS is
designed to run in conjunction with multiple USS’s and may
schedule multiple lab servers. From the LSS, a lab
administrator can set lab specific policy. This includes any
instrument warm-up/cool-down requirements as well as the
periods of time allocated to groups of students on a given
Service Broker. Thus, a LSS defines the broad lab
availability for individual USS/Service Brokers. In turn, a
given USS/Service Broker will distribute experiment time to
students based on lab requirements, instrument availability
and instructor policy.

Not only do the Scheduling Services define when a
student can use the lab, but they also dictate when that
student must relinquish control. In short, if an interactive
iLab is to take advantage of Scheduling Services in the ISA,
it must be built in such a way that scheduling can be
enforced.

III. Ticketing

A relatively simple authentication/authorization model can
be employed by batched labs in the ISA since all
communication is routed through the Service Broker. In the
batched model, the student logs on to their Service Broker
using a common two-factor sign on (username and
password). At that point, the student is authenticated to the
Service Broker web application and is presented with the
labs they are authorized to use. Since lab clients
communicate through the Broker, the session-based
authentication passes easily between the student’s web
browser and their lab client (typically a web form or a Java
applet). Between the Service Broker and a lab server,
another two-factor, credential-based authentication system
is used to prove a Broker’s identity to the lab server. This
information is sent with each call to the lab server and can
be secured using SSL. In the interactive model, this
credential system has been expanded to support
communication between Service Brokers and each of the
ISA services.

The topology of an interactive lab is both more
complex and more variable than its batched counterpart. An
interactive lab has the same basic components; lab client,
Service Broker and lab server. However, there are also
Experiment Storage Services and Scheduling Services that

all interact with each other. The Service Broker is still
responsible for authenticating users and authorizing use of
lab server resources. In the case where the student’s Service
Broker and the lab server are at different institutions, still
more Service Brokers are employed to ensure the proper
handling of user credentials. In order for there to be a
coherent notion of accountability in the ISA, a single
overriding authentication system had to be constructed.

This was implemented in the form of Ticketing. In this
model, specific services in the ISA are able to, on their own
accord or on behalf of other services, issue tickets that
permit access to resources. The validity of a ticket is based
on the fact that only the issuing and redeeming agents (i.e.
Service Broker and lab server, respectively) access the
ticket. A ticket stub, called a “coupon”, which is used to
reference a collection of tickets, is the authorization item
transmitted between services in the ISA. Ticketing is used
to provide authentication between Service Brokers, User-
side Scheduling Services and Lab-side Scheduling Services.

This system can be illustrated by considering the case
of a student logging in and running an experiment. Once
the student logs in and is authorized to perform an
experiment, tickets permitting experiment execution and
data storage are created along with a coupon representing
the collection. This coupon is passed to the student’s
instance of the lab client when it is launched. In order to
connect to the lab server and begin the experiment, the lab
client sends the coupon to the lab server, which retrieves the
execution ticket from the issuing Service Broker. If a valid
ticket is returned, the student is authorized for a particular
amount of time and the experiment proceeds unhindered.
Similarly, when experiment data needs to be recorded, the
ticket coupon is passed to the ESS, which redeems the data
storage ticket. Each ticket only needs to be redeemed once
per session.

As with Scheduling and Experiment Storage, Ticketing
is based on web services and requires that the developer of
the interactive lab provide support for this service.

DESCRIPTION OF THE INTERACTIVE LAB CLIENT/SERVER
MODEL

Outside of the services available by the generic portions of
the iLab Shared Architecture (ESS, Scheduling, Ticketing),
which require communication via web services, decisions
regarding the construction of an interactive experiment are
left to the lab developer. This allows developers to use
custom, even proprietary, technology both for constructing
their lab client and lab server and for managing the
experiment based communication between them. Not only
does this provide support for specific, potentially high-
bandwidth lab experiments but it also enables support for
pre-existing lab control software.

There is a good deal of interest in constructing iLabs
that use the National Instruments LabVIEW® platform for
lab hardware control. This is a common development
environment among lab domain specialists – those typically
tasked with building iLabs.

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
 38th ASEE/IEEE Frontiers in Education Conference
 T1A-5

Responding to this, the iLab Project has developed a
reference implementation called the LabVIEW® Integrated
Interactive Lab Server (LVILS). The LVILS provides a
standard way for interactive lab developers to interface the
generic ISA services to LabVIEW® instrument control
software. In the LVILS, as in the interactive model
generally, the lab client is developed in close relation with
the lab server and corresponding instrumentation. The
LVILS furnishes support for accessing the ESS, interacting
with LSS and USS implementations, properly handling
Ticket-based authentication, as well as interfacing to
LabVIEW® applications. Using the LVILS, an experienced
lab developer can take a working stand-alone experiment
built with LabVIEW® and deploy it as an interactive lab on
the ISA in a matter of hours [8].

In the case where LabVIEW® is not the chosen
technology for the development of an interactive
experiment, the approach is similar to that taken with the
LVILS. Communication between the lab client and server
must be handled by the chosen technology. In turn, the lab
client and server must implement the web service interfaces
needed to access the generic functionality of the ISA. The
iLab Project expects that, as institutions work to develop
interactive experiments on the ISA, further use cases will be
identified and implementation examples constructed.

DEPLOYING INTERACTIVE EXPERIMENTS ON THE ILAB
SHARED ARCHITECTURE

In June, 2007, the first version of the interactive version of
the iLab Service Broker was released to the public [9]. This
includes an Interactive Service Broker, Experiment Storage
Service, Scheduling Services and Ticketing as well as a
sample lab server with support for LabVIEW®. As with all
releases of the ISA, this reference implementation is
released under an open source license. Following from that,
two interactive labs, both employing LabVIEW®, have
been developed at MIT for deployment on the ISA.

I. Force on a Dipole iLab

The Force on a Dipole iLab is an electricity and magnetism
experiment designed for first year physics students at MIT.
This iLab is part of a broader project to augment first year
physics courses with both hands-on and remote experiments
coupled with visualizations in order to illustrate concepts
that can be quite abstract [10].

The experiment consists of a small magnet suspended
by a spring between two horizontally mounted coils (a
Helmholtz coil). Using a LabVIEW®-based client
published as an interactive iLab, students can vary the
current in the coils in such a way that the magnet oscillates.
The lab hardware and client are shown in Figure 3. Based
on their measurements and a few known system parameters,
students can then determine the magnetic dipole moment of
the magnet and, with the aid of visualizations and video of
the lab equipment, develop a sense of the electromagnetic
forces at work.

The Force on a Dipole iLab will be used by a select

group of physics students during the Spring 2008 term.
Based on the performance of the iLab and the feedback
received from students and instructors, it is projected that
this experiment will be used by MIT’s mainstream physics
course in the Spring 2009 term (approx. 600 students).

II. Nuclear Reactor iLab

The MIT Nuclear Reactor iLab is an online laboratory that
exposes some of the functionality of the MIT Nuclear
Research Reactor. The reactor is managed by the MIT
Nuclear Reactor Laboratory which conducts and supports
research in the areas of nuclear energy, nuclear science,
medicine and radiation science and technology for
students/researchers at a variety of levels [11].

Similar to the Force on a Dipole iLab, the Nuclear
Reactor iLab provides a LabVIEW®-based interface to the
lab hardware. This client interface is shown, along with the
lab hardware, in Figure 4. This lab consists of a neutron
beam port, beam aperture and transmission sample plates,
an absorption sample and various measurement instruments.
Three distinct types of measurements are available using
this iLab [12]. Students can measure the Maxwell
Boltzmann Distribution of Thermal Neutrons, the diffraction
of a pulsed neutron beam and, finally, the neutron
absorption behaviors of certain materials.

As of this writing, the Nuclear Reactor iLab is in the
final stages of development and is to be used by students

FIGURE 4

LAB INSTRUMENTATION (LEFT) AND LABVIEW® CLIENT INTERFACE
(RIGHT) FOR THE NUCLEAR REACTOR ILAB.

FIGURE 3

LAB INSTRUMENTATION (LEFT) AND LABVIEW® CLIENT INTERFACE
(RIGHT) FOR THE FORCE ON A DIPOLE ILAB.

Session T1A

978-1-4244-1970-8/08/$25.00 ©2008 IEEE October 22 – 25, 2008, Saratoga Springs, NY
 38th ASEE/IEEE Frontiers in Education Conference
 T1A-6

during the Spring 2008 term. The initial deployment will be
in a course in the MIT Nuclear Engineering department.
Further deployments should also involve courses offered by
the MIT Physics department and, potentially, local
secondary schools.

CONCLUSIONS AND FUTURE WORK

The iLab Shared Architecture provides a flexible software
infrastructure for the implementation of Internet-enabled
labs. A new version of this architecture has recently been
released to support the deployment of interactive
experiments. This consists of a set of new services and
functionality that are available with the iLab Service Broker,
a general model for the development of interactive
experiments and software to enable rapid publishing of
LabVIEW®-based experiments online. This has enabled
the development of a set of interactive iLabs that are quickly
being adopted by educators. These iLabs broaden the set of
remote experiments available on the iLab Shared
Architecture. On a longer time horizon, these experiments
will serve to further demonstrate the value of iLabs as a
means of providing a rich set of laboratory experiences to
engineering students.

Moving on from this work, the iLab Project intends to
further refine the interactive services provided by the iLab
Shared Architecture. This should lead to a single Service
Broker that will support both batched and interactive
experiments. This will reduce the barrier to adoption of
both interactive experiments and iLabs generally as fewer
software systems will need to be deployed. The project also
intends to continue to foster the development of batched and
interactive experiments at MIT and other institutions.

ACKNOWLEDGMENT

The authors would like to thank Imad Jabbour, Tingting
Mao, Loai Naamani, Jedediah Northridge and Rabih Zbib
for their efforts in the specification and development of the
interactive extensions to the iLab Shared Architecture as
well as Jesús A. del Alamo and Steven Lerman for their
continued guidance.

This work has been supported in part by the Microsoft
Corporation through iCampus (the MIT-Microsoft
Alliance), by the Carnegie Corporation of New York, by the
National Science Foundation under award #0702735, by the
Singapore-MIT Alliance, by the Singapore-MIT Alliance
for Research and Technology, and by MIT Alumni Funds
(Classes of ’51, ’55, ’60, and ’72) as well as by equipment
donations from National Instruments, Agilent Technologies,
AMD, Hewlett-Packard, and Intel.

REFERENCES

[1] del Alamo, J. A., Brooks, L., McLean, C., Hardison, J., Mishuris G.,
et al., “The MIT Microelectronics WebLab: a Web-Enabled Remote
Laboratory for Microelectronics Device Characterization”, 2002
World Congress on Networked Learning in a Global Environment,
Berlin (Germany), May 2002.

[2] Colton, C. K., Knight, M. Q., Khan, R., West, R., "A Web-Accessible
Heat Exchanger Experiment", INNOVATIONS 2004: World
Innovations in Engineering Education and Research, Win Aung,
Robert Altenkirch, Tomas Cermak, Robin W. King, and Luis Manuel
Sanchez Ruiz. Arlington, VA: iNEER, 2004, pp. 93-106.

[3] Talavera, D., "On-Line Laboratory for Remote Polymer
Crystallization Experiments Using Optical Microscopy", MIT M.Eng.
Thesis, 2003.

[4] Amaratunga, K., Sudarshan, R., “A Virtual Laboratory for Real-Time
Monitoring of Civil Engineering Infrastructure”, presented at the
International Conference on Engineering Education 2002, Manchester
(UK), August 18-22, 2002.

[5] del Alamo, J. A., Chang, V., Brooks, L., McClean, C., Hardison, J., et
al., “MIT Microelectronics WebLab”, Lab on the Web, Tor. A.
Fjeldly and Michael S. Shur, Hoboken, N. J.: IEEE Press and John
Wiley & Sons, 2003, ch. 2, pp. 49-87.

[6] Harward, J., del Alamo, J. A., Choudary, V. S., DeLong, K.,
Hardison, J. L., et al., “iLabs: A Scalable Architecture for Sharing
Online Laboratories”, presented at the International Conference on
Engineering Education 2004, Gainesville, Florida, October 16-21,
2004.

[7] Hardison, J. L., Zych, D., del Alamo, J. A., Harward, V. J., Lerman,
S. R., et al., “The Microelectronics WebLab 6.0 – An Implementation
Using Web Services and the iLab Shared Architecture”, presented at
the International Conference on Engineering Education and Research
2005, Tainan, Taiwan, March 1-5, 2005.

[8] Harward, V. J., del Alamo, J. A., Lerman, S. R., Bailey, P., Carpenter,
J, et al., "The iLab Shared Architecture: A Web Services
Infrastructure to Build Communities of Internet Accessible
Laboratories", Proceedings of the IEEE Vol. 96, No. 6, June 2008

[9] “MIT iCampus: iLabs”, http://icampus.mit.edu/ilabs/.

[10] Dori, Y. J., Belcher, J., “How Does Technology-Enabled Active
Learning Affect Undergraduate Students’ Understanding of
Electromagnetism Concepts?”, Journal of the Learning Sciences Vol.
14, No. 2, April 2005, pp 243-279.

[11] “MIT Nuclear Reactor Laboratory”, http://web.mit.edu/nrl/www.

[12] “MIT Reactor iLab”, http://norbert.mit.edu/reactor/index.html.

AUTHOR INFORMATION

James L. Hardison, Research Engineer, Center for
Educational Computing Initiatives, Massachusetts Institute
of Technology, hardison@mit.edu.

Kimberly DeLong, System Manager/Senior Programmer,
Center for Educational Computing Initiatives,
Massachusetts Institute of Technology, kirky@mit.edu.

Philip H. Bailey, Senior Project Manager, Center for
Educational Computing Initiatives, Massachusetts Institute
of Technology, pbailey@mit.edu.

V. Judson Harward, Principal Research Scientist and
Associate Director, Center for Educational Computing
Initiatives, Massachusetts Institute of Technology,
jud@mit.edu.

