The Microelectronics WebLab 6.0: An Implementation Using Web Services and the iLab Shared Architecture

J. Hardison, D. Zych, J. A. del Alamo, V. J. Harward, S. R. Lerman, S. M. Wang, K. Yehia & C. Varadharajan Massachusetts Institute of Technology

Sponsored by Microsoft Corporation

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

The MIT Microelectronics WebLab

- Research project started in 1998
- DC characterization of microelectronic devices via the Internet.
- Real devices measured with stateof-the-art equipment.

MIT Microelectronics WebLab

Semiconductor Parameter Analyzer, Switching Matrix (donation of Agilent Technologies)

Device under test

Device test fixtures (donation of Agilent Technologies)
W2000 Server

Two complete systems: one for student use, one for development.

Educational Experiments

MIT graduate and undergraduate courses (220 st/yr) NUS (Singapore), Fall 2000-03 (20-30 st/yr) Chalmers U. (Sweden), Spring 2003-05 (350 st/yr) NTU Athens (Greece), Spring 2004 (35 st/yr) CCU Taipei (Taiwan), Fall 2004 (200 st/yr) Makerere U. (Uganda), Fall 2004 (150 st/yr) Over 2400 student users (for credit) since 1998

Previous WebLab Implementations

Monolithic design

- complex to debug, upgrade
- limited scalability (in terms of features and capacity)

Lab owner responsible for all management

- The lab itself
- Individual user accounts, data storage

The iLab Shared Architecture^{*}: A generic architecture for online labs

- A three-tier architecture
 - The Service Broker:
 - Captures functionality generic to all labs
 - facilitates communication between Lab Client and Server via Web Services.
- Lab Server and Client perform lab-specific functionality.

* Harward, ICEE 2004

 \diamond

The WebLab 6.0 Client

Implemented using \diamond Java technology Multiplatform support Communicates via Web Services kSOAP **Designed for** \diamond modularity, extensibility

The WebLab 6.0 Lab Server

Lab Server Features

Experiment Validation performed before execution

Lab Server Features

Lab Server Features

Deploying WebLab 6.0

First deployed in Feb. 2004 at MIT
(>100 undergraduates).
> Per hour load at record levels (~120 jobs/hr.)
> No serious failures encountered
Used by students on 4 continents

WebLab 6.0 vs. WebLab 5.0

6.0 Lab Server performs better despite higher functional load:

- Validation
- SOAP/SSL overhead
- > XML parsing
- 6.0 Client is smaller
- Reduced by ~9kB (to 255kB)
- System modularity is key:
- > Organized, independent & specialized modules
- Concurrent Web Server activity, job execution

Conclusions

WebLab 6.0: First lab implemented using the iLab Shared Architecture Supported >900 students in 8 courses across 4 continents. > Upgrade in performance, reliability. WebLab 6.0 marks a shift in lab design > Distributed system using Web Services Increased component modularity, specialization

Concurrency of operations

Online Resources

 Service Broker install kit released with WebLab Client & Lab Server code as example.

> http://icampus.mit.edu/iLabs

Tour the lab!

http://openilabs.mit.edu

