
 

 

DEVELOPER’S MANUAL 

 

EXTENDING FUCNTIONALITIES OF THE ELVIS iLABS 

ARCHITECHTURE 

 

Author: Adnaan Jiwaji 

adnaan@mit.edu 

 

 

 

 



 2 

TABLE OF CONTENTS 

 

1. INTRODUCTION.…………………………………………………………… …….3                                                                     

 

2. DESIGN OVERVIEW 

 LABSERVER LABVIEW………………………………….…………………..5 

 LABSERVER VISUAL BASIC ……………………………………………….7 

 LASERVER DATABASE…………………………………………………….11 

 CLIENT ……………………………………………………………………….12 

 

 

3. DEVELOPMENT PROCESS  

LABSERVER LABVIEW…………………………………………………….21 

CLIENT………………………………………………………………………. 29 

 LABSERVER VISUAL BASIC………………………………………………34 

 LABSERVER WEBSITE AND DATABASE………………………………..39 

 

4. XML FILES………………………………………………………………………...41 

 

5. REFENRENCES…………………………………………………………………...44 

 



 3 

1. INTRODUCTION  

 

The ELVIS (Figure 1) is an electronic workbench that is used to design and test circuits. 

It offers a variety of features that can be used for circuit analysis and debugging. This 

includes: Oscilloscope, Digital Multimeter (DMM), Function Generator, Variable Power 

Supply, Bode Analyzer, Arbitrary Waveform Generator, Dynamic Signal Analyzer 

(DSA), and Microelectronics Device Characterization capability 

 

 
              Figure 1: The ELVIS Workbench 

. 

The iLabs architecture (Figure 2) consists of a Client that a student uses to specify the 

experiment they want to run. The student’s experiment specification is then passed 

through the Service Broker to the Lab Server that is connected to the ELVIS platform.  

The ELVIS will have the actual circuit built on the breadboard and the user’s experiment 

will be run on the circuit and sampled output data will be returned to the user.  

 
Figure 2: The iLabs architecture 

 

To enable a larger variety of experiments to be run on the ELVIS, the next step is to 

extend the functionalities available on the ELVIS to the end user. The ELVIS platform 

offers quite a few capabilities that are still not exposed to the user. These include: 



 4 

• Digital Multimeter 

• Dynamic Signal Analyzer 

• Digital Reader 

• Digital Writer 

• Impedance Analyzer 

 

This approach is possible because National Instruments provides access to the lower level 

source code to control various functionalities on the ELVIS. They also expose higher 

level APIs, called Express Virtual Instruments (VIs), which can be easily used by 

inputting various values into the already programmed interface. To expose each new 

functionality, the steps to be taken are similar. Changes need to be made to the following 

areas: 

1) The Java User Client has to be programmed to have the UI for the new functionality. 

2) The Experiment Engine in the Lab Server that interprets the UI actions on the client to 

the ELVIS hardware must be modified. 

3) The SQL Database Server must be changed to record the data generated by the new 

functionality. 

4) The LabVIEW VI that controls the ELVIS hardware needs to be updated with the 

appropriate VI for the additional functionality. 

 

This allows a modular approach to making changes to the current iLab architecture. The 

various steps mentioned above can be executed and tested separately. This also allows 

use of various technologies for the different steps. The software that interacts directly 

with the hardware set up on the ELVIS is the LabVIEW graphical programming 

language. This is what the Express VI for the various ELVIS modules are written in. The 

Experiment Engine and the Lab Server are written in .NET. This is typical of web service 

architectures as shown in Figure 1. The system consists of a client, a service broker and a 

service provider (lab server). The client UI that the user employs to run an experiment is 

written in Java to allow for cross platform use. The architecture also uses a SQL database 

to validate user inputs and for record keeping.  

 



 5 

2. DESIGN OVERVIEW 

 

In this sections I will describe the structure of various parts of the iLabs software 

architecture. This is mainly focused towards giving information relevant to developers 

wishing to develop on the iLabs ELVIS architecture. After the overview in this section, I 

will describe how to develop each components in the next section. For reference to the 

various XML files mentions see Section 4 on XML files.  

 

LABSERVER LABVIEW  

 

National Instruments provides the LabView software for accessing drivers that can be 

used to control the various hardware features on the ELVIS. LabView is a graphical 

programming language. You can get more information about the language at 

www.ni.com. The ELVIS iLab code is arranged in the following module structures that 

are described on the next page.  

 

 

 
Figure 3: The LabView VI hierarchy 

 

 

 

 

 

 

OpAmpInverter.vi 

FGEN.vi 

RunFGEN.vi arb.vi Bode.vi 



 6 

OpAmpInverter.vi 

This is main entry point into the Labview code. This is the class called from the compiled 

DLL from the VB code in the Labserver [Class:PInvoke in OpAmpInverter.vb]. This is 

just a module that passes user parameters to the underlying FGEN vi.  

 

FGEN.vi   

This is the vi that calls the various other hardware features. It calls the function generator 

and DAQ card (RunFGEN.vi), arbitrary waveform generator (arb.vi) and the bode 

analyzer (Bode.vi). Only one of the RunFGEN.vi and Bode.vi are run because the bode 

analyzer uses the function generator to output sine waves of different frequencies to 

measure the frequency response of the circuit.   

 

RunFGEN.vi 

Runs the Function generator to produce the waveform requested by the user and the DAQ 

card to sample the required analog wave channels.  

 

arb.vi 

Runs the arbitrary waveform generator. This generates the required waveform on the 

DAC0 and DAC1 pins of the ELVIS. The waveform can be a predefined wave like a 

Square, Triangular, Sine, or Sawtooth wave. The feature also allows other flexible ways 

of defining a waveform either by a formula or by inputting a file that has the data values 

for the waveform.  

 

Bode.vi 

Runs the Bode Analyzer feature of the ELVIS. This takes in the start and stop frequencies 

from the user and runs the function generator hardware to sweep the sine waves.  

 

Both the Bode.vi and arb.vi files use Express VIs that are provided in LabView to run the 

different ELVIS functionalities. More details about this will follow in the development 

section of the manual.  

 



 7 

LABSERVER VISUAL BASIC 

 

 
Figure 4: Class structure for the Lab Server VB code 

 
 

The figure above shows the class structure of the Labserver visual basic code. The main 

projects are the experiment_engine, OpAmpInverter  and validation_engine.  

 

experiment_engine 

The execution engine runs in the background at all times while the Lab Server is 

operational.  At a given interval, the execution engine checks the experiment execution 

queue for new jobs.  If one is available, the execution engine de-queues the job The main 

class file in the experiment engine is the Module1.vb file.  

 

This file has a Main() subroutine that does the following:  

 

1) De-queues submitted jobs from the SQL server. This is done at the following line: 

strDBQuery = "SELECT dbo.qm_CheckQueue();"  

2) Once the job is de-queued the method call 

ParseExperimentSpec(strExpSpec)is  made to parse the Experiment 

Specification (more details in the XML section) received from the client.  



 8 

The ParseExperimentSpec method parses the experiment specification (an XML file that 

contains the experiment parameters chosen by the user). The method stores the values for 

different instrument parameter in a table called the functInfoTable . For example the 

code below extracts the frequency value specified for the function generator waveform 

and stores it in the table: 

 

 

 

 

 

 
 

 

3) Once all the parameters values are extracted the runExperiment()  method is 

called.  

 

This method calls the RunExperiment()  method in the Inverter  class defined in the 

OpAmpInverter project  with the parameters values stored in the  functInfoTable table. 

The RunExperiment()  method in the Inverter class calls the compiled LabView 

DLL with the specified parameters.  The DLL runs the experiment on the ELVIS 

hardware. Once the experiment is run it returns from the Inverter  class back to the 

runExperiment()  method in the experiment engine with an array of data for graphs that 

will be displayed to the user.  The data points are then put into an XML file called the 

“Experiment Results” and sent back to the client for display to the user. Finally the 

execution engine triggers a notification (via the Notify() method) to the ServiceBroker 

saying the data is ready.  

 

OpAmpInverter 

The main class file in this project is the OpAmpInverter.vb file that defines the Inverter 

class. The RunExperiment()  method in this class is called from the experiment engine. 

This method calls the runExperiment()  method in the PInvoke class that imports the 

LabView DLL with the parameters passed from the experiment engine. The DLL returns 

‘load frequency value 
 tempXPath = "/terminal/function/frequency" 
 tempNode = xmlTemp.SelectSingleNode(tempXPath) 
functInfoTable(instrumentConstant, FUNCT_FREQUENCY)  = 
Trim(tempNode.InnerXml()) 
 

Figure 5: Experiment Specification Parser. 
Note: instrumentConstant  and FUNCT_FREQUENCY are integer constants. 

 



 9 

an interleaved array of the output data back from the LabView code. This array is 

deinterleaved in the RunExperiment()  method of the Inverter class, which returns this 

data back to the runExperiment()  method of the experiment engine.  

 

validation_engine 

This is the first thing that is called before the job is queued for execution. It checks 

whether the inputs specified by the user meets the specification set by the designer of the 

experiment when setting up the assignment. It works the same way as the 

ParseExperimentSpec()  method in the execution engine to extract the experiment 

parameters and checks these values against the values stored in the database.  

 

WebLab Custom Data Types 

The most abstract component of the Web Server Layer, this module is composed of a 

single class which defines a number of custom data types.  These types are constructed in 

order to accommodate certain methods which return collections of data rather than 

singleton values.  Use of these types is limited to interfaces between internal software 

components within the Web Server Layer.  

 

WebLab Data Managers 

The WebLab Data Managers component serves as the primary interface between the Data 

Persistence Layer of the Lab Server.  On the Web Server side, the data managers contain 

methods defining certain well known interactions with the Data Persistence (Database) 

Layer and are referenced by the other components within the web server process space. 



 10 

CLIENT  

 

SERVICE  BROKER 

ParseExperimentSpec() 

runExperiment() 

Main() 

OpAmpInverter.vi 

FGEN.vi 

RunFGEN.vi arb.vi Bode.vi 

LAB SERVER 

LabServer 
Database 

execution _engine 
(Module1.vb) 

OpAmpInverter 

(OpAmpInverter.vb) 

LabView DLL 

RunExperiment() in class Inverter 

1 

2 

4 

3 

5 

6 

7 

runExperiment() in class PInvoke 

8 

9 

   10 

   11 

   12 

1) The client sends the “execute” 
SOAP request to the 
ServiceBroker with the 
“Experiment Specification” 
XML file.  

2) A Web service call is made to 
the appropriate Lab Server and 
the experiment specification is 
stored in the Lab Server 
Database. 

3) The experiment engine in its 
Main() method de-queues the 
experiment in a FIFO manner 
and fetches the stored 
experiment specification.  

4) The experiment specification is 
passed on to the 
ParseExperimentSpec() method 
in the execution engine where 
the XML file is parsed and 
parameters stored in a table.  

5) The runExperiment() method is 
called. It extracts the 
parameters from the table 
stored during parsing.  

6) The RunExperiment() method 
in the Inverter class is called 
using the parameters extracted 
this in turn calls the 
runExperiment() method in the 
PInvoke class with the same 
parameters.  

7) The  PInvoke class imports the  
compiled LabView DLL and 
runs the DLL with the 
parameters when called. The 
entry point into the LabView 
code is the OpAmpInverter VI. 
This runs the experiment on the 
ELVIS platform.  

8) The LabView DLL finishes 
execution and returns and array 
of output data to the Inverter 
class.  

9) The Inverter class de-
interleaves the output array and 
returns a 2D array of results to 
the experiment engine. 

10) The experiment engine forms 
the “Exp Results” XML file 
and stores it in the database and 
sends a notification to the 
Service Broker.  

11) & 12) The Service Broker 
fetches the Exp Result file from 
DB and forwards it to the 
client. 

 

Figure 6: The execution cycle showing details of the lab server 



 11 

LAB SERVER DATABASE 

 
The lab server database has three main tables that you should be aware of:  

 

1) Setups: Stores information about each setup including the number of terminals used.  

 

The stored procedure AddSetup adds a setup to the list of setups available in the lab server.  

 

2) SetupTerminalConfig: Stores information about the terminals present in all the setups. 

This information include x,y pixel location, terminal type and constraint placed on 

the terminal.  

 

The stored procedure AddSetupTerminal adds a terminal to a setup available in the lab server.  

 

3) ActiveSetups: Stores information on what setups are active.   

 

The stored procedure SetActiveSetup sets a setup as active.  

 

All these procedure are called by the ASP code of the lab server website.  

 

 
Figure 7: LabServer website to access the above features. 



 12 

CLIENT (JAVA) 
 

 
Figure 8: The Client Java code class files 



 13 

One thing that you should be aware of when understanding the client code is the Visitor 

design pattern. This pattern is used over and over again throughout the code. Here is an 

excerpt and diagram from Wikipedia:  

 

“ In essence, the visitor allows one to add new virtu al functions to a 
family of classes without modifying the classes the mselves; instead, 
one creates a visitor class that implements all of the appropriate 
specializations of the virtual function. The visito r takes the instance 
reference as input, and implements the goal through  double dispatch. 
The idea is to use a structure of element classes, each of which has an 
accept() method that takes a visitor object as an a rgument. Visitor is 
an interface that has a visit() method for each ele ment class. The 
accept() method of an element class calls back the visit() method for 
its class. Separate concrete visitor classes can th en be written that 
perform some particular operations. 

One of these visit() methods of a concrete visitor can be thought of as 
methods not of a single class, but rather methods o f a pair of classes: 
the concrete visitor and the particular element cla ss.”  

 

Figure 9: UML of the Visitor Design Pattern 



 14 

The main flow of information in the Client is as follows:  

(italics represent Java class names) 

 

A) When opened the client is initiated through the GraphicalApplet class and a Service 

Broker server (SBServer) is associated with the applet.  When this happens the 

loadLabConfiguration() method in WebLabClient is called. This method fetches the Lab 

Configuration XML File (see Section 4) from the lab server through the specified Service 

Broker through the getLabConfiguration() SOAP call in the SBServer class.  

 

B) The Lab Configuration is then parsed by the  parseXMLLabConfiguration() method in 

the LabConfiguration class.  

 

From parsing the Lab Configuration a list of Terminals are created. A Terminal has an 

instrumentType (for example Instrument.FGEN_TYPE or Instrument.SCOPE_TYPE) 

and an instrumentNumber, a label, an xPixelLocation and yPixelLocation to identify 

where the terminal is located in the setup image.  

 

From the list of Terminals a Setup is created which represents the current experiment. 

Setup has a setupID, a name, a description, an imageURL, and an ordered list of 

Terminals that are present in the experiment. 

 

C) Once the Lab Configuration has been parsed, the Setup is stored in the 

ExperimentSpecification theSetup  field and the Instruments (FGEN, ARB, SCOPE, 

BODE) are created from the Terminal information and stored in the instruments  vector 

in the same class. 

 

D) Then the MainFrame draws the main client elements including the buttons and the 

menu bars.  

 

F) The MainFrame then calls the SchematicPanel and the ResultsPanel.  

 



 15 

G) The ResultsPanel class draws the axes for plotting later.  

 

H) The SchematicPanel uses setup stored in the theSetup in the 

ExperimentSpecification to draw the image of the experiment and the corresponding 

InstrumentLabel for the instruments in the setups.  

 

I) The experiment is ready to be run. When the user clicks on any of the instrument labels 

the instrument dialog box appears. Each instrument has its own dialog box that users can 

use to specify parameters of the instruments. For example frequency, amplitude etc for 

the FGEN instrument. 

 

Each Instrument has a SourceFunction associated with it. This SourceFunction 

(WAVEFORMFunction in the case of FGEN )is changed when the user specifies values 

in the dialog box (FGENDialog for the case of FGEN). 

 

 
Figure 10: Different parts of the Java Client 

FGENLabel  
(InstrumentLabel for FGEN) 

ResultPanel 

 SchematicPanel 

 Buttons in 
MainFrame 



 16 

J) When the user click on the ‘Run’ button, the Experiment Specification XML document 

is created by the ExperimentSpecification class. This Experiment Specification is sent to 

the lab server via the execute SOAP call is SBServer.  

 

The job is now submitted to the lab server and the events in Figure 6 take place.  

 

K) When the job finishes executing the RetrieveResult SOAP request is used to get the 

Experiment Result XML file from the lab server.  

 

L) The parseXMLExperimentResult  method in ExperimentResult is used to parse the 

Experiment Result XML file.  

 

M) The data is displayed using the Axis, ConnectPattern, Graph and Grid classes in the 

graphing package.  

 

 

The best way to visualize the Client code structure is to look at the UML diagrams for 

different parts of the code. I have included UML diagrams starting on the next page. 

Please read the captions for the diagrams to understand what is represented.  

 



 17 

 

 
Figure 11: Each feature on the ELVIS is an Instrument. All features inherit from the Instruments 

class.  
 
 
 
 

 
Figure 12: Associated with each instrument is a function. Functions for each instrument are sub 

classes of the SourceFunction class. 



 18 

 
Figure 13: This diagram uses the FGEN(Function Generator) Instrument to show the each 
instrument type has a SourceFunction associated with it. In the case of the FGEN it is the 

WAVEFORMFunction. 
 

 
 

 
Figure 14: For display purposes each instrument also has a label associated with it. The label has the 

icon and the name of the instrument that will be displayed to the user. 



 19 

 
 

 
Figure 15: A diagram that uses the FGEN as an example to show that each instrument has a Dialog 

box associated with it (FGENDialog). The Dialog box is the user interface that is used to specify 
parameters of the instrument.  

 
 
 
 
 



 20 

 

 
Figure 16: The WebLabClient is the central class of the client. It has a Service Broker server (Server 

class) associated with it. It also has the LabConfiguration, ExperimentSpecification and 
ExperimentResult class that define the 3 XML files used. Also has the WebLabAxis fields for 

plotting. 
 
 
 
The best way to understand how to develop the client is to look at the next section as I 

walk through the changes I made to the client to understand in more detail the various 

classes represented in the UML diagrams and data flow above. 



 21 

3. DEVELOPMENT GUIDE  

 

I will walk through all the development steps that I went through in adding the Bode 

Analyzer (Bode) and the Arbitrary Waveform Generator (Arb) features in each of the 

software layers. I think this is the best way of showing the development process. 

Following similar steps will help you as you add more features.  I have described the 

parts in the order that I feel is the best sequence to follow in the development.  

 

LABSERVER LABVIEW  

 

The best place to start in the development process is with the LabView part of lab server 

because this directly interacts with the hardware and is the easiest place to start 

debugging the hardware to make sure everything works. The best way to add a new 

feature is to start by creating a new VI for it. Then you can think about where to place the 

your newly created VI in the current framework of VIs. Most of the features on the 

ELVIS have an associated Express VI, and this is usually the best and easiest way to 

interact with the hardware.  

 

1) MAKING THE VI FOR THE NEW FUNCTIONALITIES 

 

For the arbitrary waveform generator (arb.vi) we wanted to add additional input 

capabilities to the ELVIS architecture. The ELVIS provides the DAC0 and DAC1 pins 

for the generating two independent arbitrary waveforms.  The capabilities that were 

supported were for generating arbitrary waveforms were: 

1) Square wave 

2) Sine wave 

3) Sawtooth wave 

4) Triangular wave 

5) Generating a wave from a formula 

6) Generating a wave from a file data file 

 



 22 

For generating the Square, Sine, Sawtooth and Triangular waveforms LabView provides 

VIs that given the wave parameters it simulates the waveforms, and samples them 

according to the desired sampling rate. The parameters include: Frequency, Amplitude, 

Phase and Offset. An additional parameter for the Square wave is the duty cycle. There is 

also an input for the sampling rate and number of samples to be takes from the simulated 

wave. The variables for the parameters need to be created in the VI.  

 
Figure 17: Part of the arb vi showing the sine wave simulator and the input parameters it takes. 

 

 

For the generating the waveform from a formula there is also a VI that accepts a formula 

in MatLab syntax and parses the formula to generate the desired waveform.  

 

 



 23 

 
Figure 18: The formula generator VI 

 

 

For the generating the waveform from file LabView provides the “Build Waveform” VI 

that takes an array of y values and dt and generates a wave from it.  

 
Figure 19:Generating a waveform from an array of y values 

 

All the above options are put into a case statement that uses a string as a selector for 

which option to use.  

 



 24 

For the Bode Analyzer VI (Bode.vi) it was a simpler task to make the VI because the 

Express VI (shown in Figure 4) only requires three parameters: the start frequency, stop 

frequency and the steps per decade.  

 

 

2) EXPOSING THE TERMINALS FOR THE VI 

 

After making the VI the next step is to expose the terminals that will be the inputs and 

output for the VI. To do this you go to the front panel of the VI. Then click on the icon in 

the top left on the window and choose ‘Show Connector’.  

 

 
Figure 20: Front panel of the VI 

 

Then you can click on an empty terminal and assign it a variable by clicking on the 

variable. The colored terminals are assigned terminals and the white ones are free 

terminals. If you need to add more terminals you can right click and choose ‘Add 

Terminal’ 

 
Figure 21: Connector diagram 

 

 

  

Click 
here 



 25 

3) PLACING THE VI IN THE CURRENT FRAMEWORK 

 

The next step is to add the created VI in the current VI framework. This will depend on 

how you want the functionalities to be run and if there are any resource conflicts. I placed 

the ARB VI (arb.vi) in the FGEN.vi file to be run in a new thread. In this way the 

FGEN.vi file calls both the RUNFGEN.vi file to run the function generator and the arb.vi 

file to run the arbitrary waveform generator. This way the function generator and the 

arbitrary waveform generator can be run simultaneously.  

 

For the Bode Analyzer VI (Bode.vi) I placed the VI in a case statement so that only one 

of RUNFGEN.vi or Bode.vi is run as they both use the function generator hardware.  

 

 

 
Figure 22: The ARB VI placed in FGEN 

 

arb.vi 

arb_parser.vi 



 26 

 
Figure 23: Bode Analyzer VI placed in a case statement 

 

 

I also added a parser for each functionality as there is limited number of terminals that 

can be exposed to the lab server. This way for each instrument I only pass one string from 

the lab server which can be parsed to get the required parameters for running the VI.  

 

4) EXPOSING THE TERMINALS TO OPAMPINVERTER.VI 

 

The next step is to make the variables for the new VIs in the FGEN file and expose the 

variables in the FGEN.vi and OpAmpInverter.vi file.  

 

5) ADDING A SAMPLING PORT  

 

If you need to capture an additional waveform you can double click on the DAQ assistant 

VI in RUNFGEN and add an extra analog channel to sample. You will also need to 

change the interleaved array connected to the DAQ assistant.  

 

 

 

Bode.vi 



 27 

6) COMPILIING THE DLL 

 

Once the new terminals have been exposed in the OpAmpInverter.vi which is the entry 

point file you can compile it into a DLL. In LabView version 8.2, the best way to do this 

is to add or your VI files to a project. Then you can right click on ‘Build Specifications’ 

and choose ‘New->DLL’. Add OpAmpInverter.vi into the ‘Exported VI’ and name sure 

the variables are in the same order as called from the lab server (Figure 25).  

 

7) PLACING THE DLL IN THE LABSERVER 

 

The final step is to place the compiled DLL in the location specified at the lab server in 

the OpAmpInverter.vb file in the PIvoke class. 

 

 

 
Figure 24: LabView project 

 

 



 28 

 
Figure 25: Compiling the DLL 

 

 

 

Debugging: Use the “Display Msg” Express VI to put print outs for testing  

 

 
Figure 26: "Display Msg" Express VI 



 29 

CLIENT 

For all the steps below you can look at existing classes to give you a better idea of what 

to change. I used the NetBeans IDE for development. To setup it up copy the ‘weblab’ 

and the ‘img’ folder of the client into the ‘src’ folder of a newly created NetBeans 

project. 

 

1) The first step in adding a new functionality is creating an instrument for the 

feature. For the Arbitrary Waveform generator (ARB) and Bode Analyser 

(BODE) feature a new class was created that extends the Instrument class. You 

also need to add an instrument identifier number in the Instrument class for the 

new instrument. You can look at the ARB or FGEN file for examples. Following 

the same pattern will work.  

 
Figure 27: The ARB instrument 

 

2) Then make the function for your instrument by extending the SourceFunction 

class. The function for your instrument stores the information parameters for your 

instrument. In my case the ARBFunction is the function for the ARB instrument 

and stores information like the waveform type selected by the user and the 

parameters like frequency, amplitude, phase etc associated with the waveform. If 

the user wants to plot a formula it also stores the wave function. Finally to use a 

file for generating a wave, there is a parser that parses the file loaded and extracts 

the dt value and the associated y values that are stored in the wavefilevalue  

field. The BODEFunction similarly has the fields to store the start, stop 



 30 

frequencies and the steps per decade to be used for the bode analysis. You also 

need to add a function identifier number in the SourceFunction class for the 

function. 

 

 
Figure 28: The ARBFunction 

3) After that next step is to make the instrument label for the feature. This extends 

from the InstrumentLabel class. This class has a chooseImageName() method that 

specifies the name of the image to be used for the instrument. You will need to 

draw an image for the instrument and put the image in the ‘img’ folder and put the 

name of the image in the method.  You can also add a case for your instrument in 

the updateToolTip() method in the InstrumentLabel class to show a tool tip.   

 
Figure 29: ARBLabel 



 31 

4) Next thing you need to create the dialog user interface that will be used to modify 

the instrument. This will appear when the label for that instrument is placed. The 

best way of doing this is to look at FGENDialog class. The user interface can be 

easily made by copying the code from that class. If you need to make a very 

different UI I suggest you use the swing GUI builder in NetBeans. The dialog box 

will have an OK and an Apply button. When these buttons are pressed you need to 

handle the action by exporting the values chosen by the user to the source 

function. Of course the details of this will vary on how the user input was asked 

for but the basic idea is to gather all the information specified by the user and call 

the constructor of the source function and assign the function to your instrument. 

You also need to create the ImportValuesVisitor class in the same file to import 

pre-existing instrument values to the dialog box. As seen in Figure 31  in the 

second last line f.setFunction(…) is called.  

 

 
Figure 30: ARBDialog 

 
 

 
Figure 31: Export value function for FGEN 



 32 

5) Add a case for the new instrument in the drawVariableNames(final Graphics g) in 

the SchematicPanel class to draw instrument name.  

 

6) To handle the parsing of the lab configuration you need to add a case for the 

instrument in the parseXMLLabConfiguration() method in the LabConfiguration 

class. This just assigns a type to the instrument so that it is recognized when the 

instrument in created in the ExperimentSpecification class.  

 
Figure 32: Adding a case for parsing the lab configuration file. 

 

7) You have to handle the creation of the Experiment Specification document. To do 

this you need to add the methods visitInstrument and visitInstrumentFunction to 

the ExperimentSpecification class. As shown below the  visitBODE and 

visitBODEFunction methods are used to form the Experiment Specification for 

the bode analyzer. The same XML tags will be used to parse the specification in 

the lab server.  In the visitBODEFunction (Figure 33) you can see that I extract 

the start, stop frequencies and steps from the BodeFunction f.   



 33 

 
Figure 33: visitBODE in ExperimentSpecification 

 

 
Figure 34: visitBODEFunction in Experiment Specification 

 

8) Finally you need to make sure the visitors for the new instrument  and its functions 

are defined in the Visitor and DefaultVisitor class.  

 

Debugging: Run the GraphicalAppletDEBUG file to debug the client independently. 

You can then use print statements and watch variables using an IDE like NetBeans or 

Eclipse.  



 34 

LABSERVER VISUAL BASIC 

 

This development was done using Microsoft Visual Studio 2003. Open the 

‘LabServer’ solution file to view all the projects included in the lab server.  

1) The first thing to modify is the way the Experiment Specification is parsed. This 

is in the ParseExperimentSpec method in the Module1.vb file in the 

experiment_engine project. The way this method does the parsing is by first 

parsing all the instruments and placing them in a table. This table is called the 

termInfoTable. The table has a field for the TERM_INSTRUMENT that specifies 

the type of instrument and TERM_FUNCTION that specifies the name of the function 

associated with the instrument. Based on the TERM_INSTRUMENT an 

instrumentConstant is given to the instrument to identify its type. So this is the 

first thing you have to change by adding a case for your new instrument. You will 

also need to define a new constant like FGEN_FUNCT for the new instrument. This 

constant is used to index the table to retrieve the result later.  Just give it a unique 

ID at the beginning of the Module1.vb file.  

 
Figure 35: Adding a case for the instrument 

 

Select  Case termInfoTable(loopIdx, TERM_INSTRUMENT) 
                Case "FGEN" 
                    instrumentConstant = FGEN_FUNCT  
                    FGEN_record = loopIdx 
                Case "SCOPE" 
                    instrumentConstant = SCOPE_FUNC T 
                    SCOPE_record = loopIdx 
                Case "ARB0" 
                    instrumentConstant = ARB_FUNCT 
                    ARB_record = loopIdx 
                Case "ARB1" 
                    instrumentConstant = ARB2_FUNCT  
                    ARB2_record = loopIdx 
                Case "BODE" 
                    instrumentConstant = BODE_FUNCT  
                    BODE_record = loopIdx 
 
            End Select 

 



 35 

2) After that the next step is to add a case for reading the function type from the 

termInfoTable. This can be done in the select case shown below by adding a 

case with the function name you have used. Before you do this however you will 

need to define indexing constants for the different parameters in a function. 

These indexes are used to store the parsed values from the Experiment 

Specification and store them in the functInfoTable . These values can then be 

retrieved later using the same indexes. For example in the figures below the value 

at functInfoTable (FGEN_FUNCT, FUNCT_WAVEFORMTYPE) will be the type of 

waveform specified by the user. 

 
Figure 36: Constant for FGEN for indexing the table 

 
Figure 37: Case statement for the FGEN function “WAVEFORM” 

'function information fields 
    Const  FGEN_FUNCT As Integer  = 0 
 
    Const  FUNCT_OFFSET As Integer  = 0 
    Const  FUNCT_WAVEFORMTYPE As Integer  = 1 
    Const  FUNCT_FREQUENCY As Integer  = 2 
    Const  FUNCT_AMPLITUDE As Integer  = 3 
    Const  FUNCT_SAMPLINGRATE As Integer  = 4 
    Const  FUNCT_SAMPLINGTIME As Integer  = 5 

 

Select  Case termInfoTable(loopIdx, TERM_FUNCTION_TYPE) 
                Case "WAVEFORM" 
                    'load waveformTYpe value 
                    tempXPath = "/terminal/function /waveformType" 

tempNode = xmlTemp.SelectSingleNode(tempXPath) 
Select  Case Trim(tempNode.InnerXml()) 

                        Case "SINE" 
                            functInfoTable(instrume ntConstant, 
FUNCT_WAVEFORMTYPE) = 0 
                        Case "TRIANGULAR" 
                            functInfoTable(instrume ntConstant, 
FUNCT_WAVEFORMTYPE) = 1 
                        Case "SQUARE" 
                            functInfoTable(instrume ntConstant, 
FUNCT_WAVEFORMTYPE) = 2 
                    End Select 
                    Debug.WriteLine("waveformType="  & 
Trim(tempNode.InnerXml())) 
 
                    'load frequency value 
 tempXPath = "/terminal/function/frequency" 
  tempNode = xmlTemp.SelectSingleNode(tempXPath) 
  functInfoTable(instrumentConstant, FUNCT_FREQUENC Y) = 
Trim(tempNode.InnerXml()) 

 



 36 

3)  Once the parsing is done the next step is to change the runExperiment() 

method. This where the parsed value stored for different parameters in the table 

are retrieved to be passed to the LabView DLL. You need initialize variables for 

the parameters of your new function and assign them to the values stored in the 

functInfoTable.

 
 

Figure 38: Retrieving parameter values for the FGEN instrument 
 

4) After that make sure you pass the new variables along to the RunExperiment() 

method of the OpAmpInverter.vb class in the correct order.  

5) Change the call PInvoke.runExperiment in the RunExperiment() method to 
include the new parameters.  

6) Change the call to the LabView DLL from the PInvoke class to include the new 
parameters and make sure they are in the same order as specified in compiling the 
DLL (Figure 25) 

 

 

 

 

 

 

 

 

7) If you add another channel to sample you will need to modify the following code 
in the RunExperiment()  method to deinterleave the output array correctly.  

    
 

Dim frequency As Double  = functInfoTable(FGEN_FUNCT, FUNCT_FREQUENCY) 
Dim amplitude As Double  = functInfoTable(FGEN_FUNCT, FUNCT_AMPLITUDE) 
Dim offset As Double  = functInfoTable(FGEN_FUNCT, FUNCT_OFFSET) 
Dim waveformType As Double  = functInfoTable(FGEN_FUNCT, FUNCT_WAVEFORMTYPE) 

 

Figure 39: Call to LabView DLL from VB 

  Private  Class  PInvoke 
 
            
<DllImport("C:\\Inetpub\\wwwroot\\LabServer\\Experi mentSetups\\wrappers\\OpA
mpInverter\\labview\\My DLL\\SharedLib.dll", EntryP oint:="OpAmpInverter", 
CallingConvention:=CallingConvention.StdCall)> _ 
            Public  Shared  Function  runExperiment( ByVal  Frequency As Double , 
ByVal  PeakAmplitude As Double , ByVal  DCOffset As Double , ByVal  WaveformType 
As Short , ByVal  SamplingRate As Double , ByVal  SamplingTime As Double , ByVal  
Arb_Strings As String , ByVal  Arb_Doubles As String , ByVal  Arb_yvalues As 
String , ByVal  Arbsec_yvalues As String , ByVal  BODE_Doubles As String , ByVal  
fgen As String , ByRef  waveform As Double , ByVal  len As Long , ByRef  errorOut 
As TD1) As Integer 
            End Function ) 

 



 37 

 Figure 40: Deinterleaving the output array 

 

8) Finally when the code returns after executing the DLL to the runExperiment() 

method of Module1.vb, make sure you change the way the Experiment Result 

XML file is created. The code below shows where the core part of the file is 

created strResult() is an array of strings each entry being a concatenation of all 

the values of a waveform.  

 
Figure 41: Experiment Result XML file is created 

 

9) You will also need to change the validation engine. The validation engine also 

parses the Experiment Specification in a similar way as the experiment engine. 

Hence you can make the same changes as you did in the experiment engine to the 

parseXMLSpec() method of the validation engine. Then you have to change the 

experimentValidator() method. This basically loops through each of the 

function in the Specification and makes sure that the parameters are within the 

requirement specified by the developer of the experiment.   

            Dim j, k As Integer 
            For  j = 0 To len - 1 
                k = j Mod 3 
                If  k = 0 Then 
                    vin(j / 3) = waveform(j) 
                ElseIf  k = 1 Then 
                    vout((j - 1) / 3) = waveform(j)  
                ElseIf  k = 2 Then 
                    arb((j - 2) / 3) = waveform(j) 
                End If  

strXMLExpResult = strXMLExpResult & "<datavector na me='TIME' units='s'>" 
& strResult(0) & "</datavector>" 
                strXMLExpResult = strXMLExpResult &  "<datavector name='" 
& triggerchannel & "'units='V'>" & strResult(1) & " </datavector>" 
                strXMLExpResult = strXMLExpResult &  "<datavector name='" 
& secchannel & "'units='V'>" & strResult(3) & "</da tavector>" 
                strXMLExpResult = strXMLExpResult &  "<datavector 
name='VOUT' units='V'>" & strResult(2) & "</datavec tor>" 
                strXMLExpResult = strXMLExpResult &  
"</experimentResult>"  



 38 

 
 

Figure 42: Validation check for FGEN 

 

Debugging: You can start the experiment engine in debug mode by right clicking on the 

experiment_engine project and going to Debug->Start new instance. In debug mode you 

can place breakpoints and watch variables. 

Case "FGEN" 
                        Select  Case UCase(termInfoTable(loopIdx, 
TERM_FUNCTION_TYPE)) 
                            Case "WAVEFORM" 
                                'validate waveformType, frequency, amplitude 
and offset values against 
                                ' values stored in the database 
                                'FREQUENCY 
                                If  functInfoTable(FGEN_FUNCT, FUNCT_FREQUENCY) 
= "" Or Not  IsNumeric(functInfoTable(FGEN_FUNCT, FUNCT_FREQUEN CY)) Then 
                                    Return  "Error - A numeric frequency value 
for FGEN must be supplied." 
                                    Exit  Function 
                                End If  



 39 

LABSERVER ASP WEBSITE AND DATABASE 

 

Now you are done changing the code for the whole architecture. Now you need to change 

the Lab Server administration pages so that your new functionality is available to be seen 

by however is making the labs. This can be done by modifying experiment-setups.aspx 

page. Things that should be changed here include adding the new instrument to the drop 

down lists of available instrument, adding constraint fields for your new instrument and 

adding the new instrument and its constraints to the lab server database that provides 

permanent storage.   

 

The code below shows where you can add new features and their new constraints. Once 

you put an HTML tag for it here you will need to change the “Create Terminal” action to 

incorporate the new constraints.  

 

 
Figure 43: LabServer administration code 

 

When the lab creator presses “Create Terminal” the following database call is made:  

 



 40 

strResult = rpmObject.AddSetupTerminal(CInt(e.Comma ndArgument), 

txtNewTermName.Text, CInt(txtNewTermXLoc.Text),………… …….. 

 

This call will need to be change together with the SQL AddSetupTerminal and the 

SetupTerminalConfig  table to add more columns for  your new constraints. You will 

also need to change the ‘Check Constraint’ of SetupTerminalConfig to accept your 

new instrument.  



 41 

 4. XML FILES  

 

Lab Configuration 

 

This document is created by the lab server. It contains information about which 

experiments that can be performed on the lab server at a particular time. This information 

is drawn from the lab server’s database. Information contained in this document should 

be adequate for the client to display information on any experiment that is built on the 

ELVIS board. This ability will enable us recycle client code for different experiments. 

The nature of this document captures the model that was described for experiments 

above.  

 

Experiment Specification XML Document 

 

This document is generated by the client in order to specify the nature of the experiment 

to be conducted on the lab server. For this version of the ELVIS weblab, this document 

should contain the following information: 

• The ID of the experiment which the user has submitted. This is the same ID that was 

assigned by the lab server in the Lab Configuration XML document.  

• A list of all the component profiles that are used by the user in this experiment. For each 

component profile, the document should contain a list of all the terminals, each of which 

should contain a list of other terminals that it is connected to. This cascade of information 

will help recreate the circuit as it was connected by the user for validation. 

• A list of the ELVIS instruments that are used by the user in this experiment. For each 

instrument, the document should not only contain a list of terminals and their 

connections, but also information on how the instrument has been configured by the user.  

 

 

 

 

 



 42 

Experiment Result 

 

This document is generated by the lab server upon the successful completion of an 

experiment. The document contains entries of data that correspond to each of the 

parameters that the user wants to measure for the given experiment. For a simple 

experiment that contains an input waveform, an output waveform and time values, the 

document would contain an array of double values for each of the three parameters. The 

clients graphing API would then use this information to recreate these waveforms 

for the user. 

 
LAB CONFIGURATION 
 
<?xml version="1.0" encoding="utf-8" standalone="no" ?> 
<!DOCTYPE labConfiguration SYSTEM 
"http://localhost/LabServer/xml/labConfiguration.dtd"> 
<labConfiguration lab="MIT ELVIS Weblab" specversion="0.1"> 
 <setup id="5"> 
  <name>OpAmp Differentiator Circuit</name> 
  <description>Aren't opAmpss just swell?</description> 
 
 <imageURL>http://localhost/labServer/setupImages/opAmpDifferentiator.gif</im
ageURL> 
  <terminal instrumentType="FGEN" instrumentNumber="1"> 
   <label>Input Waveform</label> 
   <pixelLocation> 
    <x>121</x> 
    <y>94</y> 
   </pixelLocation> 
  </terminal> 
  <terminal instrumentType="SCOPE" instrumentNumber="2"> 
   <label>Oscilloscope</label> 
   <pixelLocation> 
    <x>195</x> 
    <y>156</y> 
   </pixelLocation> 
  </terminal> 
 </setup> 
</labConfiguration> 
 
 
 
 



 43 

EXPERIMENT SPECIFICATION 
 
<?xml version="1.0" encoding="utf-8" standalone="no" ?> 
<!DOCTYPE experimentSpecification SYSTEM 
"http://localhost/labServer/xml/experimentSpecification.dtd"> 
<experimentSpecification lab="MIT NI-ELVIS Weblab" specversion="0.1"> 
 <setupID>1</setupID> 
  <vname download="true">VIN</vname> 
  <iname download="true">IIN</iname> 
  <mode>V</mode> 
  <function type="WAVEFORM"> 
   <waveformType>SINE</waveformType> 
   <frequency>100</frequency> 
   <amplitude>0.5</amplitude> 
   <offset>0.1</offset> 
  </function> 
 </terminal> 
 <terminal instrumentType="SCOPE" instrumentNumber="2"> 
  <vname download="true">VOUT</vname> 
  <iname download="true">IOUT</iname> 
  <mode>V</mode> 
  <function type="SAMPLING"> 
   <samplingRate>100</samplingRate> 
   <samplingTime>0.01</samplingTime> 
  </function> 
 </terminal> 
 <userDefinedFunction> 
  <name download="true">SQRTID</name> 
  <units>A</units> 
  <body>SQRT(VIN)</body> 
 </userDefinedFunction> 
</experimentSpecification> 
 
 
 
EXPERIMENT RESULTS 
 
<?xml version="1.0" encoding="utf-8" standalone="no" ?> 
<!DOCTYPE experimentResult SYSTEM 
"http://localhost/labServer/xml/experimentResult.dtd"> 
<experimentResult lab="MIT NI-ELVIS Weblab" specversion="0.1"> 
 <datavector name="VIN" units="V">1,2,3,4,5</datavector> 
 <datavector name="VOUT" units="I">6,7,8,9,0</datavector> 
</experimentResult> 



 44 

5. REFERENCES AND FURTHER READING 
 
 
A . Service Broker to Lab Server API 
http://icampus.mit.edu/iLabs/Architecture/downloads/protectedfiles/Service%20Broker%
20to%20Lab%20Server%20API.doc 
 
B. Client to Service Broker API (Release 6.0) 
http://icampus.mit.edu/iLabs/Architecture/downloads/protectedfiles/Client%20to%20Ser
vice%20Broker%20API%206.0.doc 
 
C. MicroElectronics WebLab Lab Server  
http://icampus.mit.edu/iLabs/Architecture/downloads/protectedfiles/Microelectronics%20
WebLab%20Lab%20Server%20Description.doc 
 
D. Service Broker Experiment Storage API (Release 6.0) 
http://icampus.mit.edu/iLabs/Architecture/downloads/protectedfiles/Service%20Broker%
20Experiment%20Storage%20API%206.0.doc 
 
E. Gikandi’s Thesis: ELVIS Version 1 (Available upon request)   
 
F. Bryant’s Thesis: ELVIS Version 2 (Available upon request)   
 
G. Adnaan’s Thesis: ELVIS Version 3  (Available upon request: adnaan@mit.edu)   
 
 
 
 


