DEVELOPER’S MANUAL

EXTENDING FUCNTIONALITIES OF THE ELVIS iLLABS
ARCHITECHTURE

Author: Adnaan Jiwaji

adnaan@mit.edu

TABLE OF CONTENTS

1. INTRODUCTION

... 3
2. DESIGN OVERVIEW
LABSERVER LABVIEW........oiiii i 5
LABSERVER VISUAL BASIC ..o e 7
LASERVER DATABASE......oo i, 11
CLIENT e 12
3. DEVELOPMENT PROCESS
LABSERVER LABVIEW.......cuiiii e 21
L ENT L e e e 29
LABSERVER VISUAL BASIC......ooiiiiii e 34
LABSERVER WEBSITE AND DATABASE.......cocoii e 39
4. XML FILES ... e e e 41
5. REFENRENCES. ... 44

1. INTRODUCTION

The ELVIS Figure 1) is an electronic workbench that is used to deargph test circuits.
It offers a variety of features that can be usedcfocuit analysis and debugging. This
includes: Oscilloscope, Digital Multimeter (DMM)uRction Generator, Variable Power
Supply, Bode Analyzer, Arbitrary Waveform Generat@rynamic Signal Analyzer

(DSA), and Microelectronics Device Characterizatwapability

Figure 1: The ELVIS Workbench

The iLabs architecture (Figure 2) consists of a&Mlithat a student uses to specify the
experiment they want to run. The student's expeminspecification is then passed
through the Service Broker to the Lab Server thatdnnected to the ELVIS platform.
The ELVIS will have the actual circuit built on theeadboard and the user’'s experiment

will be run on the circuit and sampled output datidbe returned to the user.

Campus,
= network = B . ———————— Internet *

: Lab S
Client Service Broker absetver

Figure 2: The iLabs architecture

To enable a larger variety of experiments to be sunthe ELVIS, the next step is to
extend the functionalities available on the ELViSthe end user. The ELVIS platform

offers quite a few capabilities that are still Baposed to the user. These include:

» Digital Multimeter

* Dynamic Signal Analyzer
» Digital Reader

» Digital Writer

* Impedance Analyzer

This approach is possible because National Instnisr@ovides access to the lower level
source code to control various functionalities be ELVIS. They also expose higher
level APIs, called Express Virtual Instruments (VIsvhich can be easily used by
inputting various values into the already programinmgerface. To expose each new
functionality, the steps to be taken are simildra@ges need to be made to the following
areas:

1) The Java User Client has to be programmed te treesUI for the new functionality.

2) The Experiment Engine in the Lab Server tharprets the Ul actions on the client to
the ELVIS hardware must be modified.

3) The SQL Database Server must be changed todr&doedata generated by the new
functionality.

4) The LabVIEW VI that controls the ELVIS hardwareeds to be updated with the

appropriate VI for the additional functionality.

This allows a modular approach to making changgbhdaurrent iLab architecture. The
various steps mentioned above can be executedeatetitseparately. This also allows
use of various technologies for the different stéfi®e software that interacts directly
with the hardware set up on the ELVIS is the LabWiEgraphical programming
language. This is what the Express VI for the uasi&LVIS modules are written in. The
Experiment Engine and the Lab Server are writteNHBT. This is typical of web service
architectures as shown in Figure 1. The systemistsnaf a client, a service broker and a
service provider (lab server). The client Ul tHa user employs to run an experiment is
written in Java to allow for cross platform useeTdrchitecture also uses a SQL database

to validate user inputs and for record keeping.

2. DESIGN OVERVIEW

In this sections | will describe the structure darivus parts of the iLabs software
architecture. This is mainly focused towards givinfprmation relevant to developers
wishing to develop on the iLabs ELVIS architectukéer the overview in this section, |

will describe how to develop each components innéet section. For reference to the

various XML files mentions see Section 4 on XMle§l

LABSERVER LABVIEW

National Instruments provides the LabView softwéoe accessing drivers that can be
used to control the various hardware features enBhVIS. LabView is a graphical
programming language. You can get more informatapout the language at
www.ni.com The ELVIS iLab code is arranged in the followimgpdule structures that

are described on the next page.

OpAmplnverter.vi

FGEN.vi

v \ v

RunFGEN.vi arb.vi Bode.vi

Figure 3: The LabView VI hierarchy

OpAmplnverter.vi
This is main entry point into the Labview code. g1 the class called from the compiled
DLL from the VB code in the Labserver [Class:PIngdkh OpAmplinverter.vb]. This is

just a module that passes user parameters to texlyimg FGEN vi.

FGEN.vi

This is the vi that calls the various other hard@atures. It calls the function generator
and DAQ card (RunFGEN.vi), arbitrary waveform gexter (arb.vi) and the bode

analyzer (Bode.vi). Only one of the RunFGEN.vi &ate.vi are run because the bode
analyzer uses the function generator to output siaees of different frequencies to

measure the frequency response of the circuit.

RunFGEN.vi
Runs the Function generator to produce the wavefequested by the user and the DAQ

card to sample the required analog wave channels.

arb.vi

Runs the arbitrary waveform generator. This gemsréihe required waveform on the
DACO and DAC1 pins of the ELVIS. The waveform cam & predefined wave like a

Square, Triangular, Sine, or Sawtooth wave. Theufeaalso allows other flexible ways

of defining a waveform either by a formula or byputting a file that has the data values

for the waveform.

Bode.vi
Runs the Bode Analyzer feature of the ELVIS. Thiges in the start and stop frequencies

from the user and runs the function generator harewo sweep the sine waves.

Both the Bode.vi and arb.vi files use Express Vit fare provided in LabView to run the
different ELVIS functionalities. More details abaoinis will follow in the development
section of the manual.

LABSERVER VISUAL BASIC

@ Solution ‘LabServer' (3 projects)

+ dllcest
= experiment_engine
+- [i5] References
F8] AssemblyInfo.vb
2] Madulet . vb

ILab
A LabServer

¥
= Ophrplrverter
+- [i5] References
F8] AssemblyInfo.vb
E CpampInverter, vh
- yalidation_engine
+- [i3] References
2] assemblyInfo.vh
I®] validationEngine. vb
WeblabCuskomDataTvpes
WeblabDataManagers

Figure 4: Class structure for the Lab Server VB coé

The figure above shows the class structure of Hieserver visual basic code. The main

projects are thexperiment_engine, OpAmplnverter andvalidation_engine.

experiment_engine

The execution engine runs in the background attiales while the Lab Server is
operational. At a given interval, the executiomiae checks the experiment execution
gueue for new jobs. If one is available, the eXeauengine de-queues the job The main

class file in the experiment engine is the ModuwlbTile.
This file has a Min() subroutine that does the following:

1) De-queues submitted jobs from the SQL server. iBhiwne at the following line:
strDBQuery = "SELECT dbo.gm_CheckQueue();"

2) Once the job is de-queued the method call
ParseExperimentSpec(strExpSpec)is made to parse the Experiment

Specification nore details in the XML section) received from the client.

The ParseExperimentSpec method parses the expésmecification (an XML file that
contains the experiment parameters chosen by #r¢ 0$he method stores the values for
different instrument parameter in a table calleglftihctinfoTable . For example the
code below extracts the frequency value specifeedttie function generator waveform
and stores it in the table:

‘load frequency value

tempXPath = "/terminal/function/frequency"

tempNode = xmITemp.SelectSingleNode(tempXPath)
functinfoTable(instrumentConstant, FUNCT_FREQUENCY) =
Trim(tempNode.lnnerXmi())

Figure 5: Experiment Specification Parser.
Note instrumentConstant and FUNCT_FREQUENCwre integer constants.

3) Once all the parameters values are extracteditBeperiment() method is
called.

This method calls theunExperiment() method in thanverter class defined in the
OpAmplnverter project with the parameters values stored inftietinfoTable table.
The RunExperiment() method in thenverter class calls the compiled LabView
DLL with the specified parameters. The DLL rung texperiment on the ELVIS
hardware. Once the experiment is run it returnsnftbe inverter ~ class back to the
runExperiment() method in the experiment engine with an arrayatador graphs that
will be displayed to the user. The data pointstaem put into an XML file called the
“Experiment Results” and sent back to the client desplay to the user. Finally the
execution engine triggers a notification (via tdetify() method) to the ServiceBroker
saying the data is ready.

OpAmplnverter

The main class file in this project is t@pAmplnverter.vb file that defines thewerter
class. The&RunExperiment() method in this class is called from the experinergine.
This method calls theinExperiment() method in the PInvoke class that imports the

LabView DLL with the parameters passed from theegixpent engine. The DLL returns

an interleaved array of the output data back freenltabView code. This array is
deinterleaved in theRunExperiment() method of the Inverter class, which returns this

data back to theinExperiment() method of the experiment engine.

validation_engine

This is the first thing that is called before thub jis queued for execution. It checks
whether the inputs specified by the user meetspleeification set by the designer of the
experiment when setting up the assignment. It wotke same way as the
ParseExperimentSpec() method in the execution engine to extract the emymart

parameters and checks these values against thes\gthured in the database.

WebLab Custom Data Types

The most abstract component of the Web Server | #yisrmodule is composed of a
single class which defines a number of custom ggies. These types are constructed in
order to accommodate certain methods which retolteations of data rather than
singleton values. Use of these types is limitethterfaces between internal software
components within the Web Server Layer.

WebLab Data Managers

The WebLab Data Managers component serves asithargrinterface between the Data
Persistence Layer of the Lab Server. On the Webe$side, the data managers contain
methods defining certain well known interactionshwhe Data Persistence (Database)

Layer and are referenced by the other componeiisnvthe web server process space.

CLIENT 1)The client sends the “execute”

A SOAP request to the

@ @ ServiceBroker with the
“Experiment Specification”

XML file.

SERVICE BROKER 2)A Web service call is made to

@ the appropriate Lab Server and

the experiment specification is
stored in the Lab Server

LAB SERVER @

Database.

3)The experiment engine in its
Main() method de-queues the
experiment in a FIFO manner
and fetches the stored
experiment specification.

4)The experiment specification ig
passed on to the
ParseExperimentSpec() methdd
in the execution engine where
the XML file is parsed and
parameters stored in a table.

5)The runExperiment() method is
called. It extracts the
parameters from the table
stored during parsing.

6)The RunExperiment() method
in the Inverter class is called
using the parameters extracteq
this in turn calls the
runExperiment() method in the

______ e B PlInvoke class with the same

@ @ parameters.

—————— e Rt e hmintalel el 7)The PInvoke class imports thg

i compiled LabView DLL and

! runs the DLL with the

' parameters when called. The

LabServer
Database

©

execution _engine
(Modulel.vb)

ParseExerimenSpec(

runExperiment(

OpAmpl nverter

(OpAmpl nverter.vb) RunExperiment(in class Inverte

A

\ 4
runExperiment(in class PInvok

entry point into the LabView
code is the OpAmplnverter VI.
(I S Y. S —— This runs the experiment on th

ELVIS platform.
@ 8)The LabView DLL finishes
execution and returns and arrg
i of output data to the Inverter
i class.
: 9)The Inverter class de-
! interleaves the output array an
' returns a 2D array of results to
| the experiment engine.
i 10) The experiment engine formg
1
1
1
1

ww

<<

LabView DLL

OpAmplnverter.vi

=

FGEN.vi

the “Exp Results” XML file
and stores it in the database ahd
sends a notification to the
Service Broker.

11) & 12) The Service Broker
fetches the Exp Result file fronf
DB and forwards it to the
client.

v ‘ v

RunFGEN.vi arb.vi Bode.vi

Figure 6: The execution cycle showing details of élab server

10

LAB SERVER DATABASE

The lab server database has three main tablegdhathould be aware of:
1) Setups: Stores information about each setup includingntlmber of terminals used.
The stored procedursddSetup adds a setup to the list of setups available inabheserver.

2) SetupTerminalConfig: Stores information about the terminals preseutlithe setups.

This information include x,y pixel location, termaintype and constraint placed on
the terminal.

The stored procedursddSetupTerminal adds a terminal to a setup available in the labeser
3) ActiveSetups: Stores information on what setups are active.
The stored procedurgetActiveSetup sets a setup as active.

All these procedure are called by the ASP codé®idb server website.

/2 MIT NI-ELYIS Weblab - Windows Internet Explorer

O - e nmiiecsopatserey

DICIES »
e & des Tooshelo

od) B sewen[H 0| Hvor

Goog Voo B+ fr sookmase P, B 22ticcked | heck A Atk v [sendtor 5 3 ecampus (@ tous @ sengs~
% MITNLELVIS Weblab ¢ |[CliGoegle | -85 & Page - (G Tooks -

.

% | 1f you can't come o the lab
+) ...Ihe lab will come fo you |

Creste New Sefup) Return fo Main.
Name Description e Terminals Used Date Modified
attest Fob 11,2008 17:08
fomest 1 Fab 14, 2008 21:40
attest 4 Feb27, 2008 1555
s Feb 27,2008 1640
atestwt] aa Feb 27,2008 2057
Adder Op amp Adder View Image Mar 1, 2008 16:06
atest s Mar 1, 2008 16:09
- Mar3, 2008 2225
HPE. HPF Mar 21,2008 19:55
StegTest test Mar21, 2008 1406
bpf b Mar 24,2008 18:31
] Agr1, 208 2118

HEE

®2002m1

it focaostabserverfadninexperinent:-setups aspx 3 @ neernet Hioow -

Figure 7: LabServer website to access the above faees.

11

CLIENT (JAVA)

r
il

R EEEEE

FEEEEEEEEEEEEED

=

= - weblab.client

ARE.java

AREFunckion. java

BODE. java

EODEFunctian. java
COMSFunction. java
ConfirmationRequest. java
Defaultvisitor, java
ExperimentResult. java
Experiment3pecification. java
Experiment SpecificationYisitor java
FGEN.java

Instrument.java
InvalidExperimentF.esultException. java
InvalidExperimentSpecificationException, java
InvalidLabConfigurationException. java
LabConfiguration.java
Parse'waveFile.java
SAMPLIMNGFunction.java
SCOPE.java

Setup.java

SaurceFunction. java
Temperature, java

Terminal. java
UserDefinedFunction. java
WAR1Function. java
WAR1PFunction.java
WARZFunction. java

Visikor . java
WAVEFORMFUnchion. java
Weblabfxis, java
weblabClient. java

eblab.client.graphicalll

AREBDialog. java
ARBLabel java
AxisPanel.java
BODEDialogz. java
BODELabel java
C3WFileFilter . java
CanfigurationDialag, java
FGEMDialog. java
FGEMLabel java
Graphicaltpplet.java
GraphicaltppletDEBG. java
InstrumentLabel. java
MainFrame. java
MulkiLine ToolTipUT. java
ResultsPanel, java

F:_l

F:_l

F:_l

EEEEE

SCOPEDialog. java
SCOPELabel java
SchematicPanel, java
UserDefinedFunctionsDialog, java
wWeblabToolbarButton. java

| wehlab.client. serverInterface
|§| SBServer.java

|§| Server.java

|§| ServerExceplion.java
|§| StubServer . java
wehlab, graphing

-8

=
|

=|
=

B E

o E

Axis.java
ConneckPattern.java
Graph.java

arid. java

- weblab,util

Basetd.java
ZhangeTrackingCbservable.java
ConvenientDialog. java
EngMath.java

EngUnits.java

Engialue.java
EngvalueField. java

weblab, xml

Element. java

Invalid=MLE xception, java
Parser.java
SOAPFauUlkException. java
SOAPRequest.java

Figure 8: The Client Java code class files

12

One thing that you should be aware of when undaugtg the client code is the Visitor
design pattern. This pattern is used over and again throughout the code. Here is an

excerpt and diagram from Wikipedia:

“In essence, the visitor allows one to add new virtu al functions to a
family of classes without modifying the classes the mselves; instead,
one creates a visitor class that implements all of the appropriate
specializations of the virtual function. The visito r takes the instance
reference as input, and implements the goal through double dispatch.
The idea is to use a structure of element classes, each of which has an
accept() method that takes a visitor object as an a rgument. Visitor is
an interface that has a visit() method for each ele ment class. The
accept() method of an element class calls back the visit() method for

its class. Separate concrete visitor classes can th en be written that

perform some particular operations.

One of these visit() methods of a concrete visitor can be thought of as
methods not of a single class, but rather methods o f a pair of classes:
the concrete visitor and the particular element cla ss.”

“Zinterfacer>

Clignt WVigitor

—Avisi{ConcreteElemeant | Object)

iy

1
I
|
| <ziealizer:
|
|
1

ConoreteVisitor

Elemeant

wisiffConcreteElement : Objecty

acceptVisitor : Objech

I

ConoreteElement

acceptVisitor ; Objec

pasg

Figure 9: UML of the Visitor Design Pattern

13

The main flow of information in the Client is as fdlows:
(italics represent Java class names)

A) When opened the client is initiated through @rmphical Applet class and a Service
Broker server $BServer) is associated with the applet. When this happtes
loadLabConfiguration() method M/ebLabClient is called. This method fetches the Lab
Configuration XML File (see Section 4) from the Iledrver through the specified Service
Broker through the getLabConfiguration() SOAP aallhe SBServer class.

B) The Lab Configuration is then parsed by thesedMLLabConfiguration() method in

the LabConfiguration class.

From parsing the Lab Configuration a list Tdrminals are created. Alerminal has an
instrumentType (for examplénstrument. FGEN_TYPE orlnstrument. SCOPE_TYPE)
and an instrumentNumber, a label, an xPixelLocatod yPixelLocation to identify

where the terminal is located in the setup image.

From the list of Terminals &etup is created which represents the current experiment
Setup has a setuplD, a name, a description, aneldRRg, and an ordered list of

Terminals that are present in the experiment.

C) Once the Lab Configuration has been parsed, SHep is stored in the
ExperimentSpecification theSetup field and thelnstruments (FGEN, ARB, SCOPE,

BODE) are created from thBerminal information and stored in thestruments vector

in the same class.

D) Then theMainFrame draws the main client elements including the mgtand the
menu bars.

F) TheMainFrame then calls thé&chematicPanel and theResultsPanel.

14

G) TheResultsPanel class draws the axes for plotting later.

H) The SchematicPanel uses setup stored in thetheSetup in the
ExperimentSpecification to draw the image of the experiment and the cooeding

InstrumentLabel for the instruments in the setups.

I) The experiment is ready to be run. When the abeks on any of the instrument labels
the instrument dialog box appears. Each instrurhagtits own dialog box that users can
use to specify parameters of the instruments. kamele frequency, amplitude etc for
the FGEN instrument.

Each Instrument has a SourceFunction associated with it. ThisSourceFunction
(WAVEFORMFunction in the case oFGEN)is changed when the user specifies values
in the dialog boxKRGENDialog for the case dFGEN).

£ Untitled - MIT NI-ELVIS Weblab.

Configuration Measurement Setups Resuls Help -
[Opamp Differentiator E% .
) Buttons in
) MainFrame
FGENLabel <+—{——SchematicPanel
—> FGEN
(InstrumentLabel for FGEN)
Temperature: unkn
s B : ‘ Scale .
T w-2——ResultPanel
Tracking
| v v Fau
Java Applet \Window

Figure 10: Different parts of the Java Client

15

J) When the user click on the ‘Run’ button, the &xment Specification XML document
is created by th&xperimentSpecification class. This Experiment Specification is sent to
the lab server via the execute SOAP cafiBServer.

The job is now submitted to the lab server ancetrents inFigure 6 take place.

K) When the job finishes executing the RetrieveReSOAP request is used to get the
Experiment Result XML file from the lab server.

L) The parseXMLExperimentResult method ExperimentResult is used to parse the

Experiment Result XML file.
M) The data is displayed using tAa&is, ConnectPattern, Graph andGrid classes in the

graphing package.

The best way to visualize the Client code structare look at the UML diagrams for
different parts of the code. | have included UMlagliams starting on the next page.

Please read the captions for the diagrams to utaghersvhat is represented.

16

FGEN

Attributes
private int number
private String viame
private boolean vDownload

Instrument

Attributes
public int FGEMN TYPE = 1

public int SCOPE TYPE =2

public int ARBO TYPE =13

public int ARB1 TYPE =4

public int BODE TYPE=5

ARB

Attributes
private int number

private String vName
private boolean vDownload
public int channel

SCOPE

Attributes
private int number

private String viame
private boolean vDownload

BODE

Attributes
private int number

private String vName
private boolean vDownload

Figure 11: Each feature on the ELVIS is an Instrumat. All features inherit from the Instruments

class.

SourceFunction

public int CONS_TYPE =1

public int 'YAR1_TYPE =2
public int VARZ _TYPE=3
public int WARTP_TYPE = 4
public int VWAVEFORM _TYPE = 5
public int SAMPLING _TYPE = &
public int ARB_TYPE =7

| public int BODE_TYPE = 8

Attributes

ARBFunction

Attributes
public String WAVE_FILE

public String waveformType
public BigDecimal freguency
public BigDecimal amplituce
public BigDecimal offset
public BigDecimal phase
public BigDecimal dutycycle
public String formula

Public double ct

public String wavefievalus

package String yvalues(d.*] = new LinkedList<String=()
package String xvalues[0. *] = new LinkedList=String=()

SAMPLINGFunction

Attributes
private BigDecimal rate

private BigDecimal time

q T 3

WAVEFORMFunction

Attributes
public int SINE_VWAVE =1
public int SQUARE WAWE = 2

public int TRIANGULAR_VWAWE = 3
private BigDecimal frequency

private BigDecimal amplituce

BODEFunction

Attributes
public BigDecimal Start
public BigDecimal Stop
public BigDecimal Step

Figure 12: Associated with each instrument is a fustion. Functions for each instrument are sub
classes of the SourceFunction class.

17

SourceFunction

A
public int CONS E=1

public int 'WAR1 TYPE=2

public int 'WARZ TYPE=3

public int 'WARTP TYPE=4
public int VWAVEFORM TYPE= 5
public int SAWPLING TYPE=8
public int AR TYPE=7

public int BODE TYPE=8

Operatons
public int getType()
pimlic void accept| Visitor v)

public void set'WMame(String name)

public boolean getDownload{)

public void set'vDownload{ boolean download)
public SourceFunction getFunction()

public void setFunction{ Source Function function
public boolean matches({ FGEN i)

Oy aticrs Rescklivesd Fro instrurant
public int - getNumben J

public int getTypel }
public boolean isConfigured{)
public void accepti \Wisitor v)

function

FGEN

o WAVEFORMFunction
private int number Al e
private String wName public int SINE WAVE= 1
private boolean v Download public int SOUARE WAVE=2

public int TRIANGULAR WAWVE = 3

Operatons . i i
public FGEN(int number) private BigDecimal frequency
public void resst() private BigDecimal amplitude
public String get'WMame() g

public W.AWEF ORMFunction{ J

public WAVEF ORMFunction{ int waveformType, BigDecimal frequency, BigDecimal amplitude, BigDecimal offset)
public int getWaveformType()

public BigDecimal getFrequency()

public BigDecimal getAmplitudel)

public BigDecimal getOffset{)

public boolean equals{ Object abj §

Operabians Redsfned Froem SaurcaFunclion
public int getType()

public void accept(\isitor v)

Figure 13: This diagram uses the FGEN(Function Gemator) Instrument to show the each
instrument type has a SourceFunction associated witt. In the case of the FGEN it is the

WAVEFORMFunction.

InstrumentLabel

Attributes
protected Frame theMainFrame

protected JLabel imagelLabel
package int HEIGHT = 100
package int WIDTH = 50
package int NUM_SIGFIGS = 4

FGENLabel

ARBLabel

SCOPELabel BODELabel

Figure 14: For display purposes each instrument atshas a label associated with it. The label has the
icon and the name of the instrument that will be diplayed to the user.

18

.:rr;strur?e?}t InstrumentLabel
ram clien
Attributes
e Fézgﬁufl?‘f’F'E i rmylnstrument protected Frame theMainFrame
publfc fnt SCOPE TYF'I;— 9 = —a| protected JLabel imagelabel
EEM:E ::I e PApkagiint AEIGHT =10k
T = package int WIDTH =50
2EE::E ::I ggi:z TI'\Y‘;’T:'IIEE;}; package int NUM_SIGFIGS = 4
[
|
[
FGEN

{ From client }

Attributes
private int number

|
private String viMame

|
private boolean vDownload

_ myFGEN [
A i

myF GEM

|
FGENDialog |

Aftributes . o I
package JComboBox waveformType FGENLabel
package JPanel functionPanel A | Aributes
package CardLayout functionPanelCardLayout : :
private Action OK = new AbstractAction{"OK") ryF GENDialog
private Action APPLY = new AbstractAction("Apply")

private Action CANCEL = new AbstractAction("Cancel")

Figure 15: A diagram that uses the FGEN as an exangto show that each instrument has a Dialog
box associated with it (FGENDialog). The Dialog bois the user interface that is used to specify
parameters of the instrument.

19

Experi n??m S?Eclfl astior ChangeTrackingObservable ot :
o e I Feoin il } Lab Corfiguration ExperimentResuit
2l { Server e | From ciient |
{ Frim caiveviiertice)) Ffem chent) f
b [

M, i 7 !

“ \ | "

% \

™ | theResult
. theExpSpec 4 b
* " / Weblablxis
i A | theS A | Froen it]
|I5|:|9Unlt5 N \ | ESENEL AheResult
| Frarm us) N \ / -
\ * thelabConf >
S~ 5T T ! ; haWsblabClisnt
TR\ [telebiacten
\ ! i -
- :
- - w2 Aoz
o o o ool o P
WOLTAGE UNITS ™= //
FREQUENLY_UNITS g WeblabClient P

{ From cien |

Figure 16: The WebLabClient is the central class dthe client. It has a Service Broker server (Server
class) associated with it. It also has the LabComfuration, ExperimentSpecification and
ExperimentResult class that define the 3 XML filesused. Also has the WebLabAxis fields for

plotting.

The best way to understand how to develop the tcigeto look at the next section as |
walk through the changes | made to the client tdeustand in more detail the various

classes represented in the UML diagrams and datagbove.

20

3. DEVELOPMENT GUIDE

I will walk through all the development steps thatent through in adding the Bode
Analyzer (Bode) and the Arbitrary Waveform Genergitrb) features in each of the
software layers. | think this is the best way obwmg the development process.
Following similar steps will help you as you add mndeatures. | have described the

parts in the order that | feel is the best sequéméellow in the development.

LABSERVER LABVIEW

The best place to start in the development proses#th the LabView part of lab server
because this directly interacts with the hardwanel & the easiest place to start
debugging the hardware to make sure everything svofrke best way to add a new
feature is to start by creating a new VI for itehfhyou can think about where to place the
your newly created VI in the current framework olsVMost of the features on the
ELVIS have an associated Express VI, and this iglls the best and easiest way to

interact with the hardware.

1) MAKING THE VI FOR THE NEW FUNCTIONALITIES

For the arbitrary waveform generator (arb.vi) wented to add additional input
capabilities to the ELVIS architecture. The ELVI®yides the DACO and DAC1 pins
for the generating two independent arbitrary wasefo The capabilities that were
supported were for generating arbitrary waveforrasaw

1) Square wave

2) Sine wave

3) Sawtooth wave

4) Triangular wave

5) Generating a wave from a formula

6) Generating a wave from a file data file

21

For generating the Square, Sine, Sawtooth and Julanwaveforms LabView provides
Vis that given the wave parameters it simulates waweforms, and samples them
according to the desired sampling rate. The pammmabclude: Frequency, Amplitude,
Phase and Offset. An additional parameter for teag wave is the duty cycle. There is
also an input for the sampling rate and numberai@es to be takes from the simulated

wave. The variables for the parameters need todsead in the VI.
k

b (P2 ez ‘s

a["Sine", Default vpIET

aveForm Type

g ir

10000

100000

Figure 17: Part of the arb vi showing the sine waveimulator and the input parameters it takes.

For the generating the waveform from a formulaeheralso a VI that accepts a formula

in MatLab syntax and parses the formula to genéhatelesired waveform.

22

M "FORMULA" = H—‘

aveForm Tvpe

ﬁ,E Formula

labz

b

Figure 18: The formula generator VI

For the generating the waveform from file LabViemydes the “Build Waveform” VI

that takes an array of y values and dt and gersesateave from it.

(d
i
[FILE" ~pIF _
; a
Arbitrary
P waveform
i I.ﬁ.23|> EH [Generatar
T . b DA 0 Enable
file waveform DAC 1 Enable
[Ez= DAC 0 Signal In
I:[> DaC 1 Signal In
: Device Mame
Bocomaa=y Brrar in
error out M
rin rror ouk
|- = o
= =
aveform Graph
=

Figure 19:Generating a waveform from an array of yalues

All the above options are put into a case statertiettuses a string as a selector for

which option to use.

23

For the Bode Analyzer VI (Bode.vi) it was a simpiask to make the VI because the
Express VI (shown irigure 4) only requires three parameters: the start freqyestop

frequency and the steps per decade.

2) EXPOSING THE TERMINALS FOR THE VI

After making the VI the next step is to expose tigreninals that will be the inputs and

output for the VI. To do this you go to the frorenel of the VI. Then click on the icon in

the top left on the window and choose ‘Show Cororéct

] Click
here

Lime2 -

00:00:00,000 PM
MMIDD e

Figure 20: Front panel of the VI

Then you can click on an empty terminal and asdign variable by clicking on the
variable. The colored terminals are assigned talmimnd the white ones are free

terminals. If you need to add more terminals you cght click and choose ‘Add

i

Figure 21: Connector diagram

Terminal’

24

3) PLACING THE VI IN THE CURRENT FRAMEWORK

The next step is to add the created VI in the cuirs# framework. This will depend on
how you want the functionalities to be run andhdre are any resource conflicts. | placed
the ARB VI (arb.vi) in the FGEN.vi file to be rumia new thread. In this way the
FGEN.vi file calls both the RUNFGEN.vi file to ruhe function generator and the arb.vi
file to run the arbitrary waveform generator. Thiay the function generator and the
arbitrary waveform generator can be run simultasou

For the Bode Analyzer VI (Bode.vi) | placed the Mla case statement so that only one

of RUNFGEN.vi or Bode.vi is run as they both use finction generator hardware.

ARE Doubles ARE Strings
5[E labe
[0

arb_parser.vi

arb.vi

Figure 22: The ARB VI placed in FGEN

25

[Bo0E" ™

Bode.v

GEN

EEEfE
El

Figure 23: Bode Analyzer VI placed in a case stateamt

| also added a parser for each functionality asetin® limited number of terminals that
can be exposed to the lab server. This way for a@stlument | only pass one string from

the lab server which can be parsed to get the medjpiarameters for running the VI.

4) EXPOSING THE TERMINALS TO OPAMPINVERTER.VI

The next step is to make the variables for the Wésnin the FGEN file and expose the

variables in the FGEN.vi and OpAmplnverter.vi file.
5) ADDING A SAMPLING PORT
If you need to capture an additional waveform yan double click on the DAQ assistant

VI in RUNFGEN and add an extra analog channel topta. You will also need to

change the interleaved array connected to the Dgsi3t@nt.

26

6) COMPILIING THE DLL

Once the new terminals have been exposed in ther@p#verter.vi which is the entry
point file you can compile it into a DLL. In LabMAeversion 8.2, the best way to do this
is to add or your VI files to a project. Then yanaight click on ‘Build Specifications’
and choose ‘New->DLL’. Add OpAmplnverter.vi intoghExported VI' and name sure

the variables are in the same order as called fnentab serverHigure 25).

7) PLACING THE DLL IN THE LABSERVER

The final step is to place the compiled DLL in theation specified at the lab server in

the OpAmplnverter.vb file in the Plvoke class.

¥ Project Explorer - elvis. lvproj E@E|

File Edit View Project Operste Tools MWindow Help

EEEIE IEE =R R
= Ikglr Project: elvis.lvproj
= B My Computer
- [l OpAmpIrverter.vi
s, Decimator.vi
. [, CloseFGEN, vi
s, NIELVIS - Initialize Wrap.vi
. [mgl, NI ELVIS - Clase Wrap.vi
s, InitializeELYIS.vi
. [, RURFGEN.vi
s, InitializeFGEN, vi
. [, ClaseELYIS.vi
|, Faen.wvi
. [l arbovi
|, arb_parser.vi
... wl, Bode.vi
|, bode_parser.vi
.|l Digital.vi
gg Digital_parser.vi

Figure 24: LabView project

27

| Categor
Shared Library Infarmation

| | Destinations

Source File Settings
Advanced

Additional Exclusions
i Run-Time Languages
Preview

Project Files

1= 8 My Computer

|| Decimator.vi

efine ¥I Prototype

Function Name

mplnverter.y

‘OpAmpl‘nverter

returm v
FrequencyHz
Peakamplitudey
DCOFfsety
WaveformType
SamplingRate
samplingTime
ARBSErings
ARBDoubles

() Standard Calling Corveentions
(¢ calling Conventions

Parameters

Funiction Protobype:

Current Parameter
Marme raturn valoe

Param Twpe Oukput " b
- 2

rototype. ..

|

T Output ({none) eV

woid OpAmpInverter(double FrequencyHz, double PeakAmpltudeY, double DCOFFsety, unsigned short |
MaveformType, double SamplingRate, double samplingTime, char ARBStrings[], char ARBDoubles[],
char wavell], char wave2[, char BodeDoublesl], char FGENT, double QutoutWaveFarml], lona len,

¥|

[ok | [cancel | [Heb | 3

| Buld [OF J [Cancel T Help

Figure 25: Compiling the DLL

Debugging:Use the “Display Msg” Express VI to put print ofds testing

"]

Display Message

to User
d Enable
g Message
QK O
)

Figure 26: "Display Msg" Express VI

28

CLIENT

For all the steps below you can look at existirgssés to give you a better idea of what
to change. | used the NetBeans IDE for developmBmisetup it up copy the ‘weblab’
and the ‘img’ folder of the client into the ‘srcolfler of a newly created NetBeans

project.

1) The first step in adding a new functionality is atreg an instrument for the
feature. For the Arbitrary Waveform generator (ARBHd Bode Analyser
(BODE) feature a new class was created that extdre$nstrument class. You
also need to add an instrument identifier numbehe Instrument class for the
new instrument. You can look at the ARB or FGEN fibr examples. Following
the same pattern will work.

public class ARB extends Instrument |
priwvate int number;
private String vlame!
private boolean wDhownload;
private SourceFunction function:
public int channel;

1 public ARB(int number, int channel) {
thisz.channe l=channel;
this.nunber = nunber:

thiz.vHName = """
thisg.function = new AREFunction():

thiz.reset ()
*

Figure 27: The ARB instrument

2) Then make the function for your instrument by eslteg the SourceFunction
class. The function for your instrument storesittiermation parameters for your
instrument. In my case the ARBFunction is the figrcfor the ARB instrument
and stores information like the waveform type deleécby the user and the
parameters like frequency, amplitude, phase etcaged with the waveform. If
the user wants to plot a formula it also storeswhge function. Finally to use a
file for generating a wave, there is a parser plaases the file loaded and extracts
the dt value and the associated y values thattaredsin thewavefilevalue
field. The BODEFunction similarly has the fields ®&iore the start, stop

29

frequencies and the steps per decade to be usedefdrode analysis. You also
need to add a function identifier number in the r8eBunction class for the

function.

public class ARBFunction extends SourceFunctiond

public String WAVE FILE:

public String waveformType:
public Biglhecimal freguency;:
public Biglecimal =smplitude;
public Biglecimal offset;
public BigDecimal phase;
public Bighecimal dutyoyole:
public String formuls;
public double dt;

public String wavefilevalue:

public ARBFunction (]
this ("SINE", BigDecimal.ralue0f(0), Biglecimal.wralue0f(0) ,Biglecimal.ralue0f(0), Bighecimal.walue=0fi0),
i

Figure 28: The ARBFunction
3) After that next step is to make the instrument lldbethe feature. This extends

from thelnstrumentLabel class. This class has a chooselmageName() mdiaod t
specifies the name of the image to be used foirtsteument. You will need to
draw an image for the instrument and put the imagdkee ‘img’ folder and put the
name of the image in the method. You can alsosadakse for your instrument in

the updateToolTip() method in the InstrumentLalb@$s to show a tool tip.

public class ARBLabel extends InstrumentLabel {

private ARE myiRE;
private final AREDislog wmyiRBDizlog:

public ARBLabel (Frame theMainFrame, ARE myARE) {

super (theMainFrame, myARE, TLRE");

this.myiRE = myARE:

myAREDialog = new ARBDialog|theMainFrame, wyARE):

this.addMouselistener (new Mouselddapter() |
public void mouseClicked (MouseEvent e)

wyAREDialog.setVisible (true) ;
¥
I

Figure 29: ARBLabel

30

4) Next thing you need to create the dialog user faterthat will be used to modify
the instrument. This will appear when the labeltfat instrument is placed. The
best way of doing this is to look at FGENDialogssaThe user interface can be
easily made by copying the code from that classoli need to make a very
different Ul | suggest you use the swing GUI buildeNetBeans. The dialog box
will have anOK and anApply button. When these buttons are pressed you need to
handle the action by exporting the values chosenthey user to the source
function. Of course the details of this will varp bow the user input was asked
for but the basic idea is to gather all the infatioraspecified by the user and call
the constructor of the source function and asdignfiinction to your instrument.
You also need to create the ImportValuesVisitossla the same file to import
pre-existing instrument values to the dialog bos. geen inFigure 31 in the

second last line f.setFunction(...) is called.

[ARBITRARY, WAVEFORM GENERATOR 3]
ARE O}
WaveForm Type: |ETELS Please specify wave paramaters

Wave Paramsters: Formula: | oK

aAmplitudst):

Offset{n):

Wiave Data File:

Frequency(Hz):

Phass{dea):

Duty Cycle%:

Figure 30: ARBDialog

protected void exportWalues (FGEN f)
{
f.setViame ["Vin') ;
f.zecVlownload(true) ;

int wfTw¥pe = 0O:

if (wavefornType.getSelectedItem() .equals ("IINE"™)) {
wiType = WAVEFORMFunction.SINE WAVE:

telse if (waveformType.getSelectedItem() .equals ("30ULRE")) {
wiType = WAVEFORMFunction.SQUARE WAVE;

telse if {(waveforwmType.getSelectedItem().equals("TRILANGULAR™))
wiType = WAVEFORMFunction. TRTANGULARE WAVE;

telse |

throw new Error ("impossible waveformType'):

H
f.setFunction(new WAVEFORMFunction (wEType, frecquency.getValue|(].toBighecimal(), amplitude.getWValue().toBigDhe:

myFGEN. notifylhservers () ;

Figure 31: Export value function for FGEN

31

5) Add a case for the new instrument in the drawVéeidames(final Graphics g) in

the SchematicPanel class to draw instrument name.

6) To handle the parsing of the lab configuration yeed to add a case for the
instrument in the parseXMLLabConfiguration() methodhe LabConfiguration
class. This just assigns a type to the instrumethat it is recognized when the

instrument in created in the ExperimentSpecificatiass.

else if [(instrumentTypelate.edquals ("EODE™))
instrumentType=Instrument . SO0E TYPE;
H
else if(instruwmentTypelNats.equals (TAREO™) | | instrument TypelName .. equals ("ARE1™))
i
instru.melltType=D.:
if (instrument Typelame . equals ("ARBO™))
{
instrumentType=Instrument . AREY TYIE}
i
else if [instrumentTypelate.ecquals ("ARE1™))

{
instrumentType=Instrument.AREl TYIPE;

Figure 32: Adding a case for parsing the lab configration file.

7) You have to handle the creation of the Experimgm@c8ication document. To do
this you need to add the methods Wsitrument and visitnstrumentFunction to
the ExperimentSpecification class. As shown beldve t visitBODE and
visitBODEFunction methods are used to form the Expent Specification for
the bode analyzer. The same XML tags will be usepatrse the specification in
the lab server. In the visitBODEFunctioRidure 33) you can see that | extract

the start, stop frequencies and steps from the Bausionf.

32

public final woid visitBODE (ECDE £)

{

sbh.append("<terminal instrumentType=Y"BODEY" instrumentludber=Y""):
shb.appendif.getMurwbher ()] ;
sh.append "y =" ;
if (f.getVDownload(])
sh.append ("<vnamwe download=Y"trusy">"):
else

sh.append("<vname download=y"falsey">")
sh.append (f.getVlName ())
sh.append ("</vname=")

f.gecFunction() .accept (this)

sh.

append ("</cerminal=") ;

Figure 33: visitBODE in ExperimentSpecification

public final woid wvisitBODEFunction (EQODEFunction £)

sh.append ("<function type=y"EBODEY"=>"):

sh.append ("<startfrequency=") ;

sh.append(f.3tart) ;

sh.append ("</startfrequencys> ") ;

sh.append ("<stopfrequency>™) ;

sh.append (£f.3taop) ;

sh.append ("</stopfregquency>-") ;

sh.append ("<step=");

skh.append (£f.5tep) !

sh.append ("< /step>");

sh.append ("</function>") ;

Figure 34: visitBODEFunction in Experiment Specifiation

8) Finally you need to make sure the visitors far bew instrument and its functions

are defined in the Visitor and DefaultVisitor class

Debugging: Runthe Graphical AppletDEBUG file to debug the client independently.

You can then use print statements and watch vasalding an IDE like NetBeans or

Eclipse.

33

LABSERVER VISUAL BASIC

This development was done using Microsoft Visuald&t 2003. Open the

‘LabServer’ solution file to view all the projeatscluded in the lab server.

1) The first thing to modify is the way the Experim@&pgecification is parsed. This
is in the ParseExperimentSpec method in the Modulel.vb file in the
experiment_engine project. The way this method dbesparsing is by first
parsing all the instruments and placing them imldet This table is called the
terminfoTable. The table has a field for ttEERM_INSTRUMENThat specifies
the type of instrument artERM_FUNCTIONhat specifies the name of the function
associated with the instrument. Based on tmERM_INSTRUMENT an
instrumentConstant is given to the instrument to identify its type. tBes is the
first thing you have to change by adding a casgdar new instrument. You will
also need to define a new constant Fi@EN_FUNCTfor the new instrument. This
constant is used to index the table to retrieverd¢isalt later. Just give it a unique
ID at the beginning of the Modulel.vb file.

Select Case terminfoTable(loopldx, TERM_INSTRUMENT)
Case "FGEN"
instrumentConstant = FGEN_FUNCT
FGEN_record = loopldx
Case "SCOPE"
instrumentConstant = SCOPE_FUNC T
SCOPE_record = loopldx
Case "ARBO"
instrumentConstant = ARB_FUNCT
ARB_record = loopldx
Case "ARB1"
instrumentConstant = ARB2_FUNCT
ARB2_record = loopldx
Case "BODE"
instrumentConstant = BODE_FUNCT
BODE_record = loopldx

End Select

Figure 35: Adding a case for the instrument

34

2) After that the next step is to add a case for readhe function type from the
terminfoTable. This can be done in the select case shown beloadding a
case with the function name you have used. Befotedp this however you will
need to define indexing constants for the differpatameters in a function.
These indexes are used to store the parsed valoes the Experiment
Specification and store them in thectinfoTable . These values can then be
retrieved later using the same indexes. For examglee figures below the value
at functinfoTable ~ (FGEN_FUNCT, FUNCT_WAVEFORMTYPE)Ill be the type of

waveform specified by the user.

‘function information fields
Const FGEN_FUNCT As Integer =0

Const FUNCT_OFFSET As Integer =0

Const FUNCT_WAVEFORMTYPAs Integer =1
Const FUNCT_FREQUENCYAs Integer =2
Const FUNCT_AMPLITUDE As Integer =3
Const FUNCT_SAMPLINGRATEASs Integer =4
Const FUNCT_SAMPLINGTIME As Integer =5

Figure 36: Constant for FGEN for indexing the table

Select Case terminfoTable(loopldx, TERM_FUNCTION_TYPE)
Case "WAVEFORM"
'load waveformTYpe value
tempXPath = "/terminal/function /waveformType"
tempNode = xmITemp.SelectSingleNode(tempXPath)
Select Case Trim(tempNode.InnerXml())
Case "SINE"
functinfoTable(instrume ntConstant,
FUNCT_WAVEFORMTYPE) =0
Case "TRIANGULAR"
functinfoTable(instrume ntConstant,
FUNCT_WAVEFORMTYPE) = 1
Case "SQUARE"

functinfoTable(instrume ntConstant,
FUNCT_WAVEFORMTYPE) = 2
End Select
Debug.WriteLine("waveformType=" &

Trim(tempNode.InnerxXmil()))

'load frequency value
tempXPath = "/terminal/function/frequency"”
tempNode = xmITemp.SelectSingleNode(tempXPath)
functinfoTable(instrumentConstant, FUNCT_FREQUENC Y)=
Trim(tempNode.InnerXml())

Figure 37: Case statement for the FGEN function “WA/EFORM”

35

3) Once the parsing is done the next step is to @dhg runExperiment()
method. This where the parsed value stored foemifft parameters in the table
are retrieved to be passed to the LabView DLL. Yieed initialize variables for

the parameters of your new function and assign tteethe values stored in the

functinfoTable.

Dim frequency As Double = functinfoTable(FGEN_FUNCT, FUNCT_FREQUENCY)
Dim amplitude As Double = functinfoTable(FGEN_FUNCT, FUNCT_AMPLITUDE)
Dim offset As Double = functinfoTable(FGEN_FUNCT, FUNCT_OFFSET)

Dim waveformType As Double = functinfoTable(FGEN_FUNCT, FUNCT_WAVEFORMTYPE)

Figure 38: Retrieving parameter values for the FGENnstrument

4) After that make sure you pass the new variablasgaio theRunExperiment()
method of the OpAmplnverter.vb class in the correct order.

5) Change the caltinvoke.runExperiment in theRunExperiment() method to
include the new parameters.

6) Change the call to the LabView DLL from the Pinvakass to include the new
parameters and make sure they are in the sameawdpecified in compiling the
DLL (Figure 25)

Private Class PlInvoke

<Dllimport("C:\\Inetpub\wwwroot\\LabServer\\Experi mentSetups\\wrappers\\OpA
mplnverter\labview\\My DLL\\SharedLib.dll", EntryP oint:="OpAmplnverter",
CallingConvention:=CallingConvention.StdCall)> _

Public Shared Function runExperiment(ByVval Frequency As Double ,
ByVval PeakAmplitude As Double , ByVal DCOffset As Double , ByVal WaveformType
As Short , ByVal SamplingRate As Double , ByVal SamplingTime As Double , ByVal
Arb_Strings As String , ByVal Arb_Doubles As String , ByVal Arb_yvalues As
String , ByVal Arbsec_yvalues As String , ByVal BODE_Doubles As String , ByVal
fgen As String , ByRef waveform As Double , ByVal len As Long, ByRef errorOut
As TD1) As Integer

End Function)

Figure 39: Call to LabView DLL from VB

7) If you add another channel to sample you will neechodify the following code
in theRunExperiment() method to deinterleave the output array correctly.

36

Dim j, k As Integer
For j=0 Tolen-1
k=j Mod 3
If k=0 Then
vin(j / 3) = waveform(j)
Elself k=1 Then
vout((j - 1) / 3) = waveform(j)
Elself k=2 Then
arb((j - 2) / 3) = waveform(j)
End If

Figure 40: Deinterleaving the output array

8) Finally when the code returns after executing the B the runExperiment()
method of Modulel.vb, make sure you change the twayExperiment Result
XML file is created. The code below shows where tee part of the file is
createdstrResult() is an array of strings each entry being a concétanaf all

the values of a waveform.

strXMLExpResult = strXMLExpResult & "<datavector na me="TIME' units="s'>"
& strResult(0) & "</datavector>"
strXMLExpResult = strXMLExpResult & "<datavector name=""
& triggerchannel & "'units='V'>" & strResult(1) & " </datavector>"
strXMLExpResult = strXMLExpResult & "<datavector name=""
& secchannel & "units='V'>" & strResult(3) & "</da tavector>"
strXMLExpResult = strXMLExpResult & "<datavector
name="VOUT' units='V'>" & strResult(2) & "</datavec tor>"
strXMLExpResult = strXMLExpResult &
"</experimentResult>"

Figure 41: Experiment Result XML file is created

9) You will also need to change the validation engifiee validation engine also
parses the Experiment Specification in a similay \&a the experiment engine.
Hence you can make the same changes as you did experiment engine to the
parseXMLSpec() method of the validation engine. Then you havehange the
experimentValidator() method. This basically loops through each of the
function in the Specification and makes sure that parameters are within the

requirement specified by the developer of the arpent.

37

Case "FGEN"
Select Case UCase(terminfoTable(loopldx,

TERM_FUNCTION_TYPE))
Case "WAVEFORM"
'validate waveformType, frequency, amplitude
and offset values against
"values stored in the database
'FREQUENCY
If functinfoTable(FGEN_FUNCT, FUNCT_FREQUENCY)
=" Or Not IsNumeric(functinfoTable(FGEN_FUNCT, FUNCT_FREQUEN CY)) Then
Return "Error - A numeric frequency value
for FGEN must be supplied.”
Exit Function
End If

Figure 42: Validation check for FGEN

Debugging:You can start the experiment engine in debug mgd#ght clicking on the
experiment_engine project and going to Debug->Start new instancelelibug mode you

can place breakpoints and watch variables.

38

LABSERVER ASP WEBSITE AND DATABASE

Now you are done changing the code for the whalkitacture. Now you need to change
the Lab Server administration pages so that yowr fonactionality is available to be seen
by however is making the labs. This can be donenbdifying experiment-setups.aspx
page. Things that should be changed here includmgdhe new instrument to the drop
down lists of available instrument, adding consitrdields for your new instrument and
adding the new instrument and its constraints ® |#b server database that provides

permanent storage.

The code below shows where you can add new featm@sheir new constraints. Once
you put an HTML tag for it here you will need toattye the “Create Terminal” action to

incorporate the new constraints.

<t
<kh>Instrument: </ b

<asp:Drophownlist ID="ddlNewTermInstruament™ Runat="Ierwver™:
<asp:ListItem Value="FGEN":>FGEN</asp:ListItem:
<asp:ListIitem Valuse="3COPE"=3COPE</asp:ListItem:
<asp:ListIitem Valuse="AREO">AREO</asp:ListItems
<asp:ListItem Value="ARE1">AREl</asp:ListItem>
<asp:ListItem Valuse="EODE">BODE</asp:ListIltem:

<Kasp:DerD0wnLisk>

</ font:>
<ftd>
< Lrx
<LIF
<t
<hrHorizontal Location (pixels):</h>
<asp:TextBox ID="txtNewTermXLoc™ Columns="3" MaxLength="5" Runat="Server™ />
</font:>
</ td>
<>
<h:>Vertical Location (pixels):</h>
<asp: TextBox ID="txtNewTerm¥Loc" Columms="3" MNaxLength="5" Runat="3erwver" /»
</ fontx
<ftdx
<f e
<Lr>
<td>
Maximum Voltage Lwplitude (+/— V)
<azp: TextBox ID="txtNewTermMaximp" Columns="10" Maxlength="12Z" Runat="ZJerwver" />
<ffontx
<ftdx

Figure 43: LabServer administration code

When the lab creator presses “Create Terminalfdhewing database call is made:

39

strResult = rpmObject.AddSetupTerminal(Clnt(e.Comma ndArgument),
txtNewTermName.Text, CInt(txtNewTermXLoc. Text),............

This call will need to be change together with 8@L AddSetupTerminal and the
SetupTerminalConfig table to add more columns for your new constsaiifou will

also need to change the ‘Check ConstraintsetipTerminalConfig to accept your
new instrument.

40

4. XML FILES

Lab Configuration

This document is created by the lab server. It aost information about which

experiments that can be performed on the lab satveparticular time. This information
is drawn from the lab server’'s database. Infornrmationtained in this document should
be adequate for the client to display informationamy experiment that is built on the
ELVIS board. This ability will enable us recyclaerit code for different experiments.
The nature of this document captures the model wWesdt described for experiments

above.

Experiment Specification XML Document

This document is generated by the client in ordespecify the nature of the experiment
to be conducted on the lab server. For this versiaihe ELVIS weblab, this document

should contain the following information:

* The ID of the experiment which the user has sttiechi This is the same ID that was
assigned by the lab server in the Lab Configura¥it. document.

* A list of all the component profiles that are dig®y the user in this experiment. For each
component profile, the document should contairstadif all the terminals, each of which

should contain a list of other terminals that it@nected to. This cascade of information
will help recreate the circuit as it was connedigdhe user for validation.

* A list of the ELVIS instruments that are usedthg user in this experiment. For each
instrument, the document should not only containish of terminals and their

connections, but also information on how the inseat has been configured by the user.

41

Experiment Result

This document is generated by the lab server upensticcessful completion of an

experiment. The document contains entries of datd torrespond to each of the
parameters that the user wants to measure for itren gexperiment. For a simple

experiment that contains an input waveform, an wutpaveform and time values, the

document would contain an array of double valuesfxh of the three parameters. The
clients graphing APl would then use this informatto recreate these waveforms

for the user.

LAB CONFIGURATION

<?xml version="1.0" encoding="utf-8" standalone="rre
<IDOCTYPE labConfiguration SYSTEM
"http://localhost/LabServer/xml/labConfiguratiordtt
<labConfiguration lab="MIT ELVIS Weblab" specverar'0.1">
<setup id="5">
<name>OpAmp Differentiator Circuit</name>
<description>Aren't opAmpss just swell?</desaoipt

<imageURL>http://localhost/labServer/setuplmage8fapDifferentiator.gif</im
ageURL>
<terminal instrumentType="FGEN" instrumentNumbér>
<label>Input Waveform</label>
<pixelLocation>
<x>121</x>
<y>94</y>
</pixelLocation>
</terminal>
<terminal instrumentType="SCOPE" instrumentNurati2i>
<label>Oscilloscope</label>
<pixelLocation>
<x>195</x>
<y>156</y>
</pixelLocation>
</terminal>
</setup>
</labConfiguration>

42

EXPERIMENT SPECIFICATION

<?xml version="1.0" encoding="utf-8" standalone="e
<IDOCTYPE experimentSpecification SYSTEM
"http://localhost/labServer/xml/experimentSpecifica.dtd">
<experimentSpecification lab="MIT NI-ELVIS Weblakpecversion="0.1">
<setuplD>1</setuplD>
<vname download="true">VIN</vname>
<iname download="true">IIN</iname>
<mode>V</mode>
<function type="WAVEFORM">
<waveformType>SINE</waveformType>
<frequency>100</frequency>
<amplitude>0.5</amplitude>
<offset>0.1</offset>
</function>
</terminal>
<terminal instrumentType="SCOPE" instrumentNumbat=
<vhame download="true">VOUT</vhame>
<iname download="true">I0UT</iname>
<mode>V</mode>
<function type="SAMPLING">
<samplingRate>100</samplingRate>
<samplingTime>0.01</samplingTime>
</function>
</terminal>
<userDefinedFunction>
<name download="true">SQRTID</name>
<units>A</units>
<body>SQRT(VIN)</body>
</userDefinedFunction>
</experimentSpecification>

EXPERIMENT RESULTS

<?xml version="1.0" encoding="utf-8" standalone="e
<IDOCTYPE experimentResult SYSTEM
"http://localhost/labServer/xml/experimentResutt ct
<experimentResult lab="MIT NI-ELVIS Weblab" specsien="0.1">
<datavector name="VIN" units="V">1,2,3,4,5</datater>
<datavector name="VOUT" units="1">6,7,8,9,0</datator>
</experimentResult>

43

5. REFERENCES AND FURTHER READING

A . Service Broker to Lab Server API
http://icampus.mit.edu/iLabs/Architecture/downlofpdstectedfiles/Service%20Broker%
20t0%20Lab%20Server%20APIl.doc

B. Client to Service Broker API (Release 6.0)
http://icampus.mit.edu/iLabs/Architecture/downlofpdstectedfiles/Client%20t0%20Ser
vice%20Broker%20AP196206.0.doc

C. MicroElectronics WebLab Lab Server
http://icampus.mit.edu/iLabs/Architecture/downlofpdstectedfiles/Microelectronics%20
WebLab%20Lab%20Server%20Description.doc

D. Service Broker Experiment Storage API (Release 6.0)
http://icampus.mit.edu/iLabs/Architecture/downlogdstectedfiles/Service%20Broker%
20Experiment%20Storage%20AP1%206.0.doc

E. Gikandi’s Thesis: ELVIS Version 1 (Available uprequest)
F. Bryant’s Thesis: ELVIS Version 2 (Available upmyuest)

G. Adnaan’s Thesis: ELVIS Version 3 (Available npequest: adnaan@mit.edu)

44

