3.22 Problem Set 1
Problem 1
Show that if Sij are the Cartesian components of a tensor S, then Sij = S11 + S22 + S33 is a scalar invariant with respect to all orthogonal transformations. That is, S11 + S22 + S33 = S'11 + S'22 + S'33.
Panel |
---|
In mathematics, a tensor is (in an informal sense) a generalized linear 'quantity' or 'geometrical entity' that can be expressed as a multi-dimensional array relative to a choice of basis of the particular space on which it is defined. The intuition underlying the tensor concept is inherently geometrical: as an object in and of itself, a tensor is independent of any chosen frame of reference. However, in the modern treatment, tensor theory is best regarded as a topic in multilinear algebra. Engineering applications do not usually require the full, general theory, but theoretical physics now does. Specifically, a 2nd rank tensor quantifying stress in a 3-dimensional/solid object has components which can be conveniently represented as 3x3 array. The three Cartesian faces of a cube-shaped infinitesimal volume segment of the solid are each subject to some given force. The force's vector components are also three in number (being in three-space). Thus, 3x3, or 9 components are required to describe the stress at this cube-shaped infinitesimal segment (which may now be treated as a point). Within the bounds of this solid is a whole mass of varying stress quantities, each requiring 9 quantities to describe. Thus, the need for a 2nd order tensor is produced. While tensors can be represented by multi-dimensional arrays of components, the point of having a tensor theory is to explain further implications of saying that a quantity is a tensor, beyond specifying that it requires a number of indexed components. In particular, tensors behave in specific ways under coordinate transformations. The abstract theory of tensors is a branch of linear algebra, now called multilinear algebra. From Tensor |