Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Wiki Markup
{excerpt} 
The time rate of change of position. {excerpt}

||PageContents||
|{toc:style=none|indent=10px}|
----

h2. Mathematical Definition

{latex}\begin{large}\[ \vec{v} = \frac{d\vec{xr}}{dt}\]\end{large}{latex}

h2. One-Dimensional Velocity

h4. Utility of the One-Dimensional Case

As with all [vector] equations, the equations of kinematics are usually approached by separation into components.  In this fashion, the equations become three simultaneous one-dimensional equations.  Thus, the consideration of motion in one dimension with acceleration can be generalized to the three-dimensional case.

h4. Diagrammatical Representation

The one-dimensional version of the definition of velocity is:

{latex}\begin{large}\[ v = \frac{dx}{dt}\]\end{large}{latex}

The form of this definition implies that an object's velocity will equal the slope of the object's position versus time graph. Average Velocity  Some example problems that make use of this fact are:

{contentbylabel:graphical_representation,constant_velocity|operator=AND|maxResults=50|showSpace=false|excerpt=true}






h2. Relevant Models

 {children:page=Two-Dimensional Motion (General)|depth=all}

----
h2. Relevant Examples

 {contentbylabel:1d_motion}