{composition-setup}{composition-setup}
{table:border=1|frame=void|rules=cols|cellpadding=8|cellspacing=0}
{tr:valign=top}
{td:width=350|bgcolor=#F2F2F2}
{live-template:Left Column}
{td}
{td}
{deck:id=bigdeck}
{card:label=Part A}
h3. Part A
!pushbox2_1.png|width=40%300!
{excerpt}A person pushes a box of mass 15 kg along a smooth floor by applying a force _F_ at an angle of 30° below the horizontal.{excerpt} The box accelerates horizontally at a rate of 2.0 m/s{color:black}^2^{color}. What is the magnitude of _F_?
h4. Solution
{toggle-cloak:id=sysa} *System:* {cloak:id=sysa}Box as [point particle].{cloak}
{toggle-cloak:id=inta} *Interactions:* {cloak:id=inta}External influences from the person (applied force) the earth (gravity) and the floor (normal force).{cloak}
{toggle-cloak:id=moda} *Model:* {cloak:id=moda}[Point Particle Dynamics].{cloak}
{toggle-cloak:id=appa} *Approach:*
{cloak:id=appa}
{toggle-cloak:id=diaga} {color:red} *Diagrammatic Representation* {color}
{cloak:id=diaga}
Before writing [Newton's 2nd Law|Newton's Second Law] for the _x_ direction, we choose coordinates and break the applied force _F_ into x- and y-components:
!pushingboxmore1.png!
{cloak:diaga}
{toggle-cloak:id=matha} {color:red} *Mathematical Representation* {color}
{cloak:id=matha}
Using the free body diagram, we can write the relevant x-component of [Newton's 2nd Law|Newton's Second Law]:
{latex}\begin{large}\[ \sum F_{x} = F\cos\theta = ma_{x}\] \end{large}{latex}
Solving for _F_:
{latex}\begin{large}\[ F = \frac{ma_{x}}{\cos\theta} = \mbox{34.6 N}\]\end{large}{latex}
{cloak:matha}
{cloak:appa}
{card}
{card:label=Part B}
h3. Part B
!pushblock2_2.png|width=40%300!
A person pulls a box of mass 15 kg along a smooth floor by applying a force _F_ at an angle of 30° above the horizontal.. The box accelerates horizontally at a rate of 2.0 m/s{color:black}^2^{color}. What is the magnitude of _F_?
h4. Solution
{toggle-cloak:id=sysb} *System:* {cloak:id=sysb} Box as [point particle].{cloak}
{toggle-cloak:id=intb} *Interactions:* {cloak:id=intb} External influences from the person (applied force) the earth (gravity) and the floor (normal force).{cloak}
{toggle-cloak:id=modb} *Model:* {cloak:id=modb}[Point Particle Dynamics].{cloak}
{toggle-cloak:id=appb} *Approach:*
{cloak:id=appb}
{toggle-cloak:id=diagb} {color:red} *Diagrammatic Representation* {color}
{cloak:id=diagb}
Before writing [Newton's 2nd Law|Newton's Second Law] for the _x_ direction, we choose coordinates and break the applied force _F_ into x- and y-components:
!pushingboxmore2.png!
{cloak:diagb}
{toggle-cloak:id=mathb} {color:red} *Mathematical Representation* {color}
{cloak:id=mathb}
The free body diagram implies:
{latex}\begin{large}\[ \sum F_{x} = F\cos\theta = ma_{x}\] \end{large}{latex}
Solving for _F_:
{latex}\begin{large}\[ F = \frac{ma_{x}}{\cos\theta} = \mbox{34.6 N}\]\end{large}{latex}
{cloak:mathb}
{cloak:appb}
{card}
{deck}
{td}
{tr}
{table}
{live-template:RELATE license}
|