Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin

Excerpt

A relationship between the moment of inertia of a rigid body about an axis passing through the body's center of mass and the moment of inertia about any parallel axis.

Statement of the Theorem

The parallel axis theorem states that if the moment of inertia of a rigid body about an axis passing through the body's center of mass is Icm then the moment of inertia of the body about any parallel axis can be found by evaluating the sum:

Latex
Wiki Markup

{excerpt}A relationship between the moment of inertia of a rigid body about an axis passing through the body's center of mass and the moment of inertia about any parallel axis.{excerpt}

h4. Statement of the Theorem

The parallel axis theorem states that if the moment of inertia of a rigid body about an axis passing through the body's center of mass is _I_~cm~ then the moment of inertia of the body about any parallel axis can be found by evaluating the sum:

{latex}\begin{large}\[ I_{||} = I_{cm} + Md^{2} \] \end{large}{latex}

where _d_ is the 

where d is the (perpendicular)

...

distance

...

between

...

the

...

original

...

center

...

of

...

mass

...

axis

...

and

...

the

...

new

...

parallel

...

axis.

...

Motivation

...

for

...

the

...

Theorem

...

We

...

know

...

that

...

the

...

angular

...

momentum

...

about

...

a

...

single

...

axis

...

of

...

a

...

rigid

...

body

...

that

...

is

...

translating

...

and

...

rotating

...

with

...

respect

...

to

...

a

...

(non-accelerating)

...

axis

...

can

...

be

...

written:

{
Latex
}\begin{large}\[ L = m\vec{r}_{\rm cm,axis}\times\vec{v}_{cm} + I_{cm}\omega_{cm} \]\end{large}{latex}

Now

...

suppose

...

that

...

the

...

rigid

...

body

...

is

...

executing

...

pure

...

rotation

...

about

...

the

...

axis.

...

In

...

that

...

case,

...

the

...

velocity

...

of

...

the

...

center

...

of

...

mass

...

will

...

be

...

perpendicular

...

to

...

the

...

displacement

...

vector

...

from

...

the

...

axis

...

of

...

rotation

...

to

...

the

...

center

...

of

...

mass.

...

Calling

...

the

...

magnitude

...

of

...

that

...

displacement

...

d

...

,

...

to

...

make

...

contact

...

with

...

the

...

form

...

of

...

the

...

theorem,

...

we

...

then

...

have:

{
Latex
}\begin{large}\[ L \mbox{ (pure rotation)} = mv_{cm}d + I_{cm}\omega_{cm} \]\end{large}{latex}

If

...

the

...

body

...

is

...

purely

...

rotating,

...

we

...

can

...

also

...

define

...

an

...

angular

...

speed

...

for

...

rotation

...

about

...

the

...

new

...

parallel

...

axis.

...

The

...

angular

...

speed

...

must

...

satisfy

...

(consider

...

that

...

the

...

center

...

of

...

mass

...

is

...

describing

...

a

...

circle

...

of

...

radius

...

d

...

about

...

the

...

axis):

{
Latex
}\begin{large} \[ \omega_{\rm axis} = \frac{v_{cm}}{d} \] \end{large}{latex}

Futher,

...

the

...

rotation

...

rate

...

of

...

the

...

object

...

about

...

its

...

center

...

of

...

mass

...

must

...

equal

...

the

...

rotation

...

rate

...

about

...

the

...

parallel

...

axis,

...

since

...

when

...

the

...

object

...

has

...

completed

...

a

...

revolution

...

about

...

the

...

parallel,

...

its

...

oritentation

...

must

...

be

...

the

...

same

...

if

...

it

...

is

...

executing

...

pure

...

rotation.

...

Thus,

...

we

...

can

...

write:

{
Latex
}\begin{large}\[ L \mbox{ (pure rotation)} = m\omega_{\rm axis} d^{2} + I_{cm}\omega_{\rm axis} \]\end{large}{latex}

which

...

implies

...

the

...

parallel

...

axis

...

theorem

...

holds.

...

Derivation

...

of

...

the

...

Theorem

...

From

...

the

...

definition

...

of

...

the

...

moment

...

of

...

inertia:

{
Latex
}\begin{large}\[ I = \int r^{2} dm \] \end{large}{latex}

The

...

center

...

of

...

mass

...

is

...

at

...

a

...

position

...

r

...

cm with

...

respect

...

to

...

the

...

desired

...

axis

...

of

...

rotation.

...

We

...

define

...

new

...

coordinates:

{
Latex
}\begin{large}\[ \vec{r} = \vec{r}\:' + \vec{r}_{cm}\]\end{large}{latex}

where _

where r'

...

measures

...

the

...

positions

...

relative

...

to

...

the

...

object's

...

center

...

of

...

mass.

...

Substituting

...

into

...

the

...

moment

...

of

...

inertia

...

formula:

Latex
 

{latex}\begin{large}\[ I = \int\: (r\:'^{2} + 2\vec{r}\:'\cdot\vec{r}_{cm} + r_{cm}^{2})\: dm \]\end{large}{latex}

The _r_~cm~ is a constant within the integral over the 

The rcm is a constant within the integral over the body's

...

mass

...

elements.

...

Thus,

...

the

...

middle

...

term

...

can

...

be

...

written:

{
Latex
}\begin{large}\[ \int\:\vec{r}\:'\cdot \vec{r}_{cm}\:dm = r_{cm}\cdot \int\:\vec{r}\:'\:dm \]\end{large}{latex}

Since

...

the

...

r

...

'

...

measure

...

deviations

...

from

...

the

...

center

...

of

...

mass

...

position,

...

the

...

integral

...

r

...

'

...

dm

...

must

...

give

...

zero

...

(the

...

position

...

of

...

the

...

center

...

of

...

mass

...

in

...

the

...

r

...

'

...

system).

...

Thus,

...

we

...

are

...

left

...

with:

{
Latex
}\begin{large}\[ I = \int\: r\:'^{2}\:dm + r_{cm}^{2} \int\:dm = I_{cm} + Mr_{cm}^{2}\]\end{large}{latex}

Which

...

is

...

the

...

parallel

...

axis

...

theorem.

...