Apply a field and move the wall over a grain boundary. Consider the coercive force.
<p>
</p>
Consider the Hamiltonian.
<p>
</p>
_What is D?_ _Why is dH set to zero?_
<center>
<br>
<math>H = \int_{-D}^{D} \left [A_i(x) \left ( \frac{d \theta}{dx} \right )^2 + K_i(x) \sin^2 \theta - HM \cos \theta \right] dx</math>
<br>
<math> \delta H = 0 </math>
<br>
<math>\delta H = -2A_i \frac{d^2 \theta}{d x^2} + K_i \sin 2 \theta + HM \sin \theta</math>
<br>
</center>
Three different expressions result from the last equation above. Multiply by the term below.
<p>
</p>
_How does multiplying by this term produce equations below?_
<center>
<br>
<math>\int \frac{d \theta}{d x} dx</math>
<br>
<math>-A_i \left ( \frac{d \theta_i}{dx} \right )^2 + K_i \sin^2 \theta - HM \cos \theta = D_i</math>
<br>
<math>-A_1 \left ( \frac{d \theta_1}{dx} \right )^2 + K_1 \sin^2 \theta - HM \cos \theta = D_1</math>
<br>
<math>-A_2 \left ( \frac{d \theta_2}{dx} \right )^2 + K_2 \sin^2 \theta - HM \cos \theta = D_2</math>
<br>
<math>-A_3 \left ( \frac{d \theta_3}{dx} \right )^2 + K_3 \sin^2 \theta - HM \cos \theta = D_3</math>
<br>
</center>
Apply the boundary conditions to find values of <math>D_1</math> and <math>D_2</math>.
<center>
<br>
<math>D_1 = -HM</math>
<br>
<math>D_3 = HM</math>
<br>
</center>
Determine the boundary conditions at the grain boundary.
<center>
<br>
<math>A_1 \frac{d \theta}{d x}|_{x=x_1} = A_2 \frac{d \theta}{d x}|_{x=x_2}</math>
<br>
<math> A_1 \left ( \frac{d \theta}{d x} \right )^2 + A_1 k_1 \sin^2 \theta_1 - kMA_1 \cos \theta_1 = AD_1</math>
<br>
<math> A_2 \left ( \frac{d \theta}{d x} \right )^2 + A_2 k_2 \sin^2 \theta_1 - kMA_1 \cos \theta_1 = AD_1</math>
<br>
</center>
There is an expression of <math>D_2</math> in terms of <math>\theta</math> at the interface.
<center>
<br>
<math>\left ( A_1 k_1 - A_2 k_2 \right ) \sin^2 \theta_1 - HM \left ( A_1 - A_2 \right ) \cos \theta_1 = A_1 D_1 - A_2 D_2</math>
<br>
<math>\left ( A_3 k_3 - A_2 k_2 \right ) \sin^2 \theta_1 - HM \left ( A_3 - A_2 \right ) \cos \theta_1 = A_3 D_3 - A_2 D_2</math>
<br>
</center>
There are pairs of <math>\theta_1</math> and <math>\theta_2</math> corresponding to each value of <math>D_2</math>.
<center>
<br>
<math>-A_2 \left ( \frac{d \theta}{dx} \right )^2 +K_2 \sin^2 \theta - HM \cos \theta = D_2</math>
<br>
<math>-A \left ( \frac{d \theta}{dx} \right )^2 = D_2 + K_2 \sin^2 \theta - HM \cos \theta</math>
<br>
</center>
Use the computer to solve integrals.
<p>
</p>
_What is the meaning of_ <math>\theta_2</math> _and_ <math>\theta_2</math>_?_
<p>
</p>
_Why is_ <math>\partial H / \partial \theta</math> _set equal to zero?_
<p>
</p>
_What is the connection between the integral and_ <math>H</math>_?_
<p>
</p>
_How is_ <math>H</math> _used to find an expression of the coercive force?_
<center>
<br>
<math>W = \sqrt { \frac{A}{K} } \int_{\theta_1}^{\theta_2} \frac{d \theta}{\sin^2 \theta - h \cos \theta + b \sin^2 \theta - a h \cos \theta_1 + h(a+1)}</math>
<br>
<math>H = \frac{1}{2} \frac{K_1}{S} \left (\frac{A_1}{A_2} - \frac{K_2}{K_1} \right ) \left ( \sin \theta^2 \cos \theta \right )</math>
<br>
<math>\frac{ \partial H }{ \partial \theta } = 0</math>
<br>
|