You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 2 Next »

Unknown macro: {table}
Unknown macro: {tr}
Unknown macro: {td}
Error formatting macro: live-template: java.lang.NullPointerException
Unknown macro: {td}

Center of Mass

The average position of the mass in a body or system.  A system will behave in response to external forces applied to any of its parts as if the entire mass of the body were concentrated there.  The motion of the center of mass is unaffected by internal forces in the system (e.g. forces between the atoms, or collisions between different components of the system).


MotivationforConcept"> Motivation for Concept

MathematicalDefinition"> Mathematical Definition

BodyasSumofPointParticles"> Body as Sum of Point Particles

Under this condition, we can quickly derive the form and the utility of the moment of inertia by considering the body to be a collection of Np point particles. Each of the Np point particles (of mass mi where i runs from 1 to Np) will obey [Newton's 2nd Law|Newton's Second Law

CenterofMassasaSum"> Center of Mass as a Sum


We define the Center of Mass as:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ \vec

Unknown macro: {CoM}

= \frac{\sum_

Unknown macro: {i=1}

^{N_{\rm p}} m_

Unknown macro: {i}

\vec{r_

}}{\sum_

^{N_{\rm p}} m_{i}} ] \end

CalculatingCenterofMass"> Calculating Center of Mass

IntegralsinRectangularCoordinates"> Integrals in Rectangular Coordinates

For continuous objects, the summation in our definition of the center of mass must be converted to an integral.  The Mass differential is given by:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ dm = \rho(x,y,z) dx dy dz ] \end

To calculate the x - position of the center of mass we use:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ CoM_

Unknown macro: {rm x}

= \frac

Unknown macro: {int int int ::x:rho(x,y,z):dx:dy:dz}
Unknown macro: {int int int :rho(x,y,z):dx:dy:dz}

]\end

We can obtain the y - and z - coordinates using similar expressions:

Unknown macro: {latex}

\begin

Unknown macro: {large}

[ CoM_

Unknown macro: {rm y}

= \frac

Unknown macro: {int int int ::y:rho(x,y,z):dx:dy:dz}
Unknown macro: {int int int :rho(x,y,z):dx:dy:dz}

]\end


Unknown macro: {latex}

\begin

Unknown macro: {large}

[ CoM_

Unknown macro: {rm z}

= \frac

Unknown macro: {int int int ::z:rho(x,y,z):dx:dy:dz}
Unknown macro: {int int int :rho(x,y,z):dx:dy:dz}

]\end


Error formatting macro: live-template: java.lang.NullPointerException
  • No labels