{table:align=right|cellspacing=0|cellpadding=1|border=1|frame=box|width=40%} {tr} {td:align=center|bgcolor=#F2F2F2}*[Model Hierarchy]* {td} {tr} {tr} {td} {pagetree:root=Model Hierarchy|reverse=true} {search-box} {td} {tr} {table} h2. Description and Assumptions {excerpt}This model applies to a single [point particle] constrained to move in one dimension whose position is a sinusoidal function of time. Simple harmonic motion is sometimes abbreviated SHM.{excerpt} h2. Problem Cues Any object that experiences a _linear_ restoring force or torque so that the equation of motion takes the form {latex}\begin{large}\[ a = \frac{d^{2}x}{dt^{2}} = - \omega^{2}x \]\end{large}{latex} or {latex}\begin{large}\[ \alpha = \frac{d^{2}\theta}{dt^{2}} = -\omega^{2}\theta\] \end{large}{latex} will experience simple harmonic motion with angular frequency ω. The prototypical example is an object of mass _m_ attached to a spring with force constant _k_, in which case, by [Hooke's Law]: {latex}\begin{large}\[ a = -\frac{kx}{m} \]\end{large}{latex} giving simple harmonic motion with angular frequency {latex}$\sqrt{\dfrac{k}{m}}${latex}. ---- || Page Contents || | {toc:style=none|indent=10px} | ---- h2. Prerequisite Knowledge h4. Prior Models * [1-D Motion (Constant Velocity)] * [1-D Motion (Constant Acceleration)] h4. Vocabulary and Procedures * [restoring force] * [periodic motion] * [angular frequency] * [phase] ---- h2. System h4. Constituents A single [point particle|point particle] (or, for the angular version of SHM, a single [rigid body]). h4. State Variables Time (_t_), position (_x_) , velocity (_v_) and acceleration (_a_) or their angular equivalents. ---- h2. Interactions h4. Relevant Types The system must be subject to a one-dimensional restoring force (or torque) that varies linearly with the displacement (or angular displacement) from an equilibrium position. h4. Interaction Variables Force (_F_) or the angular equivalent. ---- h2. Model h4. Relevant Definitions Amplitude of motion: {latex}\begin{large}\[ A = \sqrt{x_{i}^{2} + \left(\frac{v_{i}}{\omega}\right)^{2}}\]\end{large}{latex} Phase: {latex}\begin{large}\[ \phi = \cos^{-1}\left(\frac{x_{i}}{A}\right) = \sin^{-1}\left(\frac{v_{i}}{\omega A}\right)\]\end{large}{latex} h4. Laws of Change \\ h5. Position: \\ {latex}\begin{large}\[ x(t) = x_{i}\cos(\omega t) + \frac{v_{i}}{\omega}\sin(\omega t)\]\end{large}{latex} \\ or, equivalently \\ {latex}\begin{large}\[ x(t) = A\cos(\omega t + \phi) \]\end{large}{latex} \\ h5. Velocity: \\ {latex}\begin{large}\[ v(t) = -\omega x_{i}\sin(\omega t) + v_{i}\cos(\omega t)\]\end{large}{latex}\\ \\ or, equivalently: {latex}\begin{large}\[ v(t) = -A\omega\sin(\omega t + \phi)\]\end{large}{latex} \\ h5. Acceleration: \\ {latex}\begin{large}\[ a(t) = -\omega^{2} x_{i}\cos(\omega t) - \omega v_{i} \sin(\omega t) = -\omega^{2} x \]\end{large}{latex} \\ or, equivalently: \\ {latex}\begin{large}\[ a(t) = -\omega^{2}A\cos(\omega t+\phi) = -\omega^{2} x\]\end{large}{latex} ---- h2. Diagrammatical Representations * Acceleration versus time graph. * Velocity versus time graph. * Position versus time graph. ---- h2. Relevant Examples None yet. ---- {search-box} \\ \\ | !copyright and waiver^copyrightnotice.png! | RELATE wiki by David E. Pritchard is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License|http://creativecommons.org/licenses/by-nc-sa/3.0/us/]. | |