{table:align=right|cellspacing=0|cellpadding=1|border=1|frame=box|width=40%} {tr} {td:align=center|bgcolor=#F2F2F2}*[Model Hierarchy]* {td} {tr} {tr} {td} {pagetree:root=Model Hierarchy|reverse=true} {search-box} {td} {tr} {table} h2. Description and Assumptions {excerpt:hidden=true}*System:* One [point particle|point particle]. --- *Interactions:* Any.{excerpt} This model is technically applicable to any [point particle] system. In practice, however, the vector equations in this model are usually split into three one-dimensional equations, so that the [One-Dimensional Motion (General)] model is nearly as general, and more easily used. h2. Problem Cues This model is rarely needed in introductory mechanics, and is presented principally for intellectual completeness of the hierarchy. ---- || Page Contents || | {toc:style=none|indent=10px} | ---- h2. Prerequisite Knowledge h4. Prior Models * [1-D Motion (Constant Velocity)] * [1-D Motion (Constant Acceleration)] * [One-Dimensional Motion (General)] h4. Vocabulary * [position (one-dimensional)] * [velocity] * [acceleration] ---- h2. System h4. Constituents A single [point particle|point particle] (or a system treated as a point particle with position specified by the center of mass). h4. State Variables Time (_t_), position (_x_) , and velocity (_v_). ---- h2. Interactions h4. Relevant Types Any. h4. Interaction Variables Acceleration (_a_(_t_)). ---- h2. Model h4. Laws of Change Differential Forms: \\ \\ {latex}\begin{large}\[ \frac{d\vec{v}}{dt} = \vec{a}\]\end{large}{latex}\\ \\ {latex}\begin{large}\[ \frac{d\vec{x}}{dt} = \vec{v}\]\end{large}{latex}\\ \\ Integral Forms: \\ {latex}\begin{large}\[ \vec{v}(t) = \vec{v}(t_{0})+\int_{t_{0}}^{t} \vec{a}\;dt\]\end{large}{latex}\\ \\ {latex}\begin{large}\[ \vec{x}(t) = \vec{x}(t_{0})+\int_{t_{0}}^{t} \vec{v}\;dt\]\end{large}{latex}\\ ---- h2. Relevant Examples None. ---- {search-box} \\ \\ | !copyright and waiver^copyrightnotice.png! | RELATE wiki by David E. Pritchard is licensed under a [Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License|http://creativecommons.org/licenses/by-nc-sa/3.0/us/]. | |