{table:rules=cols|cellpadding=8|cellspacing=0|border=1|frame=void} {tr:valign=top}{td:width=355px} {live-template:Left Column} {td} {td} h2. Description and Assumptions {excerpt:hidden=true}*System:* Any. --- *Interactions:* Any. --- *Note:* This difficult model is only used for [gyroscopes|gyroscope].{excerpt} This model is [generally applicable|generally applicable model], but mathematically very complicated. In introductory mechanics it will only be used to describe the motion of a gyroscope. h2. Problem Cues Only used in problems involving a gyroscope. ---- || Page Contents || | {toc:style=none|indent=10px} | h1. Prerequisite Knowledge h3. Prior Models * [1-D Angular Momentum and Torque] * [Uniform Circular Motion] h3. Vocabulary * [torque (one-dimensional)] * [angular momentum (one-dimensional)] h1. Compatible Systems Technically, any number of [rigid bodies|rigid body]. In practice, only used in analyzing gyroscopes (single rigid body with a fixed pivot point). h1. Relevant Interactions Only external torques need be considered. Internal torques do not change the system's angular momentum. h1. Model h3. Definitions h6. Gyroscopic Approximation \\ {latex}\begin{large}\[ \vec{L} \approx \vec{\omega} I\]\end{large}{latex} (_I_ is the moment of inertia of the gyroscope about the spin axis {latex}$\hat{\omega}${latex}) \\ \\ \\ h6. Angular Frequency of Gyroscopic Precession \\ {latex}\begin{large}\[\displaystyle \Omega = \frac{\displaystyle \left(\frac{dL}{dt}\right)}{L} \]\end{large}{latex} h3. Law of Change h6. Differential Form \\ {latex}\begin{large}\[\sum_{\rm system}\frac{d\vec{L}}{dt} = \sum_{\rm external}\vec{\tau}\]\end{large}{latex} \\ h1. Diagrammatic Representations * A delta-L diagram analogous to the [Delta-v diagram] of [Uniform Circular Motion]. h1. Relevant Examples None yet. ---- {search-box} \\ \\ {td} {tr} {table} {live-template:RELATE license} |