{composition-setup}{composition-setup} {table:cellspacing=0|cellpadding=8|border=1|frame=void|rules=cols} {tr:valign=top} {td:width=350px|bgcolor=#F2F2F2} {live-template:Left Column} {td} {td} h1. Simple Harmonic Motion {excerpt:hidden=true}*System:* One [point particle] constrained to move in one dimension. --- *Interactions:* The acceleration must be a [sinusoidal function] of time.{excerpt} h4. {toggle-cloak:id=desc} Description and Assumptions {cloak:id=desc} This model applies to a single [point particle] constrained to move in one dimension whose position is a sinusoidal function of time. Simple harmonic motion is sometimes abbreviated SHM. {cloak} h4. {toggle-cloak:id=cues} Problem Cues {cloak:id=cues} Any object that experiences a _linear_ restoring force or torque so that the equation of motion takes the form {latex}\begin{large}\[ a = \frac{d^{2}x}{dt^{2}} = - \omega^{2}x \]\end{large}{latex} or {latex}\begin{large}\[ \alpha = \frac{d^{2}\theta}{dt^{2}} = -\omega^{2}\theta\] \end{large}{latex} will experience simple harmonic motion with angular frequency ω. The prototypical example is an object of mass _m_ attached to a spring with force constant _k_, in which case, by [Hooke's Law]: {latex}\begin{large}\[ a = -\frac{kx}{m} \]\end{large}{latex} giving simple harmonic motion with angular frequency {latex}$\sqrt{\dfrac{k}{m}}${latex}. {cloak} h4. {toggle-cloak:id=pri} Prior Models {cloak:id=pri} * [1-D Motion (Constant Velocity)] * [1-D Motion (Constant Acceleration)] {cloak} h4. {toggle-cloak:id=voc} Vocabulary {cloak:id=vocab} * [restoring force] * [periodic motion] * [angular frequency] * [phase] {cloak} h2. Models h4. {toggle-cloak:id=sys} {color:red}Compatible Systems{color} {cloak:id=sys} A single [point particle|point particle] (or, for the angular version of SHM, a single [rigid body]). {cloak} h4. {toggle-cloak:id=int} {color:red}Relevant Interactions{color} {cloak:id=int} The system must be subject to a one-dimensional restoring force (or torque) that varies linearly with the displacement (or angular displacement) from an equilibrium position. {cloak} h4. {toggle-cloak:id=def} {color:red} Relevant Definitions{color} {cloak:id=def} {section}{column} h5. Initial Conditions {latex}\begin{large}\[ x_{0} = x(t=0) = -\frac{a(t=0)}{\omega^{2}}\qquad\] \[ v_{0} = v(t=0)\]\end{large}{latex} {column}{column} h5. Amplitude of Motion {latex}\begin{large}\[ A = \sqrt{x_{0}^{2} + \left(\frac{v_{0}}{\omega}\right)^{2}}\qquad\]\end{large}{latex} {column}{column} h5. Phase \\ {latex}\begin{large}\[ \phi = \cos^{-1}\left(\frac{x_{0}}{A}\right) = \sin^{-1}\left(\frac{v_{0}}{\omega A}\right)\qquad\]\end{large}{latex} {column}{section} {cloak} h4. {toggle-cloak:id=laws} {color:red}Laws of Change{color} {cloak:id=laws} {section}{column} h5. Position: {latex}\begin{large}\[ x(t) = x_{0}\cos(\omega t) + \frac{v_{0}}{\omega}\sin(\omega t)\qquad\]\end{large}{latex} \\ or, equivalently \\ {latex}\begin{large}\[ x(t) = A\cos(\omega t + \phi)\]\end{large}{latex} {column}{column} h5. Velocity {latex}\begin{large}\[ v(t) = -\omega x_{0}\sin(\omega t) + v_{0}\cos(\omega t)\qquad\]\end{large}{latex} \\ or, equivalently: \\ {latex}\begin{large}\[ v(t) = -A\omega\sin(\omega t + \phi)\]\end{large}{latex} {column}{column} h5. Acceleration {latex}\begin{large}\[ a(t) = -\omega^{2} x_{0}\cos(\omega t) - \omega v_{0} \sin(\omega t) = -\omega^{2} x(t) \qquad\]\end{large}{latex} \\ or, equivalently: \\ {latex}\begin{large}\[ a(t) = -\omega^{2}A\cos(\omega t+\phi) = -\omega^{2} x(t)\]\end{large}{latex} {column}{section} {cloak} h4. {toggle-cloak:id=diag} {color:red}Diagrammatical Representations{color} {cloak:id=diag} * Acceleration versus time graph. * Velocity versus time graph. * Position versus time graph. {cloak} h2. Relevant Examples None yet. ---- {search-box} \\ \\ {td} {tr} {table} {live-template:RELATE license} |