{composition-setup}{composition-setup} {excerpt:hidden=true}{*}System:* One [point particle] constrained to move in one dimension. --- *Interactions:* The particle must experience a force (or torque) that attempts to [restore|restoring force] it to equilibrium and is directly proportional to its displacement from that equilibrium.{excerpt} h4. Introduction to the Model h5. Description and Assumptions This [model] applies to [position] of a single [point particle], or to the [angular position] of a [rigid body], which is constrained to one dimension and experiences a [restoring force] that is linearly proportional to its displacement from an [equilibrium position]. This form for the force or torque implies that the equation of motion for the [point particle] or [rigid body] will have the form: {latex}\begin{large}\[ a = \frac{d^{2}x}{dt^{2}} = - \omega_{\rm osc}^{2}x \]\end{large}{latex}or {latex}\begin{large}\[ \alpha = \frac{d^{2}\theta}{dt^{2}} = -\omega_{\rm osc}^{2}\theta.\] \end{large}{latex} As a consequence of this characteristic equation, the position, velocity, and acceleration (or the angular equivalents) will each be [sinusoidal functions|sinusoidal function] of time. Simple harmonic motion is sometimes abbreviated SHM, or referred to as "Simple Harmonic Oscillation" (SHO). h5. Learning Objectives {toggle-cloak:id=obj}Students will be assumed to understand this model who can: {cloak:id=obj} * Define the terms [equilibrium position] and [restoring force]. * Define the [amplitude], [period], [natural|natural frequency] [angular frequency] and [phase] of oscillatory motion. * Give a formula for the [natural|natural frequency] [angular frequency] of the oscillation of a [pendulum] or [mass on a spring]. * Write mathematical expressions for the [position], [velocity] and [acceleration] of Simple Harmonic Motion as functions of time for the special cases that the initial velocity is zero or the initial position is equilibrium. * Graphically represent the position, velocity and acceleration of Simple Harmonic Motion. * Use the laws of [dynamics] to determine the [natural|natural frequency] [angular frequency] of a [system] in the limit of very small displacements from equilibrium. * Describe the consequences of [conservation|conserved] of [mechanical energy] for Simple Harmonic Motion (assuming no dissipation). {cloak:obj} h5. Relevant Definitions {section}{column} {panel:title=Amplitude|borderStyle=solid|borderWidth=1|bgColor=#FFFFFF|borderColor=#FFFFFF|titleBGColor=#FFFFFF} {center}{latex}\begin{large}\[ A = \sqrt{x_{i}^{2} + \left(\frac{v_{i}}{\omega_{0}}\right)^{2}} \]\end{large}{latex}{center}{panel} {column}{column} {panel:title=Phase|borderStyle=solid|borderWidth=1|bgColor=#FFFFFF|borderColor=#FFFFFF} {center} {latex}\begin{large}\[ \phi = \cos^{-1}\left(\frac{x_{i}}{A}\right) = \sin^{-1}\left(\frac{v_{i}}{\omega_{0} A}\right)\]\end{large}{latex} {center}{panel} {column}{section} h4. S.I.M. Structure of the Model h5. Compatible Systems A single [point particle|point particle] (or, for the angular version of SHM, a single [rigid body]). h5. Relevant Interactions The system must be subject to a one-dimensional restoring force (or torque) that varies linearly with the displacement (or angular displacement) from a stable equilibrium position. h4. Laws of Change h5. Mathematical Representation {panel:title=Using Initial Time|borderWidth=1|borderStyle=solid} {panel} {section}{column} {panel:title=Position|bgColor=#FFFFFF} {center}{latex}\begin{large}\[ x(t) = x_{i}\cos(\omega_{0} (t-t_{i})) + \frac{v_{i}}{\omega_{0}}\sin(\omega_{0} (t-t_{i}))\]\end{large}{latex}{center} {panel} {column}{column} {panel:title=Velocity|bgColor=#FFFFFF} {center}{latex}\begin{large}\[ v(t) = -\omega_{0} x_{i}\sin(\omega_{0} (t-t_{i})) + v_{i}\cos(\omega_{0} (t-t_{i}))\]\end{large}{latex}{center} {panel} {column}{section} {section}{column} \\ {panel:title=Acceleration|bgColor=#FFFFFF} {center}{latex}\begin{large}\[ a(t) = -\omega_{0}^{2} x_{i}\cos(\omega_{0} (t-t_{i})) - \omega_{0} v_{i} \sin(\omega_{0} (t-t_{i})) = -\omega_{0}^{2} x(t) \]\end{large}{latex}{center} {panel} {column}{section} \\ \\ {panel:title=Using Phase|borderWidth=1|borderStyle=solid|bgColor=#F0F0F0} {panel} {section}{column} {panel:title=Position|bgColor=#FFFFFF} {center}{latex}\begin{large}\[ x(t) = A\cos(\omega_{0} t + \phi)\]\end{large}{latex}{center} {panel} {column}{column} {panel:title=Velocity|bgColor=#FFFFFF} {center}{latex}\begin{large}\[ v(t) =-A\omega_{0}\sin(\omega_{0} t + \phi)\]\end{large}{latex}{center} {panel} {column}{column} {panel:title=Acceleration|bgColor=#FFFFFF} {center}{latex}\begin{large}\[ a(t) =-\omega_{0}^{2}A\cos(\omega_{0} t+\phi) =-\omega_{0}^{2} x(t)\]\end{large}{latex}{center} {panel} {column}{section} h5. Diagrammatic Representations * [position versus time graph] * [velocity versus time graph] * [acceleration versus time graph] |[!images^MathematicaPlayer.png!|^SHM-Phase.nbp]|[Click here|^SHM-Phase.nbp] for a _Mathematica Player_ application \\ illustrating these representations using phase.| |[!images^download_now.gif!|http://www.wolfram.com/products/player/download.cgi]|[Click here|http://www.woldfram.com/products/player/download.cgi] to download the (free) _Mathematica Player_ \\ from [Wolfram Research|http://www.wolfram.com]| h4. Relevant Examples h6. {toggle-cloak:id=Pend} Examples involving Pendulums {cloak:id=Pend} {contentbylabel:example_problem,SHM,pendulum|operator=AND|maxResults=50|showSpace=false|excerpt=true} {cloak:Pend} h6. {toggle-cloak:id=Spr} Examples involving Springs {cloak:id=Spr} {contentbylabel:example_problem,SHM,spring|operator=AND|maxResults=50|showSpace=false|excerpt=true} {cloak:Spr} h6. {toggle-cloak:id=RelEx} All Examples involving this Model {cloak:id=RelEx} {contentbylabel:example_problem,SHM|operator=AND|maxResults=50|showSpace=false|excerpt=true} {cloak} |