Some problems still need clarification. I will update them once we ask professor Cory. |
$s(t)=e^{-t/T_{2}}\int P(r)e^{-i\int^{t}_{0}\omega(r,t')dt'}dr$ |
ω(r,t') = resonant frequency
P(r) = probability distribution
Frequency that an arbitrary location will see
$\omega(t) = \gamma r \frac{\partial B_{z}}{\partial x} cos(\omega _{s} t + \phi)$ |
$exp(i\int^{t}_{0}\omega(t')dt'=exp(i[\gamma \frac{\partial B_{z}/\partial x}{\omega_{s}}r sin(\omega_{s}t+\phi])$ |
$exp^{iRsin\alpha}=\sum J_{k}(R)e^{ik\alpha}$ |
for one location in the sample
Static Spectrum
Problem 1
$H_{z}=\omega _{0}I_{z}$ |
$H_{cs}=-\omega _{0}\sigma I_{z}$ |
PAS (Principle axis system) = coordinate system that leave the molecule in diagonal ??
ω in transverse plane (slow) can be suppressed if rotation around z-axis is fast
$\sigma _{z} \sigma _{z}'$ |
= secular part of the chemical shift, lead to small rotation in x-y direction
Problem 2
$\sigma = \sigma_{iso} + (\frac{\sigma}{2})(3 cos^{2}\theta -1)- \frac{\delta^{eta}}{4}sin^{2}\theta(e^{i2\phi}+e^{-i2\phi})$ |
$\sigma_{iso}=(\sigma_{xx}+\sigma_{yy}+\sigma_{zz})/3$ |
$\delta=\frac{2}{3}\sigma_{zz}-\frac{1}{3}(\sigma_{xx}+\sigma_{yy})$ |
$\eta=3(\sigma_{yy}-\sigma_{xx})/2(\sigma_{zz}-\sigma_{xx}-\sigma_{yy})$ |
$< \sigma > = \sigma _{iso}$ |
It average out any non-isometric parts, so we have a homogeneous sample. So the result does not depend on the orientation of the sample.
When η = 0 -> < 3cos(θ)^2 -1 > = 0, average over sphere
Bloc = field that a test spin would see (every spin averagely see the same distribution of B)
average vector still pointing along y => |Bloc> of time or ensemble = 0
Problem 3
Problem 4
let
Problem 5
choose Δ ≥ τ exchange, Δ << T1, Δ > T2
Problem 6
$e^{i\omega_{A}t_{1}}e^{i\omega_{A}t_{2}} , e^{i\omega_{A}t_{1}}e^{i\omega_{B}t_{2}} , e^{i\omega_{B}t_{1}}e^{i\omega_{A}t_{2}} , e^{i\omega_{B}t_{1}}e^{i\omega_{B}t_{2}}$ |
then do phase cycle and collect data set
$cos(\omega_{A/D}T_{1})e^{i\omega_{A/D}t_{2}} , sin(\omega_{A/D}T_{1})e^{i\omega_{A/D}t_{2}}$ |
Then we get pure absorptive line-shape